Главная      Учебники - Экономика     Лекции по экономической теории - часть 2

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  368  369  370   ..

 

 

Економіко-математичне програмування

Економіко-математичне програмування

Побудувати математичну модель задачі.

На підприємстві виготовляються вироби двох видів А і В. Для цього використовується сировина чотирьох типів – І, ІІ, ІІІ, ІV, запаси якої дорівнюють, відповідно, 21; 4; 6; 10 од. Для виготовлення одного виробу А необхідна така кількість одиниць сировини чотирьох видів: 2; 1; 0; 2. Для виробу В – 3; 0; 1; 1 од. відповідно. Випуск одного виробу А дає 3 грн. од. прибутку, типу В – 2 грн. од. Скласти план виробництва, який забезпечує найбільший прибуток.

Сировина Норма витрат сировини, од Запаси сировини, од.
А В
І 2 3 21
ІІ 1 0 4
ІІІ 0 1 6
ІV 2 1 10
Ціна, грн. од. 3 2

Розв’язок

Складаємо математичну модель задачі. Позначимо через х 1 кількість виробів 1-ї моделі, що виготовляє підприємство за деяким планом, а через х2 кількість виробів 2-ї моделі. Тоді прибуток, отриманий підприємством від реалізації цих виробів, складає

∫ = 3х1 +2х2 .

Витрати сировини на виготовлення такої кількості виробів складають відповідно:

CI =2х1 + 3х2 ,

CII =1х1 + 0х2 ,

CIII =0х1 + 1х2 ,

CIV =2х1 + 1х2 ,

Оскільки запаси сировини обмежені, то повинні виконуватись нерівності:

1 + 3х2 ≤ 21

1 ≤ 4

2 ≤ 6

1 + 1х2 ≤ 10

Оскільки, кількість виробів є величина невід'ємна, то додатково повинні виконуватись ще нерівності: х1 > 0, х2 > 0.

Таким чином, приходимо до математичної моделі (задачі лінійного програмування):

Знайти х1 , х2 такі, що функція ∫ = 3х1 +2х2 досягає максимуму при системі обмежень:

Розв'язуємо задачу лінійного програмування симплексним методом.

Для побудови першого опорного плану систему нерівностей приведемо до системи рівнянь шляхом введення додаткових змінних. Оскільки маємо змішані умови-обмеження, то введемо штучні змінні x.

2x1 + 3x2 + 1x3 + 0x4 + 0x5 + 0x6 = 21

1x1 + 0x2 + 0x3 + 0x4 + 0x5 + 1x6 = 4

0x1 + 1x2 + 0x3 + 1x4 + 0x5 + 0x6 = 6

2x1 + 1x2 + 0x3 + 0x4 + 1x5 + 0x6 = 10

де х1 ,...,х6 >0

Для постановки задачі на максимум цільову функцію запишемо так:

F(X) = 3 x1 +2 x2 - M x6 =>max

Оскільки завдання вирішується на максимум, то ведучий стовпець вибираємо по максимальному негативному кількістю та індексного рядку. Всі перетворення проводять до тих пір, поки не вийдуть в індексному рядку позитивні елементи.

Складаємо симплекс-таблицю:

План Базис В x1 x2 x3 x4 x5 x6 min
1 x3 21 2 3 1 0 0 0 10.5
x6 4 1 0 0 0 0 1 4
x4 6 0 1 0 1 0 0 0
x5 10 2 1 0 0 1 0 5
Індексний рядок F(X1) -400000 -100003 -2 0 0 0 0 0

Оскільки, в індексному рядку знаходяться негативні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х1 , оскільки значення коефіцієнта за модулем найбільше.

План Базис В x1 x2 x3 x4 x5 x6 min
2 x3 13 0 3 1 0 0 -2 4.33
x1 4 1 0 0 0 0 1 0
x4 6 0 1 0 1 0 0 6
x5 2 0 1 0 0 1 -2 2
Індексний рядок F(X2) 12 0 -2 0 0 0 100003 0

Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х2 .

План Базис В x1 x2 x3 x4 x5 x6 Min
3 x3 7 0 0 1 0 -3 4 4.33
x1 4 1 0 0 0 0 1 0
x4 4 0 0 0 1 -1 2 6
x2 2 0 1 0 0 1 -2 2
Індексний рядок F(X3) 16 0 0 0 0 2 99999 0

Оскільки всі оцінки >0, то знайдено оптимальний план, що забезпечує максимальний прибуток: х1 =4, х2 =2. Прибуток, при випуску продукції за цим планом, становить 16 грн.

Завдання 2

Записати двоїсту задачу до поставленої задачі лінійного програмування. Розв’язати одну із задач симплексним методом і визначити оптимальний план іншої задачі. Оптимальні результати перевірити графічно.

Розв’язок

Вирішимо пряму задачу лінійного програмування симплексним методом, з використанням симплексного таблиці.

Визначимо мінімальне значення цільової функції F(X) = 3x1 +2x2 за таких умов-обмежень.

