Полупроводники. Каталог (2011 год) - часть 7

 

  Главная      Книги - Разные     Полупроводники. Каталог (2011 год)

 

поиск по сайту            правообладателям  

 

 

 

 

 

 

 

 

 

 

 

содержание      ..     5      6      7      8     ..

 

 

 

Полупроводники. Каталог (2011 год) - часть 7

 

 

MC34017

2

MOTOROLA ANALOG IC DEVICE DATA

MAXIMUM RATINGS

 (Voltages Referenced to RG, Pin 7)

Rating

Symbol

Value

Unit

Operating AC Input Current (Pins 1, 8)

20

mA, RMS

Transient Input Current (Pins 1, 8) (T<2.0 ms)

Vin

±

300

mA, peak

Voltage Applied at RC (Pin 6)

VRC

5.0

V

Voltage Applied at RS (Pin 5)

VRS

5.0

V

Voltage Applied to Outputs (Pins 2, 3)

VO

–2.0 to VRI

V

Power Dissipation (@ 25

°

C)

PD

1.0

W

Operating Ambient Temperature

TA

–20 to +60

°

C

Storage Temperature

Tstg

–65 to +150

°

C

NOTE:

ESD data available upon request.

ELECTRICAL CHARACTERISTICS  

(TA = 25

°

C)

Characteristic

Test

Symbol

Min

Typ

Max

Unit

Ringing Start Voltage

Vdc

VStart = VI at Ring Start

VI > 0

1a

VStart (+)

34

37.5

41

VI < 0

1b

VStart (–)

–34

–37.5

–41

Ringing Stop Voltage

1c

VStop

Vdc

VStop = VI at Ring Stop

MC34017–1

14

16

22

MC34017–2

12

14

20

MC34017–3

14

16

22

Output Frequencies (VI = 50 V)

1d

Hz

MC34017–1 High Tone

fH

937

1010

1083

MC34017–1

 Low Tone

fL

752

808

868

MC34017–1

 Warble Tone

fW

11.5

12.5

14

MC34017–2 High Tone

fH

1874

2020

2166

MC34017–1

 Low Tone

fL

1504

1616

1736

MC34017–1

 Warble Tone

fW

11.5

12.5

14

MC34017–3 High Tone

fH

937

1010

1083

MC34017–1

 Low Tone

fL

752

808

868

MC34017–1

 Warble Tone

fW

23

25

28

Output Voltage (VI = 50 V)

6

VO

34

37

43

Vpp

Output Short–Circuit Current

2

IRO1, IRO2

35

60

80

mApp

Input Diode Voltage (II = 5.0 mA)

3

VD

5.4

6.2

6.8

Vdc

Input Voltage – SCR “Off” (II = 30 mA)

4a

Voff

30

38

43

Vdc

Input Voltage – SCR “On” (II = 100 mA)

4b

Von

3.2

4.1

6.0

Vdc

RS Clamp Voltage (VI = 50 V)

5

Vclamp

1.3

1.5

1.8

Vdc

PIN FUNCTION DESCRIPTION  

Pin

Symbol

Description

1, 8

AC1, AC2

The input terminals to the full–wave diode bridge. The ac ringing signal from the telephone line energizes the
ringer through this bridge.

5

RS

The input of the threshold comparator to which diode bridge current is mirrored and sensed through an external
resistor (R3). Nominal threshold is 1.2 V. This pin internally clamps at 1.5 V.

4

RI

The positive supply terminal for the oscillator, frequency divider and output buffer circuits.

2, 3

RO1, RO2

The tone ringer output terminals through which the sound element is driven.

7

RG

The negative terminal of the diode bridge and the negative supply terminal of the tone generating circuitry.

6

RC

The oscillator terminal for the external resistor and capacitor which control the tone ringer frequencies (R2, C2).

