Полупроводники. Каталог (2011 год) - часть 4

 

  Главная      Книги - Разные     Полупроводники. Каталог (2011 год)

 

поиск по сайту            правообладателям  

 

 

 

 

 

 

 

 

 

 

 

содержание      ..     2      3      4      5     ..

 

 

 

Полупроводники. Каталог (2011 год) - часть 4

 

 

General Description

The DS3231 is a low-cost, extremely accurate I

2

real-time clock (RTC) with an integrated temperature-

compensated crystal oscillator (TCXO) and crystal. 

The device incorporates a battery input, and maintains  

accurate timekeeping when main power to the device 

is interrupted. The integration of the crystal resonator 

enhances the long-term accuracy of the device as well 

as reduces the piece-part count in a manufacturing line. 

The DS3231 is available in commercial and industrial 

temperature ranges, and is offered in a 16-pin, 300-mil 

SO package.
The RTC maintains seconds, minutes, hours, day, date, 

month, and year information. The date at the end of the 

month is automatically adjusted for months with fewer 

than 31 days, including corrections for leap year. The 

clock operates in either the 24-hour or 12-hour format 

with an

 AM

/PM indicator. Two programmable time-of-day 

alarms and a programmable square-wave output are  

provided. Address and data are transferred serially 

through an I

2

C bidirectional bus.

A precision temperature-compensated voltage reference 

and comparator circuit monitors the status of V

CC

 to 

detect power failures, to provide a reset output, and to 

automatically switch to the backup supply when necessary. 

Additionally, the 

RST

 pin is monitored as a pushbutton 

input for generating a μP reset.

Benefits and Features

 

Highly Accurate RTC Completely Manages All 

Timekeeping Functions 

•  Real-Time Clock Counts Seconds, Minutes, Hours, 

Date of the Month, Month, Day of the Week, and 

Year, with Leap-Year Compensation Valid Up to 2100

•  Accuracy ±2ppm from 0°C to +40°C

•  Accuracy ±3.5ppm from -40°C to +85°C

•  Digital Temp Sensor Output: ±3°C Accuracy

•  Register for Aging Trim

• 

RST

 Output/Pushbutton Reset Debounce Input

•  Two Time-of-Day Alarms

•  Programmable Square-Wave Output Signal 

 

Simple Serial Interface Connects to Most 

Microcontrollers

•  Fast (400kHz) I

2

C Interface

 

Battery-Backup Input for Continuous Timekeeping

•  Low Power Operation Extends Battery-Backup  

Run Time

•  3.3V Operation

 

Operating Temperature Ranges: Commercial  

(0°C to +70°C) and Industrial (-40°C to +85°C)

 

Underwriters Laboratories

®

 (UL) Recognized

Applications

19-5170; Rev 10; 3/15

Underwriters Laboratories is a registered certification mark of 

Underwriters Laboratories Inc.

Ordering Information and Pin Configuration appear at end of data 

sheet.

 

Servers

 

Telematics

 

Utility Power Meters

 

GPS

DS3231

V

CC

SCL

R

PU

R

PU 

= t

R

/C

B

R

PU

INT

/SQW

32kHz

V

BAT

PUSHBUTTON

RESET

SDA

RST

N.C.
N.C.
N.C.
N.C.

V

CC

V

CC

GND

V

CC

P

N.C.
N.C.
N.C.
N.C.

SCL

SDA

RST

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

Typical Operating Circuit

Voltage Range on Any Pin Relative to Ground ....-0.3V to +6.0V

Junction-to-Ambient Thermal Resistance (θ

JA) (Note 1) 73°C/W

Junction-to-Case Thermal Resistance (θ

JC) (Note 1) ....23°C/W

Operating Temperature Range 

DS3231S ............................................................0°C to +70°C 

DS3231SN ...................................................... -40°C to +85°C

Junction Temperature ......................................................+125°C

Storage Temperature Range .............................. -40°C to +85°C

Lead Temperature (soldering, 10s) .................................+260°C

Soldering Temperature (reflow, 2 times max) .................+260°C 

(see the 

Handling

PCB Layout

and Assembly

 section)

(T

A

 = T

MIN

 to T

MAX

, unless otherwise noted.) (Notes 2, 3)

(V

CC

 = 2.3V to 5.5V, V

CC

 = Active Supply (see Table 1), T

A

 = T

MIN

 to T

MAX

, unless otherwise noted.) (Typical values are at V

CC

 = 

3.3V, V

BAT

 = 3.0V, and T

A

 = +25°C, unless otherwise noted.) (Notes 2, 3)

PARAMETER

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

Supply Voltage 

V

CC

2.3

3.3

5.5

V

V

BAT

2.3

3.0

5.5

V

Logic 1 Input SDA, SCL

V

IH

0.7 x 

V

CC

V

CC

 + 

0.3

V

Logic 0 Input SDA, SCL

V

IL

-0.3

0.3 x 

V

CC

V

PARAMETER

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

Active Supply Current 

I

CCA

(Notes 4, 5)

V

CC

 = 3.63V

200

µA

V

CC

 = 5.5V

300

Standby Supply Current

I

CCS

I

2

C bus inactive, 32kHz 

output on, SQW output off

(Note 5)

V

CC

 = 3.63V

110

µA

V

CC

 = 5.5V

170

Temperature Conversion Current

I

CCSCONV

I

2

C bus inactive, 32kHz 

output on, SQW output off

V

CC

 = 3.63V

575

µA

V

CC

 = 5.5V

650

Power-Fail Voltage

V

PF

2.45

2.575

2.70

V

Logic 0 Output, 32kHz, 

INT

/SQW, 

SDA

V

OL

I

OL

 = 3mA

0.4

V

Logic 0 Output, 

RST

V

OL

I

OL

 = 1mA

0.4

V

Output Leakage Current 32kHz, 

INT

/SQW, SDA

I

LO

Output high impedance

-1

0

+1

µA

Input Leakage SCL

I

LI

-1

+1

µA

RST

 Pin I/O Leakage

I

OL

RST

 high impedance (Note 6)

-200

+10

µA

V

BAT

 Leakage Current

(V

CC

 Active)

I

BATLKG

25

100

nA

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

2

Note 1:

  Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer 

board. For detailed information on package thermal considerations, refer to 

www.maximintegrated.com/thermal-tutorial

.