2x1 +4x2 ≥10

3x1 +2x2 ≥11

4x1 +7x2 ≤32

Для побудови першого опорного плану систему нерівностей наведемо до системи рівнянь шляхом введення додаткових змінних (перехід до канонічної форми).

2x1 + 4x2 -1x3 + 0x4 + 0x5 = 10

3x1 + 2x2 + 0x3 -1x4 + 0x5 = 11

4x1 + 7x2 + 0x3 + 0x4 + 1x5 = 32

Введемо штучні змінні x.

2x1 + 4x2 -1x3 + 0x4 + 0x5 + 1x6 + 0x7 = 10

3x1 + 2x2 + 0x3 -1x4 + 0x5 + 0x6 + 1x7 = 11

4x1 + 7x2 + 0x3 + 0x4 + 1x5 + 0x6 + 0x7 = 32

Для постановки завдання на мінімум цільову функцію запишемо так:

F(X) = 3x1 +2x2 +Mx6 +Mx7 => min

За використання штучних змінних, що вводяться в цільову функцію, накладається так званий штраф величиною М, дуже велике позитивне число, яке зазвичай не задається.

Отриманий базис називається штучним, а метод рішення називається методом штучного базису.

Причому штучні змінні не мають відношення до змісту поставленого завдання, однак вони дозволяють побудувати стартову точку, а процес оптимізації змушує ці змінні приймати нульові значення та забезпечити допустимість оптимального рішення.

З рівнянь висловлюємо штучні змінні:

x6 = 10-2x1 -4x2 +x3

x7 = 11-3x1 -2x2 +x4

які підставимо в цільову функцію:

F(X) = 3x1 + 2x2 + M(10-2x1 -4x2 +x3 ) + M(11-3x1 -2x2 +x4 ) => min

або

F(X) = (3-5M)x1 +(2-6M)x2 +(1M)x3 +(1M)x4 +(21M) => min

Матриця коефіцієнтів A = a(ij) цієї системи рівнянь має вигляд:

2 4 -1 0 0 1 0
3 2 0 -1 0 0 1
4 7 0 0 1 0 0

Базисні перемінні це змінні, які входять тільки в одне рівняння системи обмежень і при тому з одиничним коефіцієнтом.

Вирішимо систему рівнянь відносно базисних змінних:

x6 , x7 , x5 ,

Вважаючи, що вільні змінні рівні 0, отримаємо перший опорний план:

X1 = (0,0,0,0,32,10,11)

План Базис В x1 x2 x3 x4 x5 x6 x7
0 x6 10 2 4 -1 0 0 1 0
x7 11 3 2 0 -1 0 0 1
x5 32 4 7 0 0 1 0 0

Індексний

рядок

F(X0) 21M -3+5M -2+6M -1M -1M 0 0 0

Переходимо до основного алгоритму симплекс-методу.

План Базис В x1 x2 x3 x4 x5 x6 x7 min
1 x6 10 2 4 -1 0 0 1 0 2.5
x7 11 3 2 0 -1 0 0 1 5.5
x5 32 4 7 0 0 1 0 0 4.57

Індексний

рядок

F(X1) 21M -3+5M -2+6M -1M -1M 0 0 0 0

Оскільки, в індексному рядку знаходяться позитивні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х2 , оскільки значення коефіцієнта за модулем найбільше.

План Базис В x1 x2 x3 x4 x5 x6 x7 min
2 x2 2.5 0.5 1 -0.25 0 0 0.25 0 5
x7 6 2 0 0.5 -1 0 -0.5 1 3
x5 14.5 0.5 0 1.75 0 1 -1.75 0 29

Індексний

рядок

F(X2) 5+6M -2+2M 0 -0.5+0.5M -1M 0 0.5-1.5M 0 0

Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х1 .



План

Базис В x1 x2 x3 x4 x5 x6 x7
3 x2 1 0 1 -0.375 0.25 0 0.375 -0.25
x1 3 1 0 0.25 -0.5 0 -0.25 0.5
x5 13 0 0 1.63 0.25 1 -1.63 -0.25

Індексний

рядок

F(X3) 11 0 0 0 -1 0 -1M 1-1M

Остаточний варіант симплекс-таблиці оптимальний, тому що в індексному рядку знаходяться негативні коефіцієнти.

Оптимальний план можна записати так:

x2 = 1

x1 = 3

x5 = 13

F(X) = 3*3 + 2*1 = 11

Складемо двоїсту задачу до прямої задачі.

2y1 +3y2 +4y3 ≤3

4y1 +2y2 +7y3 ≤2

10y1 +11y2 +32y3 => max

y1 ≥ 0

y2 ≥ 0

y3 ≤ 0

Рішення двоїстої задачі дає оптимальну систему оцінок ресурсів.

Використовуючи останню ітерацію прямої задачі знайдемо, оптимальний план двоїстої задачі.

З першої теореми двоїстості випливає, що Y = C*A-1 .

Складемо матрицю A з компонентів векторів, що входять в оптимальний базис.

Визначивши зворотну матрицю А-1 черезалгебраїчнідоповнення, отримаємо:

Як видно з останнього плану симплексного таблиці, зворотна матриця A-1 розташована в стовпцях додаткових змінних.