MC34017

3

MOTOROLA ANALOG IC DEVICE DATA

APPLICATION CIRCUIT PERFORMANCE 

(Refer to Typical Application)

Characteristic

Typical Value

Units

Output Tone Frequencies

Hz

MC34017–1

808/1010

MC34017–2

1616/2020

MC34017–3

404/505

Warble Frequencies

12.5

Output Voltage (VI 

 60 Vrms, 20 Hz)

37

Vpp

Output Duty Cycle

50

%

Ringing Start Input Voltage (20 Hz)

36

Vrms

Ringing Stop Input Voltage (20 Hz)

21

Vrms

Maximum AC Input Voltage (

 68 Hz)

150

Vrms

Impedance When Ringing

k

VI = 40 Vrms, 15 Hz

>16

VI = 130 Vrms, 23 Hz

12

Impedance When Not Ringing

VI = 10 Vrms, 24 Hz

28

k

VI = 2.5 Vrms, 24 Hz

>1.0

M

VI = 10 Vrms, 5.0 Hz

55

k

VI = 3.0 Vrms, 200 – 3200 Hz

>200

k

Maximum Transient Input Voltage (T 

 2.0 ms)

1500

V

Ringer Equivalence: Class A

0.5

Ringer Equivalence:

 Class B

0.9

8

C1

R1

B

B

Bias

Ref

1

6

RO1

RO2

RS

2

3

5

AC2

AC1

RC

4

RI

R2

C2

C3

R3

22 V

Input
Current
Mirror

Push Pull
Output Buffer

C4

Threshold

Comparator

Oscillator

Tone Frequency

Divider

Warble Frequency
Divider

SCR Transient

Clamp

Diode Bridge

Ring

Piezo
Sound
Element

Tip

Block Diagram

7

RG

MC34017

4

MOTOROLA ANALOG IC DEVICE DATA

CIRCUIT DESCRIPTION

The MC34017 Tone Ringer derives its power supply by

rectifying the ac ringing signal. It uses this power to activate
a tone generator and drive a piezo–ceramic transducer. The
tone generation circuitry includes a relaxation oscillator and
frequency dividers which produce high and low frequency
tones as well as the tone warble frequency. The relaxation
oscillator frequency fo is set by resistor R2 and capacitor C2
connected to Pin RC. The oscillator will operate with fo from
1.0 kHz to 10 kHz with the proper choice of external
components (see Figure 1).

The frequency of the tone ringer output signal at RO1 and

RO2 alternates between fo/4 to fo/5. The warble rate at which
the frequency changes is fo/320 for the MC34017–1, fo/640
for the MC34017–2 and fo/160 for the MC34017–3. With a
4.0 kHz oscillator frequency, the MC34017–1 produces
800 Hz and 1000 Hz tones with a 12.5 Hz warble rate. The
MC34017–2 generates 1600 Hz and 2000 Hz tones with a
similar 12.5 Hz warble frequency from an 8.0 kHz oscillator
frequency. The MC34017–3 will produce 400 Hz and 500 Hz
tones with a 12.5 Hz warble rate from a 2.0 kHz oscillator
frequency. The tone ringer output circuit can source or sink
20 mA with an output voltage swing of 37 V peak–to–peak.
Volume control is readily implemented by adding a variable
resistance in series with the piezo transducer.

Input signal detection circuitry activates the tone ringer

output when the ac line voltage exceeds programmed
threshold level. Resistor R3 determines the ringing signal
amplitude at which an output signal at RO1 and RO2 will be
generated. The ac ringing signal is rectified by the internal
diode bridge. The rectified input signal produces a voltage
across R3 which is referenced to RG. The voltage across
resistor R3 is filtered by capacitor C3 at the input to the
threshold circuit.

Figure 1. Oscillator Period (1/fo) versus

Oscillator R2 C2 Product

0

800

1/f

o

, OSCILLA

T

OR PERIOD (   s)

µ

R2 C2, OSCILLATOR R2 C2 PRODUCT (

µ

s)

600

400

200

0

100

200

300

400

500

(1/fo = 1.45 R2 C2 + 10 

µ

s)

150 k 

 R2 

 300 k

400 pF 

 C2 

 3000 pF

When the voltage on capacitor C3 exceeds 1.2 V, the

threshold comparator enables the tone ringer output. Line
transients produced by pulse dialing telephones do not charge
capacitor C3 sufficiently to activate the tone ringer output.

Capacitors C1 and C4 and resistor R1 determine the 10 V,

24 Hz signature test impedance. C4 also provides filtering for
the output stage power supply to prevent droop in the square
wave output signal. Six diodes in series with the rectifying
bridge provide the necessary non–linearity for the 2.5 V,
24 Hz signature tests.