Absolute Maximum Ratings

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these 

or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect 

device reliability.

Recommended Operating Conditions

Electrical Characteristics

(

V

CC

 = 0V, V

BAT

 = 2.3V to 5.5V

, T

A

 = T

MIN

 to T

MAX

, unless otherwise noted.) (Note 2)

(V

CC

 = 2.3V to 5.5V, V

CC

 = Active Supply (see Table 1), T

A

 = T

MIN

 to T

MAX

, unless otherwise noted.) (Typical values are at V

CC

 = 

3.3V, V

BAT

 = 3.0V, and T

A

 = +25°C, unless otherwise noted.) (Notes 2, 3)

PARAMETER

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

Active Battery Current 

I

BATA

EOSC

 = 0, BBSQW = 0, 

SCL = 400kHz (Note 5)

V

BAT

 = 3.63V

70

µA

V

BAT

 = 5.5V

150

Timekeeping Battery Current 

I

BATT

EOSC

 = 0, BBSQW = 0,

EN32kHz = 1,

SCL = SDA = 0V or

SCL = SDA = V

BAT

 (Note 5)

V

BAT

 = 3.63V

0.84

3.0

µA

V

BAT

 = 5.5V

1.0

3.5

Temperature Conversion Current

I

BATTC

EOSC

 = 0, BBSQW = 0, 

SCL = SDA = 0V or

SCL = SDA = V

BAT

V

BAT

 = 3.63V

575

µA

V

BAT

 = 5.5V

650

Data-Retention Current

I

BATTDR

EOSC

 = 1, SCL = SDA = 0V, +25°C

100

nA

PARAMETER

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

Output Frequency

f

OUT

V

CC

 = 3.3V or V

BAT

 = 3.3V

32.768

kHz

Frequency Stability vs. 

Temperature (Commercial)

Δf/f

OUT

V

CC

 = 3.3V or

V

BAT

 = 3.3V,

aging offset = 00h

0°C to +40°C

±2

ppm

>40°C to +70°C

±3.5

Frequency Stability vs. 

Temperature (Industrial)

Δf/f

OUT

V

CC

 = 3.3V or

V

BAT

 = 3.3V,

aging offset = 00h

-40°C to <0°C

±3.5

ppm

0°C to +40°C

±2

>40°C to +85°C

±3.5

Frequency Stability vs. Voltage

Δf/V

1

ppm/V

Trim Register Frequency 

Sensitivity per LSB

Δf/LSB

Specified at:

-40°C

0.7

ppm

+25°C

0.1

+70°C

0.4

+85°C

0.8

Temperature Accuracy

Temp

V

CC

 = 3.3V or V

BAT

 = 3.3V

-3

+3

°C

Crystal Aging

Δf/f

O

After reflow,

not production tested

First year

±1.0

ppm

0–10 years

±5.0

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

3

Electrical Characteristics

Electrical Characteristics (continued)

(V

CC

 = V

CC(MIN)

 to V

CC(MAX)

 or V

BAT

 = V

BAT(MIN)

 to V

BAT(MAX)

, V

BAT

 > V

CC

, T

A

 = T

MIN

 to T

MAX

, unless otherwise noted.) (Note 2)

(T

A

 = T

MIN

 to T

MAX

)

PARAMETER

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

SCL Clock Frequency

f

SCL

Fast mode

100

400

kHz

Standard mode

0

100

Bus Free Time Between STOP 

and START Conditions

t

BUF

Fast mode

1.3

µs

Standard mode

4.7

Hold Time (Repeated) START 

Condition (Note 7)

t

HD:STA

Fast mode

0.6

µs

Standard mode

4.0

Low Period of SCL Clock

t

LOW

Fast mode

1.3

µs

Standard mode

4.7

High Period of SCL Clock

t

HIGH

Fast mode

0.6

µs

Standard mode

4.0

Data Hold Time (Notes 8, 9)

t

HD:DAT

Fast mode

0

0.9

µs

Standard mode

0

0.9

Data Setup Time (Note 10)

t

SU:DAT

Fast mode

100

ns

Standard mode

250

START Setup Time

t

SU:STA

Fast mode

0.6

µs

Standard mode

4.7

Rise Time of Both SDA and SCL 

Signals (Note 11)

t

R

Fast mode

20 + 

0.1CB

300

ns

Standard mode

1000

Fall Time of Both SDA and SCL 

Signals (Note 11)

t

F

Fast mode

20 + 

0.1CB

300

ns

Standard mode

300

Setup Time for STOP Condition

t

SU:STO

Fast mode

0.6

µs

Standard mode

4.7

Capacitive Load for Each Bus 

Line 

C

B

(Note 11)

400

pF

Capacitance for SDA, SCL

C

I/O

10

pF

Pulse Width of Spikes That Must 

Be Suppressed by the Input Filter

t

SP

30

ns

Pushbutton Debounce

PB

DB

250

ms

Reset Active Time

t

RST

250

ms

Oscillator Stop Flag (OSF) Delay

t

OSF

(Note 12)

100

ms

Temperature Conversion Time

t

CONV

125

200

ms

PARAMETER

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

V

CC

 Fall Time; V

PF(MAX)

 to 

V

PF(MIN)

t

VCCF

300

µs

V

CC

 Rise Time; V

PF(MIN)

 to 

V

PF(MAX)

t

VCCR

0

µs

Recovery at Power-Up

t

REC

(Note 13)

250

300

ms

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

4

AC Electrical Characteristics

Power-Switch Characteristics

t

RST

PB

DB

RST

V

CC

t

VCCF

t

VCCR

t

REC

V

PF(MAX)

V

PF

V

PF

V

PF(MIN)

RST

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

5

Pushbutton Reset Timing

Power-Switch Timing

WARNING: Negative undershoots below -0.3V while the part is in battery-backed mode may cause loss of data.

