Главная      Учебники - Экономика     Лекции по экономической теории - часть 2

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  404  405  406   ..

 

 

Эконометрика - пособие

Эконометрика - пособие

11. Спецификация регрессионной модели. Ошибки спецификации модели – включение незначимых и невключение значимых переменных. Замещающие переменные

Общий случай

Подобрать простое преобразование для того, чтобы добиться гомоскедастичности удается не всегда.

В общем случае используют следующую процедуру

1. Расчитываются МНК-оценки коэффицентов регресии

2. Находят остатки еiи их квадраты

3. Находят логарифмы отстатков

4. Расчитывают регрессию

5. Плучают прогноз

6. Находят веса наблюдений wi

7. Полученные веса wi используют во взвешенном методе наименьших квадратов

19. Коррекция гетероскедастичности: логарифмирование, взвешенная регрессия, общий случай

Часто наличие гетероскедастичности в остатках регрессии свидетельствует о неправельной спецификации модели. Если в линейной модели наблюдается такой вид гетероскедастичности, то вполне возможно, что в логарифмической модели гетероскедастичности не будет.

Логарифмическая регрессия не всегда позволяет избавится от гетероскедастичности. Кроме того, логарифмическая модель не всегдя удовлетворяет целям исследования (требуется оценить зависимость в абсолютных величнах, а не эластичность)

В этих случаях используют другой подход – взвешенную регрессию. Пусть в моделе пресудствует гетероскедастичность D(εi) = σi2После всех вычеслений случайный член модели имеет постоянную дисперсию, следовательно обычные МНК-оценки неизвестных коэфицентов будут несмещенными и эффективными. На практике дисперсии ошибок почти никогда не бывает.

Общий случай

Подобрать простое преобразование для того, чтобы добиться гомоскедастичности удается не всегда. В общем случае используют следующую процедуру

- Расчитываются МНК-оценки коэффицентов регресии

- Находят остатки еiи их квадраты

- Находят логарифмы отстатков

- Расчитывают регрессию

- Плучают прогноз

- Находят веса наблюдений wi

- Полученные веса wi используют во взвешенном методе наименьших квадратов

20. Автокорреляция: понятие, виды, последствия

Автокорреляция - случайные члены регрессии в разных наблюдениях являются зависимыми. Автокорреляция приводит к неэффективности получаемых МНК-оценок и к неправильному расчету наблюдаемых t и F-статистик и ошибочным решениям при тестировании гипотез. Первый тип автокорреляции – положительная автокорреляция.-это когда после положительных ошибок более вероятны положительные ошибки, после отрицательных – отрицательные. То есть ошибки имеют тенденция к сохранению своего знака. Противоположный случай –это отрицательной автокорреляцией: когда после положительных ошибок более вероятны отрицательные ошибки, после отрицательных – положительные.

Виды автокорреляции:

А. первого порядка: Ошибка зависит от ее значений в предыдущие p периодов времени и от случайного члена μt (называемого инновацией в момент времени t).

Автокорреляцией со скользящим средним q-oго порядка, обозначаемойMA(q), то есть ошибка в момент времени t зависит от инноваций в текущий и предыдущие q моментов времени. Автокорреляция со скользящим средним первого порядка, MA(1):

Последствия автокорреляции:

Потеря эффективности оценок

Смещение дисперсии

t- и F-статистики неправильные.

20. Автокорреляция: тест Дарбина-Уотсона, исправление автокорреляции

Обнаружение автокорреляции:

1. Графический метод.

2. Метод рядов.

3. Специальные тесты.

Большинство тестов на наличие автокорреляции в модели основаны на идеи: если корреляция есть у ошибок t, то она будет и в остатках регрессионной модели еt. Наиболее распространённый тест для обнаружения автокорреляции первого порядка: тест Дарбина- Уотсона. Он основан на d статистике: сравнивается среднеквадратичная разность соседних значений с дисперсией остатков.

Для процесса первого порядка:


Формула:

,

для больших выборок d=2-2p

Статистика Д-У применяется для проверки нулевой гипотезы о том, что в ряду не существует корреляции первого порядка (автокорреляции) между коэффициентами. Суть проверки: в сравнении расчетных значений d с критическими значениями из таблицы. Результат проверки:

P -> 0 d->2 Нет автокорреляции
P -> 1 d->0 Положительная автокорреляция
P -> -1 d->4 Отрицательная автокорреляция

Если автокорреляция отсутствует, то , и значение d должно быть близким к 2. При наличии положительной автокорреляции d, будет меньше 2; при отрицательной автокорреляции d будет больше 2.

Критическое значение d при данном уровне значимости зависит от количества объясняющих переменных в уравнении регрессии и от количества наблюдений. К сожалению, оно зависит еще и от конкретных значений, принимаемых объясняющими переменными. Поэтому невозможно составить таблицу с точными критическими значениями для всех возможных выборок.


Тест Д-У ловит только определённую автокорреляцию t от t-1 . Поэтому существуют промежутки неопределённости, где мы не можем утверждать есть автокорреляция или нет. Для уменьшения промежутка неопределённости нудно увеличить число наблюдений.

Ограничения:

1. Тест не предназначен для обнаружения других видов автокорреляции (более чем первого).