An internal shunt voltage regulator between the RI and RG

terminals provides dc voltage to power the output stage,
oscillator and frequency dividers. The dc voltage at RI is
limited to approximately 22 V in regulation. To protect the IC
from telephone line transients, an SCR is triggered when the
regulator current exceeds 50 mA. The SCR diverts current
from the shunt regulator and reduces the power dissipation
within the IC.

EXTERNAL COMPONENTS

R1

Line Input Resistor
R1 affects the tone ringer input impedance. It
also influences ringing threshold voltage and
limits current from line transients. 
(Range: 2.0 to 10 k

).

C1

Line Input Capacitor
C1 ac couples the tone ringer to the telephone
line and controls ringer input impedance at low
frequencies. 
(Range: 0.4 to 2.0 

µ

F).

R2

Oscillator Resistor
(Range: 150 to 300 k

).

C2

Oscillator Capacitor
(Range: 400 to 3000 pF).

R3

Input Current Sense Resistor
R3 controls the ringing threshold voltage.
Increasing R3 decreases the ring–start voltage.
(Range: 5.0 to 18 k

).

C3

Ringing Threshold Filter Capacitor
C3 filters the ac voltage across R3 at the input
of the ringing threshold comparator. It also
provides dialer transient rejection. 
(Range: 0.5 to 5.0 

µ

F).

C4

Ringer Supply Capacitor
C4 filters supply voltage for the tone generating
circuits. It also provides an ac current path for
the 10 Vrms ringer signature impedance.
(Range: 1.0 to 10 

µ

F).

MC34017

5

MOTOROLA ANALOG IC DEVICE DATA

S1
(Normally Open)

Figure 2. Test One

1

2

3

8

7

6

5

AC1

RO1

RO2

RI

4

AC2

RG

RC

RS

1

2

3

4

16

15

14

13

5

6

7

8

12

11

10

9

160 k*

C

15 k*

0.2 

µ

F

1.0 

µ

F

0.01 

µ

F*

6.8 k*

VI

VO

390 

0.047 

µ

F

VDD

VDD

IC2

DUT

5.6 k

10 k

VDD

0.01 

µ

F

Q1

0.1 

µ

F

R

12

13

9

8

11

10

200 k

fH

fL

fW

IC1 – MC14011B
IC2 – MC14538B

Q1 – 2N3904

MC34017–1: R = 110 k

*

MC34017–2: R = 55 k

*

MC34017–3: R = 110 k

*

MC34017–1: C = 1000 pF*
MC34017–2: C = 500 pF*
MC34017–3: C = 1000 pF*

a. Increase VI from +33 V while monitoring VO.

VStart (+) equals VI when VO commences switching.

b. Decrease VI from –33 V while monitoring VO. 

VStart (–) equals VI when VO commences switching.

c. Decrease VI from +40 V while monitoring VO. 

VStop equals VI when VO ceases switching.

d. Set VI to +50 V. Close S1. Measure frequencies 

fH, fL and fW.

*Indicates 1% tolerance (5% otherwise)

VDD = 12 V

10 k

1/4

IC1

1/4

IC1

MC34017

6

MOTOROLA ANALOG IC DEVICE DATA

Figure 3. Test Two

1

2

3

8

7

6

5

AC1

RO1

RO2

RI

4

AC2

RG

RC

RS

160 k*

C

15 k*

0.2 

µ

F

6.8 k*

DUT

*Indicates 1% tolerance (5% otherwise)

MC34017–1: C = 1000 pF*
MC34017–2: C = 500 pF*
MC34017–3: C = 1000 pF*

With VRC = 4.0 V, close S1. Switch S2 to Pin 2 and measure current 

at Pin 2 (IO1). Repeatedly switch VRC between 4.0 V and 0 V until 

Pin 2 current changes polarity.  Measure the opposite polarity current (IO2).

S1

2.0 k

10 V

5.0 V

IRO1

IRO2

S2

50 V

VRC

Calculate: IRO2 = |IO1| + |IO2|.