Note 2:

  Limits at -40°C are guaranteed by design and not production tested.

Note 3:

  All voltages are referenced to ground.

Note 4:

 I

CCA

—SCL clocking at max frequency = 400kHz.

Note 5:

  Current is the averaged input current, which includes the temperature conversion current.

Note 6:

 The 

RST

 pin has an internal 50kΩ (nominal) pullup resistor to V

CC

.

Note 7:

  After this period, the first clock pulse is generated.

Note 8:

  A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V

IH(MIN)

 of the SCL sig-

nal) to bridge the undefined region of the falling edge of SCL.

Note 9:

  The maximum t

HD:DAT

 needs only to be met if the device does not stretch the low period (t

LOW

) of the SCL signal.

Note 10:

  A fast-mode device can be used in a standard-mode system, but the requirement t

SU:DAT

 ≥ 250ns must then be met. This 

is automatically the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the 

low period of the SCL signal, it must output the next data bit to the SDA line t

R(MAX)

 + t

SU:DAT

 = 1000 + 250 = 1250ns 

before the SCL line is released.

Note 11:

 C

B

—total capacitance of one bus line in pF.

Note 12:

  The parameter t

OSF

 is the period of time the oscillator must be stopped for the OSF flag to be set over the voltage range 

of 0.0V ≤ V

CC

 ≤ V

CC(MAX)

 and 2.3V ≤ V

BAT

 ≤ 3.4V.

Note 13:

  This delay applies only if the oscillator is enabled and running. If the 

EOSC

 bit is a 1, t

REC

 is bypassed and 

RST

 immedi-

ately goes high. The state of 

RST

 does not affect the I

2

C interface, RTC, or TCXO.

SDA

SCL

t

HD:STA

t

LOW

t

HIGH

t

R

t

F

t

BUF

t

HD:DAT

t

SU:DAT

REPEATED

START

t

SU:STA

t

HD:STA

t

SU:STO

t

SP

STOP

START

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

6

Data Transfer on I

2

C Serial Bus

(V

CC

 = +3.3V, T

A

 = +25°C, unless otherwise noted.)

SUPPLY CURRENT

vs. SUPPLY VOLTAGE

DS3231 toc02

V

BAT

 (V)

I

BAT

 (µ

A)

5.3

4.3

3.3

0.7

0.8

0.9

1.0

1.1

1.2

0.6

2.3

V

CC

 = 0V, BSY = 0,

SDA = SCL = V

BAT

 OR V

CC

EN32kHz = 1

EN32kHz = 0

SUPPLY CURRENT

vs. TEMPERATURE

DS3231 toc03

TEMPERATURE (°C)

I

BAT

 (µ

A)

60

35

10

-15

0.7

0.8

0.9

1.0

0.6

-40

85

V

CC

 = 0, EN32kHz = 1, BSY = 0,

SDA = SCL = V

BAT

 OR GND

FREQUENCY DEVIATION

vs. TEMPERATURE vs. AGING VALUE

DS3231 toc04

TEMPERATURE (°C)

FREQUENCY DEVIATION (ppm)

60

35

10

-15

-30

-20

-10

0

10

20

30

40

50

60

-40

-40

85

127

32

0

-33

-128

STANDBY SUPPLY CURRENT

vs. SUPPLY VOLTAGE

DS3231 toc01

V

CC

 (V)

I

CCS

 (µ

A)

5.0

4.5

4.0

3.5

3.0

2.5

25

50

75

100

125

150

0

2.0

5.5

RST

 ACTIVE

BSY = 0, SCL = SDA = V

CC

DELTA TIME AND FREQUENCY

vs. TEMPERATURE

TEMPERATURE (°C)

DELTA FREQUENCY (ppm)

DELTA TIME (MIN/YEAR)

80

70

50 60

-10 0 10 20 30 40

-30 -20

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

-200

-80

-60

-40

-20

0

-100

-40

DS3231 toc05

CRYSTAL

+20ppm

CRYSTAL

-20ppm

TYPICAL CRYSTAL,

UNCOMPENSATED

DS3231

ACCURACY

BAND

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

Maxim Integrated  

 

7

www.maximintegrated.com

Typical Operating Characteristics

CLOCK AND CALENDAR

REGISTERS

USER BUFFER

(7 BYTES)

VOLTAGE REFERENCE;

DEBOUNCE CIRCUIT;

PUSHBUTTON RESET

I

2

C INTERFACE AND

ADDRESS REGISTER

DECODE

POWER CONTROL

V

CC

V

BAT

GND

SCL

SDA

TEMPERATURE

SENSOR

CONTROL LOGIC/

DIVIDER

ALARM, STATUS, AND

CONTROL REGISTERS

OSCILLATOR AND 

CAPACITOR ARRAY

X1

X2

N

32kHz

N

INT

/SQW

SQUARE-WAVE BUFFER;

INT/SQW CONTROL

N

RST

V

CC

DS3231

1Hz

1Hz

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

8

Block Diagram

Detailed Description

The DS3231 is a serial RTC driven by a temperature- 

compensated 32kHz crystal oscillator. The TCXO provides 

a stable and accurate reference clock, and maintains the 

RTC to within ±2 minutes per year accuracy from -40°C 

to +85°C. The TCXO frequency output is available at the 

32kHz pin. The RTC is a low-power clock/calendar with 

two programmable time-of-day alarms and a programma-

ble square-wave output. The 

INT

/SQW provides either an 

interrupt signal due to alarm conditions or a square-wave 

output. The clock/calendar provides seconds, minutes, 

hours, day, date, month, and year information. The date at 

the end of the month is automatically adjusted for months 

with fewer than 31 days, including corrections for leap 

year. The clock operates in either the 24-hour or 12-hour 

format with an 

AM

/PM indicator. The internal registers are 

accessible though an I

2

C bus interface.

A temperature-compensated voltage reference and com-

parator circuit monitors the level of V

CC

 to detect power fail-

ures and to automatically switch to the backup supply when 

necessary. The 

RST

 pin provides an external pushbutton 

function and acts as an indicator of a power-fail event.