2. В модели должен присутствовать свободный член.

3. Данные должны иметь одинаковую периодичность (не должно быть пропусков в наблюдениях).

Устранение автокорреляции.

Если р известно: , где t инновация, которая патологически тоже может содержать ошибку, но мы считаем. что она ошибку не содержит. Т.к. ошибка в данный момент времени зависит от ошибки в предыдущий момент времени, можно её исправить, сдвинув все ошибки на 1 момент времени назад новой переменной. Если р известно, то применение обобщённого метода наименьших квадратов позволяет получить несмещенные, эффективные оценки неизвестных коэффициентов регрессии.. Матрица выглядит следующим образом: главная диагональ =1, вторая =р, далее pn*var( t ), и т.д. Проблема автокорреляции устранена. На практике значения коэффициента автокорреляции r обычно неизвестны и его оценивают другим способом.

Если р неизвестно: Нужно умножить уравнение t -1 на ρ и вычесть из t.,т.е.

Полученная модель будет эквивалентна модели со случайным членом. Примечание: модель содержит значение регрессора и зависимой переменной в предыдущий момент времени.

21. Временные ряды, характеристики временных рядов, декомпозиция

Временно́й ряд— это упорядоченная (по времени) последовательность значений некоторой произвольной переменной величины. Каждое отдельное значение данной переменной называется отсчётом временного ряда. Тем самым, временной ряд существенным образом отличается от простой выборки данных.

Ана́лиз временны́х рядо́в — совокупность математико-статистических методов анализа, предназначенных для выявления структуры временных рядов и для их прогноза.

Временные ряды состоят из двух элементов:

. периода времени;

a. числовых значений того или иного показателя, называемых уровнями ряда.

Временные ряды классифицируются по следующим признакам:

· по форме представления уровней

· по характеру временного параметра: моментные и интервальные временные ряды.

· по расстоянию между датами и интервалами времени выделяют полные (равноотстоящие) – когда даты регистрации или окончания периодов следуют друг за другом с равными интервалами и неполные (неравноотстоящие) – когда принцип равных интервалов не соблюдается.

· временные ряды бывают детерминированными и случайными: первые получают на основе значений некоторой неслучайной функции (ряд последовательных данных о количестве дней в месяцах); вторые есть результат реализации некоторой случайной величины.

· в зависимости от наличия основной тенденции выделяют стационарные ряды – в которых среднее значение и дисперсия постоянны и нестационарные – содержащие основную тенденцию развития.

· Типичным примером временного ряда можно назвать биржевой курс, при анализе которого пытаются определить основное направление развития (тенденцию или тренда).

22. Стохастические регрессоры. Двухшаговый метод наименьших квадратов. Тест Хаусмана

Не всегда допустимо, что регрессоры не являются случайными величинами (и, соответственно, некоррелированы со случайным членом модели). Возможные причины:

1.При измерении значений регрессоров допускается возможность случайных ошибок (ошибок измерения) 2.В состав регрессоров входят лаги зависимой переменной, которые являются случайными величинами.

Рассмотрим сначала ситуацию, когда регрессоры являются стохастическими, но не взаимосвязаны со случайным членом модели:

Cov(Xj,ε) = 0, j=1,…, k

Пусть также матрица X имеет полный ранг (то есть ни одна из реализаций случайной матрицы не имеет линейно зависимых столбцов). В этом случае выполняются условия Гаусса-Маркова, а, следовательно, обычный метод наименьших квадратов позволяет получить несмещенные эффективные оценки неизвестных параметров модели. Если условие независимости регрессоров и случайного члена модели не выполняется, то оценки, полученные с помощью метода наименьших квадратов, будут:

1.Смещенными

2.Несостоятельными

Одним из возможных вариантов получения более хороших оценок параметров модели является использование инструментальных переменных

Двухшаговый метод наименьших квадратов (ДМНК) использует следующую центральную идею: на основе приведенной формы модели получают для сверхидентифицируемого уравнения теоретические значения эндогенных переменных , содержащихся в правой части уравнения. Затем они подставляются вместо фактических значений и применяют обычный МНК к структурной форме сверхидентифицируемого уравнения. В свою очередь, сверхидентифицируемая структурная модель может быть двух типов: либо все уравнения системы сверхидентифицируемы, либо же система содержит наряду со сверхидентифицируемыми и точно идентифицируемые уравнения. В первом случае, если все уравнения системы сверхидентифицируемые, для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.

На первом шаге с помощью обычного метода наименьших квадратов оценивают зависимость X от Z:

Прогнозные значения этой модели используются на втором шаге, для получения оценок неизвестных коэффициентов. Таким образом, необходимо выбрать между возможно несостоятельными, но эффективными МНК-оценками, и неэффективными, но состоятельными ИП-оценками.


Выбор между такими двумя оценками осуществляется на основе теста Хаусмана.

Данная статистика имеет распределение Хи-квадрат с m степенями свободы (m – количество инструментальных переменных) χ2(m) при выполнении нулевой гипотезы об отсутствии корреляции между регрессорами и случайным членом.

Соответственно, если наблюдаемое значение статистики не превысит критическое, то нулевая гипотеза не отклоняется и следует предпочесть обычные МНК-оценки, в противном случае – ИП- оценки.