Calculate: IRO1 = |IO1| + |IO2|.
Switch S2 to Pin 3 and repeat.

Figure 4. Test Three

1

2

3

8

7

6

5

AC1

RO1

RO2

R1

4

AC2

RG

RC

RS

160 k*

C

15 k*

0.2 

µ

F

VD

390 

0.047 

µ

F

DUT

*Indicates 1% tolerance (5% otherwise)

Measure voltage at Pin 1.

MC34017–1: C = 1000 pF*
MC34017–2: C = 500 pF*
MC34017–3: C = 1000 pF*

5.0 
mA

MC34017

7

MOTOROLA ANALOG IC DEVICE DATA

Figure 5. Test Four

1

2

3

8

7

6

5

AC1

RO1

RO2

RI

4

AC2

RG

RC

RS

160 k*

C

15 k*

0.2 

µ

F

V

DUT

*Indicates 1% tolerance (5% otherwise)

(Each test < 30 ms)

MC34017–1: C = 1000 pF*
MC34017–2: C = 500 pF*
MC34017–3: C = 1000 pF*

a. Set I1 to 30 mA. Measure voltage at Pin 1 (Voff).

I1

b. Set I1 to 100 mA. Measure voltage at Pin 1 (Von).

Figure 6. Test Five

1

2

3

8

7

6

5

AC1

RO1

RO2

RI

4

AC2

RG

RC

RS

160 k*

C

15 k*

DUT

*Indicates 1% tolerance (5% otherwise)

MC34017–1: C = 1000 pF*
MC34017–2: C = 500 pF*
MC34017–3: C = 1000 pF*

50 V

Vclamp

6.8 k*

 Measure voltage at Pin 5 (Vclamp).

Figure 7. Test Six

1

2

3

8

7

6

5

AC1

RO1

RO2

RI

4

AC2

RG

RC

RS

160 k*

C

15 k*

0.2 

µ

F

6.8 k*

DUT

*Indicates 1% tolerance (5% otherwise)

MC34017–1: C = 1000 pF*
MC34017–2: C = 500 pF*
MC34017–3: C = 1000 pF*

S1

2.0 k

50 V

VRC

20 k

VO

With VRC = 4.0 V, close S1. Measure dc voltage between Pins 2 and 3 

(VO1). Repeatedly switch VRC between 4.0 V and 0 V until Pins 2 and 3 

change state. Measure the new voltage between Pins 2 and 3 (VO2).
Calculate: VO = |VO1| +  |VO2|.

MC34017

8

MOTOROLA ANALOG IC DEVICE DATA

D SUFFIX

PLASTIC PACKAGE

CASE 751–05

ISSUE N

P SUFFIX

PLASTIC PACKAGE

CASE 626–05

ISSUE K

OUTLINE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION.

4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

PER SIDE.

5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION.  ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.

SEATING
PLANE

1

4

5

8

C

K

4X

P

A

0.25 (0.010)

M

T B

S

S

0.25 (0.010)

M

B

M

8X

D

R

M

J

X 45

_

_

F

–A–

–B–

–T–

DIM

MIN

MAX

MIN

MAX

INCHES

MILLIMETERS

A

4.80

5.00

0.189

0.196

B

3.80

4.00

0.150

0.157

C

1.35

1.75

0.054

0.068

D

0.35

0.49

0.014

0.019

F

0.40

1.25

0.016

0.049

G

1.27 BSC

0.050 BSC

J

0.18

0.25

0.007

0.009

K

0.10

0.25

0.004

0.009

M

 7 

 0 

 7 

 

P

5.80

6.20

0.229

0.244

R

0.25

0.50

0.010

0.019

_

_

_

_

G

NOTES:

1. DIMENSION L TO CENTER OF LEAD WHEN

FORMED PARALLEL.

2. PACKAGE CONTOUR OPTIONAL (ROUND OR

SQUARE CORNERS).

3. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.