Operation

The block diagram shows the main elements of the 

DS3231. The eight blocks can be grouped into four func-

tional groups: TCXO, power control, pushbutton function, 

and RTC. Their operations are described separately in the 

following sections.

PIN

NAME

FUNCTION

1

32kHz

32kHz Output. This open-drain pin requires an external pullup resistor. When enabled, the output operates on 

either power supply. It may be left open if not used.

2

V

CC

DC Power Pin for Primary Power Supply. This pin should be decoupled using a 0.1µF to 1.0µF capacitor.

If not used, connect to ground.

3

INT

/SQW

Active-Low Interrupt or Square-Wave Output. This open-drain pin requires an external pullup resistor connected 

to a supply at 5.5V or less. This multifunction pin is determined by the state of the INTCN bit in the Control 

Register (0Eh). When INTCN is set to logic 0, this pin outputs a square wave and its frequency is determined by 

RS2 and RS1 bits. When INTCN is set to logic 1, then a match between the timekeeping registers and either of 

the alarm registers activates the 

INT

/SQW pin (if the alarm is enabled). Because the INTCN bit is set to logic 1 

when power is first applied, the pin defaults to an interrupt output with alarms disabled. The pullup voltage can 

be up to 5.5V, regardless of the voltage on V

CC

. If not used, this pin can be left unconnected.

4

RST

Active-Low Reset. This pin is an open-drain input/output. It indicates the status of V

CC

 relative to the

V

PF

 specification. As V

CC

 falls below V

PF

, the 

RST

 pin is driven low. When V

CC

 exceeds V

PF

, for t

RST

, the 

RST

 pin is pulled high by the internal pullup resistor. The active-low, open-drain output is combined with a 

debounced pushbutton input function. This pin can be activated by a pushbutton reset request. It has an internal 

50kΩ nominal value pullup resistor to V

CC

. No external pullup resistors should be connected. If the oscillator is 

disabled, t

REC

 is bypassed and 

RST

 immediately goes high.

5–12

N.C.

No Connection. Must be connected to ground.

13

GND

Ground

14

V

BAT

Backup Power-Supply Input. When using the device with the V

BAT

 input as the primary power source, this pin 

should be decoupled using a 0.1µF to 1.0µF low-leakage capacitor. When using the device with the V

BAT

 input 

as the backup power source, the capacitor is not required. If V

BAT

 is not used, connect to ground. The device is 

UL recognized to ensure against reverse charging when used with a primary lithium battery.  

Go to 

www.maximintegrated.com/qa/info/ul

15

SDA

Serial Data Input/Output. This pin is the data input/output for the I

2

C serial interface. This open-drain pin 

requires an external pullup resistor. The pullup voltage can be up to 5.5V, regardless of the voltage on V

CC

.

16

SCL

Serial Clock Input. This pin is the clock input for the I

2

C serial interface and is used to synchronize data 

movement on the serial interface. Up to 5.5V can be used for this pin, regardless of the voltage on V

CC

.

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

9

Pin Description

32kHz TCXO

The temperature sensor, oscillator, and control logic form 

the TCXO. The controller reads the output of the on-chip 

temperature sensor and uses a lookup table to determine 

the capacitance required, adds the aging correction in 

AGE register, and then sets the capacitance selection reg-

isters. New values, including changes to the AGE register, 

are loaded only when a change in the temperature value 

occurs, or when a user-initiated temperature conversion 

is completed. Temperature conversion occurs on initial 

application of V

CC

 and once every 64 seconds afterwards.

Power Control

This function is provided by a temperature-compensated 

voltage reference and a comparator circuit that monitors 

the V

CC

 level. When V

CC

 is greater than V

PF

, the part is 

powered by V

CC

. When V

CC

 is less than V

PF

 but greater 

than V

BAT

, the DS3231 is powered by V

CC

. If V

CC

 is less 

than V

PF

 and is less than V

BAT

, the device is powered by 

V

BAT

. See Table 1.

To preserve the battery, the first time V

BAT

 is applied 

to the device, the oscillator will not start up until V

CC 

exceeds V

PF

, or until a valid I

2

C address is written to 

the part. Typical oscillator startup time is less than one 

second. Approximately 2 seconds after V

CC

 is applied, 

or a valid I

2

C address is written, the device makes a 

temperature measurement and applies the calculated 

correction to the oscillator. Once the oscillator is running, 

it continues to run as long as a valid power source is avail-

able (V

CC

 or V

BAT

), and the device continues to measure 

the temperature and correct the oscillator frequency every 

64 seconds.
On the first application of power (V

CC

) or when a valid I

2

address is written to the part (V

BAT

), the time and date 

registers are reset to 01/01/00 01 00:00:00 (DD/MM/YY 

DOW HH:MM:SS).

V

BAT

 Operation

There are several modes of operation that affect the 

amount of V

BAT

 current that is drawn. While the device 

is powered by V

BAT

 and the serial interface is active, 

active battery current, I

BATA

, is drawn. When the seri-

al interface is inactive, timekeeping current (I

BATT

), 

which includes the averaged temperature conversion 

current, I

BATTC

, is used (refer to Application Note 3644: 

Power Considerations for Accurate Real-Time Clocks 

for details). Temperature conversion current, I

BATTC

, is 

specified since the system must be able to support the 

periodic higher current pulse and still maintain a valid volt-

age level. Data retention current, I

BATTDR

, is the current 

drawn by the part when the oscillator is stopped (

EOSC 

= 1). This mode can be used to minimize battery require-

ments for times when maintaining time and date informa-

tion is not necessary, e.g., while the end system is waiting 

to be shipped to a customer.

Pushbutton Reset Function

The DS3231 provides for a pushbutton switch to be con-

nected to the 

RST

 output pin. When the DS3231 is not in 

a reset cycle, it continuously monitors the 

RST

 signal for 

a low going edge. If an edge transition is detected, the 

DS3231 debounces the switch by pulling the 

RST

 low. 

After the internal timer has expired (PB

DB

), the DS3231 

continues to monitor the 

RST

 line. If the line is still low, 

the DS3231 continuously monitors the line looking for a 

rising edge. Upon detecting release, the DS3231 forces 

the 

RST

 pin low and holds it low for t

RST

.

RST

 is also used to indicate a power-fail condition. When 

V

CC

 is lower than V

PF

, an internal power-fail signal is 

generated, which forces the 

RST

 pin low. When V

CC 

returns to a level above V

PF

, the 

RST

 pin is held low for 

approximately 250ms (t

REC

) to allow the power supply 

to stabilize. If the oscillator is not running (see the 

Power 

Control

 section) when V

CC

 is applied, t

REC

 is bypassed 

and 

RST

 immediately goes high. Assertion of the 

RST 

output, whether by pushbutton or power-fail detection, 

does not affect the internal operation of the DS3231.

Real-Time Clock

With the clock source from the TCXO, the RTC provides 

seconds, minutes, hours, day, date, month, and year 

information. The date at the end of the month is automati-

cally adjusted for months with fewer than 31 days, includ-

ing corrections for leap year. The clock operates in either 

the 24-hour or 12-hour format with an 

AM

/PM indicator.

The clock provides two programmable time-of-day alarms 

and a programmable square-wave output. The 

INT

/SQW 

pin either generates an interrupt due to alarm condition 

or outputs a square-wave signal and the selection is con-

trolled by the bit INTCN.

Table 1. Power Control

SUPPLY CONDITION

ACTIVE SUPPLY

V

CC

 < V

PF

, V

CC

 < V

BAT

V

BAT

V

CC

 < V

PF

, V

CC

 > V

BAT

V

CC

V

CC

 > V

PF

, V

CC

 < V

BAT

V

CC

V

CC

 > V

PF

, V

CC

 > V

BAT

V

CC

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

10

Address Map

Figure 1 shows the address map for the DS3231 time-

keeping registers. During a multibyte access, when the 

address pointer reaches the end of the register space 

(12h), it wraps around to location 00h. On an I

2

C START 

or address pointer incrementing to location 00h, the cur-

rent time is transferred to a second set of registers. The 

time information is read from these secondary registers, 

while the clock may continue to run. This eliminates the 

need to reread the registers in case the main registers 

update during a read.

I

2

C Interface

The I

2

C interface is accessible whenever either V

CC

 or 

V

BAT

 is at a valid level. If a microcontroller connected 

to the DS3231 resets because of a loss of V

CC

 or other 

event, it is possible that the microcontroller and DS3231 

I

2

C communications could become unsynchronized, e.g., 

the microcontroller resets while reading data from the 

DS3231. When the microcontroller resets, the DS3231 

I

2

C interface may be placed into a known state by tog-

gling SCL until SDA is observed to be at a high level. At 

that point the microcontroller should pull SDA low while 

SCL is high, generating a START condition.

Clock and Calendar

The time and calendar information is obtained by reading 

the appropriate register bytes. Figure 1 illustrates the RTC 

registers. The time and calendar data are set or initialized 

by writing the appropriate register bytes. The contents of 

the time and calendar registers are in the binary-coded 

Note:

 Unless otherwise specified, the registers’ state is not defined when power is first applied.

Figure 1. Timekeeping Registers

ADDRESS

BIT 7

MSB

BIT 6

BIT 5

BIT 4

BIT 3

BIT 2

BIT 1

BIT 0

LSB

FUNCTION

RANGE

00h

0

10 Seconds

Seconds

Seconds

00–59

01h

0

10 Minutes

Minutes

Minutes

00–59

02h

0

12/

24

AM

/PM

10 Hour

Hour

Hours

1–12 + 

AM

/PM

00–23

20 Hour

03h

0

0

0

0

0

Day

Day

1–7

04h

0

0

10 Date

Date

Date

01–31

05h

Century

0

0

10 Month

Month

Month/

Century

01–12 + Century

06h

10 Year

Year

Year

00–99

07h

A1M1

10 Seconds

Seconds

Alarm 1 Seconds

00–59

08h

A1M2

10 Minutes

Minutes

Alarm 1 Minutes

00–59

09h

A1M3

12/

24

AM

/PM

10 Hour

Hour

Alarm 1 Hours

1–12 + 

AM

/PM

00–23

20 Hour

0Ah

A1M4

DY/DT

10 Date

Day

Alarm 1 Day

1–7

Date

Alarm 1 Date

1–31

0Bh

A2M2

10 Minutes

Minutes

Alarm 2 Minutes

00–59

0Ch

A2M3

12/

24

AM

/PM

10 Hour

Hour

Alarm 2 Hours

1–12 + 

AM

/PM

00–23

20 Hour

0Dh

A2M4

DY/

DT

10 Date

Day

Alarm 2 Day

1–7

Date

Alarm 2 Date

1–31

0Eh

EOSC

BBSQW

CONV

RS2

RS1

INTCN

A2IE

A1IE

Control

0Fh

OSF

0

0

0

EN32kHz

BSY

A2F

A1F

Control/Status

10h

SIGN

DATA

DATA

DATA

DATA

DATA

DATA

DATA

Aging Offset

11h

SIGN

DATA

DATA

DATA

DATA

DATA

DATA

DATA

MSB of Temp

12h

DATA

DATA

0

0

0

0

0

0

LSB of Temp

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

11

decimal (BCD) format. The DS3231 can be run in either 

12-hour or 24-hour mode. Bit 6 of the hours register is 

defined as the 12- or 24-hour mode select bit. When high, 

the 12-hour mode is selected. In the 12-hour mode, bit 5 

is the 

AM

/PM bit with logic-high being PM. In the 24-hour 

mode, bit 5 is the 20-hour bit (20–23 hours). The century 

bit (bit 7 of the month register) is toggled when the years 

register overflows from 99 to 00.
The day-of-week register increments at midnight. Values 

that correspond to the day of week are user-defined but 

must be sequential (i.e., if 1 equals Sunday, then 2 equals 

Monday, and so on). Illogical time and date entries result 

in undefined operation.
When reading or writing the time and date registers, sec-

ondary (user) buffers are used to prevent errors when the 

internal registers update. When reading the time and date 

registers, the user buffers are synchronized to the internal 

registers on any START and when the register pointer 

rolls over to zero. The time information is read from these 

secondary registers, while the clock continues to run. This 

eliminates the need to reread the registers in case the 

main registers update during a read.
The countdown chain is reset whenever the seconds 

register is written. Write transfers occur on the acknowl-

edge from the DS3231. Once the countdown chain is 

reset, to avoid rollover issues the remaining time and 

date registers must be written within 1 second. The 1Hz 

square-wave output, if enabled, transitions high 500ms 

after the seconds data transfer, provided the oscillator is 

already running.