1

4

5

8

F

NOTE 2

–A–

–B–

–T–

SEATING
PLANE

H

J

G

D

K

N

C

L

M

M

A

M

0.13 (0.005)

B

M

T

DIM

MIN

MAX

MIN

MAX

INCHES

MILLIMETERS

A

9.40

10.16

0.370

0.400

B

6.10

6.60

0.240

0.260

C

3.94

4.45

0.155

0.175

D

0.38

0.51

0.015

0.020

F

1.02

1.78

0.040

0.070

G

2.54 BSC

0.100 BSC

H

0.76

1.27

0.030

0.050

J

0.20

0.30

0.008

0.012

K

2.92

3.43

0.115

0.135

L

7.62 BSC

0.300 BSC

M

–––

10 

 –––

10 

 

N

0.76

1.01

0.030

0.040

_

_

Motorola reserves the right to make changes without further notice to any products herein.  Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages.  “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time.  All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts.  Motorola does not convey any license under its patent rights nor the rights of
others.  Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur.  Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and        are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:
USA / EUROPE / Locations Not Listed
: Motorola Literature Distribution;

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,

P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan.  03–81–3521–8315

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 

INTERNET: http://Design–NET.com

51 Ting Kok Road, Tai Po, N.T., Hong Kong.  852–26629298

MC34017/D

*MC34017/D*

January 2009

Rev 2

1/14

14

ULN2064B, ULN2066B
ULN2068B, ULN2074B

50 V - 1.5 A quad Darlington switches

Features

Output current to 1.5 A for each Darlington

Minimum breakdown 50 V

Sustaining voltage at least 35 V

Integral suppression diodes (ULN2064B, 
ULN2066B and ULN2068B

Isolated Darlington pinout (ULN2074B)

Versions compatible with all popular logic 
families

Description

Designed to interface logic to a wide variety of 
high current, high voltage loads, these devices 
each contain four NPN Darlington switches 
delivering up to 1.5 A with a specified minimum 
breakdown of 50 V and a sustaining voltage of 35 
V measured at 100 mA. The ULN2064B, 
ULN2066B and ULN2068B contain integral 
suppression diodes for inductive loads have 
common emitters. The ULN2074B feature 
isolated Darlington pinouts and is intended for

applications such as emitter follower 
configurations. Inputs of the ULN2064B, 
ULN2068B and ULN2074B are compatible with 
popular 5 V logic families and the ULN2066B are 
compatible with 6 - 15 V CMOS and PMOS. Type 
ULN2068B includes a pre-driver stage to reduce 
loading on the control logic.

PowerDIP-16

Table 1.

Device summary

Part numbers

Package

ULN2064B

PowerDIP-16

ULN2066B

PowerDIP-16

ULN2068B

PowerDIP-16

ULN2074B

PowerDIP-16

www.st.com

ULN2064B, ULN2066B, ULN2068B, ULN2074B

Diagram

3/14

1 Diagram

 

Figure 1.

Schematic diagrams

         

ULN2068B: R

IN

 = 2.5k

Ω

, R

S

 = 900

Ω

ULN2074B: R

IN

 = 350

Ω

ULN2066B: R

IN

 = 3k

Ω

ULN2064B: R

IN

 = 350

Ω

Pin configuration

ULN2064B, ULN2066B, ULN2068B, ULN2074B

4/14

Pin configuration  

Figure 2.

Pin connections (top view)

         

ULN2068B

ULN2066B

ULN2074B

ULN2064B

ULN2064B, ULN2066B, ULN2068B, ULN2074B

Maximum ratings

5/14

3 Maximum 

ratings

 

Table 2.

Absolute maximum ratings

Symbol

Parameter

Value

Unit

V

CEX

Output voltage

50 

V

CE(SUS)

Output sustaining voltage

35 

I

O

Output current

1.75 

V

I

Input voltage ULN2066B - 2074B

30

V

Input voltage ULN2064B - 2068B

15

I

I

Input current

25 

mA 

V

S

Supply voltage for ULN2068B

10

V

P

TOT

Power dissipation at T

PINS

 = 90 °C

4.3

W

Power dissipation at T

AMB

 = 70 °C

1

T

AMB

Operating ambient temperature range

- 20 to 85

°

C

T

STG

Storage temperature

- 55 to 150

°

C

Electrical characteristics

ULN2064B, ULN2066B, ULN2068B, ULN2074B

6/14

4 Electrical 

characteristics

Note:

Input voltage is with reference to the substrate (no connection to any other pins) for the 
ULN2074B reference is ground for all other types.