Alarms

The DS3231 contains two time-of-day/date alarms. 

Alarm 1 can be set by writing to registers 07h to 0Ah. 

Alarm 2 can be set by writing to registers 0Bh to 0Dh. 

The alarms can be programmed (by the alarm enable 

and INTCN bits of the control register) to activate the 

INT

/SQW output on an alarm match condition. Bit 7 of 

each of the time-of-day/date alarm registers are mask 

bits (Table 2). When all the mask bits for each alarm 

are logic 0, an alarm only occurs when the values in 

the timekeeping registers match the corresponding val-

ues stored in the time-of-day/date alarm registers. The 

alarms can also be programmed to repeat every second, 

minute, hour, day, or date. Table 2 shows the possible 

settings. Configurations not listed in the table will result 

in illogical operation.
The DY/

DT

 bits (bit 6 of the alarm day/date registers) 

control whether the alarm value stored in bits 0 to 5 of 

that register reflects the day of the week or the date of 

the month. If DY/

DT

 is written to logic 0, the alarm will be 

the result of a match with date of the month. If DY/

DT

 is 

written to logic 1, the alarm will be the result of a match 

with day of the week.
When the RTC register values match alarm register set-

tings, the corresponding Alarm Flag ‘A1F’ or ‘A2F’ bit is 

set to logic 1. If the corresponding Alarm Interrupt Enable 

‘A1IE’ or ‘A2IE’ is also set to logic 1 and the INTCN bit 

is set to logic 1, the alarm condition will activate the  

INT

/SQW signal. The match is tested on the once-per-

second update of the time and date registers.

Table 2. Alarm Mask Bits

DY/

DT

ALARM 1 REGISTER MASK BITS (BIT 7)

ALARM RATE

A1M4

A1M3

A1M2

A1M1

X

1

1

1

1

Alarm once per second

X

1

1

1

0

Alarm when seconds match

X

1

1

0

0

Alarm when minutes and seconds match

X

1

0

0

0

Alarm when hours, minutes, and seconds match

0

0

0

0

0

Alarm when date, hours, minutes, and seconds match

1

0

0

0

0

Alarm when day, hours, minutes, and seconds match

DY/

DT

ALARM 2 REGISTER MASK BITS (BIT 7)

ALARM RATE

A2M4

A2M3

A2M2

X

1

1

1

Alarm once per minute (00 seconds of every minute)

X

1

1

0

Alarm when minutes match

X

1

0

0

Alarm when hours and minutes match

0

0

0

0

Alarm when date, hours, and minutes match

1

0

0

0

Alarm when day, hours, and minutes match

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

12

Special-Purpose Registers

The DS3231 has two additional registers (control and sta-

tus) that control the real-time clock, alarms, and square-

wave output.

Control Register (0Eh)

Bit  7:  Enable  Oscillator  (

EOSC

).

 When set to logic 0, 

the oscillator is started. When set to logic 1, the oscillator 

is stopped when the DS3231 switches to V

BAT

. This bit 

is clear (logic 0) when power is first applied. When the 

DS3231 is powered by V

CC

, the oscillator is always on 

regardless of the status of the 

EOSC

 bit. When 

EOSC

 is 

disabled, all register data is static.

Bit 6: Battery-Backed Square-Wave Enable (BBSQW). 

When set to logic 1 with INTCN = 0 and V

CC

 < V

PF

, this 

bit enables the square wave. When BBSQW is logic 0, 

the 

INT

/SQW pin goes high impedance when V

CC

 < V

PF

This bit is disabled (logic 0) when power is first applied.

Bit 5: Convert Temperature (CONV).

 Setting this bit to 

1 forces the temperature sensor to convert the tempera-

ture into digital code and execute the TCXO algorithm to 

update the capacitance array to the oscillator. This can 

only happen when a conversion is not already in prog-

ress. The user should check the status bit BSY before 

forcing the controller to start a new TCXO execution. A 

user-initiated temperature conversion does not affect the 

internal 64-second update cycle.
A user-initiated temperature conversion does not affect 

the BSY bit for approximately 2ms. The CONV bit remains 

at a 1 from the time it is written until the conversion is 

finished, at which time both CONV and BSY go to 0. The 

CONV bit should be used when monitoring the status of a 

user-initiated conversion.

Bits  4  and  3:  Rate  Select  (RS2  and  RS1).

 These bits 

control the frequency of the square-wave output when 

the square wave has been enabled. The following table 

shows the square-wave frequencies that can be selected 

with the RS bits. These bits are both set to logic 1 

(8.192kHz) when power is first applied.

Bit  2:  Interrupt  Control  (INTCN).

 This bit controls the 

INT

/SQW signal. When the INTCN bit is set to logic 0, 

a square wave is output on the 

INT

/SQW pin. When the 

INTCN bit is set to logic 1, then a match between the time-

keeping registers and either of the alarm registers acti-

vates the 

INT

/SQW output (if the alarm is also enabled). 

The corresponding alarm flag is always set regardless of 

the state of the INTCN bit. The INTCN bit is set to logic 1 

when power is first applied.

Bit  1:  Alarm  2  Interrupt  Enable  (A2IE).

 When set to 

logic 1, this bit permits the alarm 2 flag (A2F) bit in the 

status register to assert 

INT

/SQW (when INTCN = 1). 

When the A2IE bit is set to logic 0 or INTCN is set to logic 

0, the A2F bit does not initiate an interrupt signal. The 

A2IE bit is disabled (logic 0) when power is first applied.

Bit  0:  Alarm  1  Interrupt  Enable  (A1IE).

 When set to 

logic 1, this bit permits the alarm 1 flag (A1F) bit in the 

status register to assert 

INT

/SQW (when INTCN = 1). 

When the A1IE bit is set to logic 0 or INTCN is set to logic 

0, the A1F bit does not initiate the 

INT

/SQW signal. The 

A1IE bit is disabled (logic 0) when power is first applied.

Control Register (0Eh)

SQUARE-WAVE OUTPUT FREQUENCY

BIT 7

BIT 6

BIT 5

BIT 4

BIT 3

BIT 2

BIT 1

BIT 0

NAME:

EOSC

BBSQW

CONV

RS2

RS1

INTCN

A2IE

A1IE

POR:

0

0

0

1

1

1

0

0

RS2

RS1

SQUARE-WAVE OUTPUT 

FREQUENCY

0

0

1Hz

0

1

1.024kHz

1

0

4.096kHz

1

1

8.192kHz

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

13

Status Register (0Fh)

Bit 7: Oscillator Stop Flag (OSF).

 A logic 1 in this bit indi-

cates that the oscillator either is stopped or was stopped 

for some period and may be used to judge the validity of 

the timekeeping data. This bit is set to logic 1 any time 

that the oscillator stops. The following are examples of 

conditions that can cause the OSF bit to be set:
1)  The first time power is applied.
2)  The voltages present on both V

CC

 and V

BAT

 are insuf-

ficient to support oscillation.

3) The 

EOSC

 bit is turned off in battery-backed mode.

4)  External influences on the crystal (i.e., noise, leakage, 

etc.).

This bit remains at logic 1 until written to logic 0.

Bit  3:  Enable  32kHz  Output  (EN32kHz).

 This bit con-

trols the status of the 32kHz pin. When set to logic 1, the 

32kHz pin is enabled and outputs a 32.768kHz square-

wave signal. When set to logic 0, the 32kHz pin goes to a 

high-impedance state. The initial power-up state of this bit 

is logic 1, and a 32.768kHz square-wave signal appears 

at the 32kHz pin after a power source is applied to the 

DS3231 (if the oscillator is running).

Bit  2:  Busy  (BSY).

 This bit indicates the device is busy 

executing TCXO functions. It goes to logic 1 when the con-

version signal to the temperature sensor is asserted and 

then is cleared when the device is in the 1-minute idle state.

Bit 1: Alarm 2 Flag (A2F).

 A logic 1 in the alarm 2 flag bit 

indicates that the time matched the alarm 2 registers. If the 

A2IE bit is logic 1 and the INTCN bit is set to logic 1, the 

INT

/SQW pin is also asserted. A2F is cleared when written 

to logic 0. This bit can only be written to logic 0. Attempting 

to write to logic 1 leaves the value unchanged.

Bit 0: Alarm 1 Flag (A1F).

 A logic 1 in the alarm 1 flag bit 

indicates that the time matched the alarm 1 registers. If the 

A1IE bit is logic 1 and the INTCN bit is set to logic 1, the 

INT

/SQW pin is also asserted. A1F is cleared when written 

to logic 0. This bit can only be written to logic 0. Attempting 

to write to logic 1 leaves the value unchanged.

Aging Offset

The aging offset register takes a user-provided value to 

add to or subtract from the codes in the capacitance array 

registers. The code is encoded in two’s complement, with 

bit 7 representing the sign bit. One LSB represents one 

small capacitor to be switched in or out of the capacitance 

array at the crystal pins. The aging offset register capaci-

tance value is added or subtracted from the capacitance 

value that the device calculates for each temperature 

compensation. The offset register is added to the capaci-

tance array during a normal temperature conversion, if 

the temperature changes from the previous conversion, or 

during a manual user conversion (setting the CONV bit). 

To see the effects of the aging register on the 32kHz out-

put frequency immediately, a manual conversion should 

be started after each aging register change.
Positive aging values add capacitance to the array, slow-

ing the oscillator frequency. Negative values remove 

capacitance from the array, increasing the oscillator 

frequency.
The change in ppm per LSB is different at different tem-

peratures. The frequency vs. temperature curve is shifted 

by the values used in this register. At +25°C, one LSB 

typically provides about 0.1ppm change in frequency.
Use of the aging register is not needed to achieve the 

accuracy as defined in the EC tables, but could be used 

to help compensate for aging at a given temperature. 

See the 

Typical Operating Characteristics

 section for a 

graph showing the effect of the register on accuracy over 

temperature.

Status Register (0Fh)

Aging Offset (10h)

BIT 7

BIT 6

BIT 5

BIT 4

BIT 3

BIT 2

BIT 1

BIT 0

NAME:

OSF

0

0

0

EN32kHz

BSY

A2F

A1F

POR:

1

0

0

0

1

X

X

X

BIT 7

BIT 6

BIT 5

BIT 4

BIT 3

BIT 2

BIT 1

BIT 0

NAME:

Sign

Data

Data

Data

Data

Data

Data

Data

POR:

0

0

0

0

0

0

0

0

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

14

Temperature Registers (11h–12h)

Temperature is represented as a 10-bit code with a 

resolution of 0.25°C and is accessible at location 11h and 

12h. The temperature is encoded in two’s complement 

format. The upper 8 bits, the integer portion, are at loca-

tion 11h and the lower 2 bits, the fractional portion, are in 

the upper nibble at location 12h. For example, 00011001 

01b = +25.25°C. Upon power reset, the registers are set 

to a default temperature of 0°C and the controller starts 

a temperature conversion. The temperature is read on 

initial application of V

CC

 or I

2

C access on V

BAT

 and once 

every 64 seconds afterwards. The temperature registers 

are updated after each user-initiated conversion and on 

every 64-second conversion. The temperature registers 

are read-only.