Note:

1

Input current may be limited by maximum allowable input voltage.

Table 3.

Electrical characteristics

 (T

A

 = 25 °C unless otherwise specified).

Symbol

Parameter

Test condition

Min.

Typ.

Max.

Unit

I

CEX

Output leakage current
(

Figure 5

)

V

CE 

= 50V, T

= 25°C 

100

µA

V

CE 

= 50V, T

= 70°C

500

V

CE(SUS)

Collector-emitter sustaining 
voltage (

Figure 4

)

I

C

 = 100mA, V

I

 = 0.4V

35

V

V

CE(SAT)

Collector-emitter saturation 
voltage (

Figure 5

)

I

= 500mA, I

= 325µA

1.1

V

I

= 750mA, I

B

 = 935µA

1.2

I

= 1A, I

= 1.25mA

1.3

I

= 1.25A, I

= 2mA

1.4

I

I(ON)

Input current (

Figure 6

)

for ULN2064B and ULN2074B
V

I

 = 2.4V

V

I

 = 3.75V

1.4
3.3

4.3
9.6

mA

for ULN2066B,
V

I

 = 5V

V

I

 = 12V

0.6
1.7

1.8
5.2

for ULN2068B,
V

I

 = 2.75V

V

I

 = 3.75V

0.55

1.0

V

I(ON)

Input voltage (

Figure 7

)

V

CE

= 2V, I

C

 = 1A

ULN2064B, ULN2074B, 
ULN2066B
V

CE

= 2V, I

C

 = 1.5A

ULN2064B, ULN2074B, 
ULN2066B
ULN2068B

2

6.5

2.5

10

2.75

V

I

S

Supply current (

Figure 10

)

for ULN2068B, V

I

 = 2.75V, 

I

C

 = 500mA

6

mA

t

PLH

Turn-on delay time

0.5 V

to 0.5V

O

1

µs

t

PHL

Turn-off delay time

0.5 V

to 0.5V

O

1.5

µs

I

R

Clamp diode leakage current 
(

Figure 8

)

For ULN2064B - ULN2066B - 
ULN2068B, V

= 50V

T

A

 = 25°C

T

A

 = 70°C

50

100

µA

V

F

Clamp diode forward voltage 
(

Figure 9

)

For ULN2064B - ULN2066B - 
ULN2068B
I

F

 = 1A

I

F

 = 1.5A

1.75

2

V

ULN2064B, ULN2066B, ULN2068B, ULN2074B

Test circuits

7/14

5 Test 

circuits

Figure 3.

Output leakage current

Figure 4.

Collector-emitter sustaining voltage

         

         

Figure 5.

Collector-emitter saturation voltage Figure 6.

Input current (ON)

         

         

Figure 7.

Input voltage

Figure 8.

Clamp diode leakage current

         

         

Test circuits

ULN2064B, ULN2066B, ULN2068B, ULN2074B

8/14

Figure 9.

Clamp diode forward voltage

Figure 10.

Supply current

         

         

Figure 11.

Input current as a function of input 
voltage

Figure 12.

Input current as a function of input 
voltage

         

         

Figure 13.

Collector current as a function of 
input current

         

         

ULN2064B, ULN2066B, ULN2068B, ULN2074B

Mounting instructions

9/14

6 Mounting 

instructions

The R

thJA

 can be reduced by soldering the GND pins to a suitable copper area of the printed 

circuit board (

Figure 14

) or to an external heatsink (

Figure 15

).

The diagram of 

Figure 16

 shows the maximum dissipated power P

TOT

 and the R

thJA

 as a 

function of the side "

α

" of two equal square copper areas having a thickness of 35 µ (1.4 

mils).

During soldering the pins temperature must not exceed 260 °C and the soldering time must 
not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

Figure 14.

Example of P.C. board area which is 
used as heatsink

Figure 15.

External heatsink mounting 
example

         

         

Figure 16.

Maximum dissipated power and 
junction to ambient thermal 
resistance vs. side "

α

"

Figure 17.

Maximum allowable power 
dissipation vs. ambient 
temperature

         

         

 

 

 

 

 

 

 

содержание      ..     5      6      7      8     ..