I

2

C Serial Data Bus

The DS3231 supports a bidirectional I

2

C bus and data 

transmission protocol. A device that sends data onto the 

bus is defined as a transmitter and a device receiving data 

is defined as a receiver. The device that controls the mes-

sage is called a master. The devices that are controlled 

by the master are slaves. The bus must be controlled by 

a master device that generates the serial clock (SCL), 

controls the bus access, and generates the START and 

STOP conditions. The DS3231 operates as a slave on the 

I

2

C bus. Connections to the bus are made through the 

SCL input and open-drain SDA I/O lines. Within the bus 

specifications, a standard mode (100kHz maximum clock 

rate) and a fast mode (400kHz maximum clock rate) are 

defined. The DS3231 works in both modes.
The following bus protocol has been defined (Figure 2):

●  Data transfer may be initiated only when the bus is not 

busy.

●  During data transfer, the data line must remain stable 

whenever the clock line is high. Changes in the data 

line while the clock line is high are interpreted as con-

trol signals.

Accordingly, the following bus conditions have been 

defined:
 

Bus not busy:

 Both data and clock lines remain high.

 

START  data  transfer:

 A change in the state of the 

data line from high to low, while the clock line is high, 

defines a START condition.

 

STOP  data  transfer:

 A change in the state of the 

data line from low to high, while the clock line is high, 

defines a STOP condition.

 

Data valid:

 The state of the data line represents valid 

data when, after a START condition, the data line is 

stable for the duration of the high period of the clock 

signal. The data on the line must be changed during 

the low period of the clock signal. There is one clock 

pulse per bit of data.

  Each data transfer is initiated with a START condition 

and terminated with a STOP condition. The number 

of data bytes transferred between the START and the 

STOP conditions is not limited, and is determined by 

the master device. The information is transferred byte-

wise and each receiver acknowledges with a ninth bit.

 

Acknowledge:

 Each receiving device, when 

addressed, is obliged to generate an acknowledge 

after the reception of each byte. The master device 

must generate an extra clock pulse, which is associ-

ated with this acknowledge bit.

A device that acknowledges must pull down the SDA 

line during the acknowledge clock pulse in such a way 

that the SDA line is stable low during the high period of 

the acknowledge-related clock pulse. Of course, setup 

and hold times must be taken into account. A master 

must signal an end of data to the slave by not generat-

Temperature Register (Upper Byte) (11h)

Temperature Register (Lower Byte) (12h)

BIT 7

BIT 6

BIT 5

BIT 4

BIT 3

BIT 2

BIT 1

BIT 0

NAME:

Sign

Data

Data

Data

Data

Data

Data

Data

POR:

0

0

0

0

0

0

0

0

BIT 7

BIT 6

BIT 5

BIT 4

BIT 3

BIT 2

BIT 1

BIT 0

NAME:

Data

Data

0

0

0

0

0

0

POR:

0

0

0

0

0

0

0

0

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

15

ing an acknowledge bit on the last byte that has been 

clocked out of the slave. In this case, the slave must 

leave the data line high to enable the master to gener-

ate the STOP condition.

Figures 3 and 4 detail how data transfer is accomplished 

on the I

2

C bus. Depending upon the state of the R/

W

 bit, 

two types of data transfer are possible:
 

Data transfer from a master transmitter to a slave 

receiver.

 The first byte transmitted by the master 

is the slave address. Next follows a number of data 

bytes. The slave returns an acknowledge bit after each 

received byte. Data is transferred with the most signifi-

cant bit (MSB) first.

 

Data transfer from a slave transmitter to a master 

receiver.

 The first byte (the slave address) is transmit-

ted by the master. The slave then returns an acknowl-

edge bit. Next follows a number of data bytes transmit-

ted by the slave to the master. The master returns an 

acknowledge bit after all received bytes other than the 

Figure 2. I

2

C Data Transfer Overview

Figure 3. Data Write—Slave Receiver Mode

Figure 4. Data Read—Slave Transmitter Mode

SDA

SCL

IDLE

1–7

8

9

1–7

8

9

1–7

8

9

START

CONDITION 

STOP CONDITION 
REPEATED START

SLAVE

ADDRESS

R/

W

ACK

ACK

DATA

ACK/

NACK

DATA

MSB FIRST

MSB

LSB

MSB

LSB

REPEATED IF MORE BYTES

ARE TRANSFERRED

...

A

XXXXXXXX

A

1101000

S

0

XXXXXXXX

A

XXXXXXXX

A

XXXXXXXX

A P

<R/

W

>     <WORD ADDRESS (n)>                    <DATA (n)>                          <DATA (n + 1)>                              <DATA (n + X)

S - START

A - ACKNOWLEDGE (ACK)

P - STOP

R/

W

 - READ/WRITE OR DIRECTION BIT ADDRESS

DATA TRANSFERRED

(X + 1 BYTES + ACKNOWLEDGE)

MASTER TO SLAVE

SLAVE TO MASTER

<SLAVE

ADDRESS> 

...

A

XXXXXXXX

A

1101000

S

1

XXXXXXXX

A

XXXXXXXX

A

XXXXXXXX

A

P

S - START

A - ACKNOWLEDGE (ACK)

P - STOP

A

 - NOT ACKNOWLEDGE (NACK)

R/

W

 - READ/WRITE OR DIRECTION BIT ADDRESS

DATA TRANSFERRED

(X + 1 BYTES + ACKNOWLEDGE)

NOTE: LAST DATA BYTE IS FOLLOWED BY A NACK.

MASTER TO SLAVE

SLAVE TO MASTER

<R/

W

>             <DATA (n)>                           <DATA (n + 1)>                       <DATA (n + 2)>                             <DATA (n + X)>    

<SLAVE

ADDRESS>

DS3231

Extremely Accurate I

2

C-Integrated

RTC/TCXO/Crystal

www.maximintegrated.com

Maxim Integrated  

 

16

 

 

 

 

 

 

 

содержание      ..     2      3      4      5     ..