Тогда Y = C*A-1 =

Оптимальний план двоїстоїзадачідорівнює:

y1 = 0

y2 = 1

y3 = 0

Z(Y) = 10*0+11*1+32*0 = 11

Завдання 3

Розв’язати транспортну задачу.

1 4 2 1 2 300
2 2 3 1 3 90
3 4 5 6 7 70
100 20 70 90 180

Розв’язок

Побудова математичної моделі . Нехай xij — кількість продукції, що перевозиться з і -го пункту виробництва до j -го споживача . Перевіримо необхідність і достатність умоврозв'язання задачі:

Умова балансу дотримується. Запаси рівні потребам. Отже, модель транспортної задачі є закритою.

Занесемо вихідні дані у таблицю.

В1 В2 В3 В4 В5 Запаси
А1 1 4 2 1 2 300
А2 2 2 3 1 3 90
А3 3 4 5 6 7 70
Потреби 100 20 70 90 180

Розпочинаємо будувати математичну модель даної задачі:

Економічний зміст записаних обмежень полягає в тому, що весь вантаж потрібно перевезти по пунктах повністю.

Аналогічні обмеження можна записати відносно замовників: вантаж, що може надходити до споживача від чотирьох баз, має повністю задовольняти його попит. Математично це записується так:

Загальні витрати, пов’язані з транспортуванням продукції, визначаються як сума добутків обсягів перевезеної продукції на вартості транспортування од. продукції до відповідного замовника і за умовою задачі мають бути мінімальними. Тому формально це можна записати так:

minZ =1x 11 +4x 12 +2x 13 +1x 14 +2x 15 +2x 21 +2x 22 +3x 23 +1x 24 +3x 25 +3x 31 +4x 32 +5x 33 +6x 34 + +7x 35 .

Загалом математична модель сформульованої задачі має вигляд:

minZ =1x 11 +4x 12 +2x 13 +1x 14 +2x 15 +2x 21 +2x 22 +3x 23 +1x 24 +3x 25 +3x 31 +4x 32 +5x 33 +6x 34 + +7x 35 .

за умов:

Запишемо умови задачі у вигляді транспортної таблиці та складемо її перший опорний план у цій таблиці методом «північно-західного кута».

Ai Bj ui
b 1 = 100 b 2 = 20 b 3 = 70 b 4 =90 b 5 =180
а 1 = 300

1

100

4

[-]20

2

70

1

90

2

[+]20

u 1 = 0
а 2 = 90

2

2

3

1

3

90

u 2 = 1
а 3 = 70

3

4

[+]

5

6

7

[-]70

u 3 = 5
vj v 1 =1 v 2 =4 v 3 =2 v 4 =1 v 5 =2

В результаті отримано перший опорний план, який є допустимим, оскільки всі вантажі з баз вивезені, потреба магазинів задоволена, а план відповідає системі обмежень транспортної задачі.

Підрахуємо число зайнятих клітин таблиці, їх 7, а має бути m+n-1=7. Отже, опорний план є не виродженим.

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui , vi . по зайнятих клітинам таблиці, в яких ui + vi = cij , вважаючи, що u1 = 0:

u 1 =0, u 2 =1, u 3 =5, v 1 =1, v 2 =4, v 3 =2 v 4 =1, v 5 =2. Ці значення потенціалів першого опорного плану записуємо у транспортну таблицю.

Потім згідно з алгоритмом методу потенціалів перевіряємо виконання другої умови оптимальності ui + vj cij (для порожніх клітинок таблиці).

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi >cij

(2;2): 1 + 4 > 2; ∆22 = 1 + 4 - 2 = 3

(2;4): 1 + 1 > 1; ∆24 = 1 + 1 - 1 = 1

(3;1): 5 + 1 > 3; ∆31 = 5 + 1 - 3 = 3

(3;2): 5 + 4 > 4; ∆32 = 5 + 4 - 4 = 5

(3;3): 5 + 2 > 5; ∆33 = 5 + 2 - 5 = 2

max(3,1,3,5,2) = 5

Тому від нього необхідно перейти до другого плану, змінивши співвідношення заповнених і порожніх клітинок таблиці. Вибираємо максимальну оцінку вільної клітини (3;2): 4. Для цього в перспективну клітку (3;2) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

Тепер необхідно перемістити продукцію в межах побудованого циклу. З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (1, 2) = 20. Додаємо 20 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 20 з хij , що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Усі інші заповнені клітинки першої таблиці, які не входили до циклу, переписуємо у другу таблицю без змін. Кількість заповнених клітинок у новій таблиці також має відповідати умові невиродженості плану, тобто дорівнювати (n + m – 1).

Отже, другий опорний план транспортної задачі матиме такий вигляд:


Ai Bj ui
b 1 = 100 b 2 = 20 b 3 = 70 b 4 =90 b 5 =180
а 1 = 300

1

[-]100

4

2

70

1

90

2

[+] 40

u 1 = 0
а 2 = 90

2

2

3

1

3

90

u 2 = 1
а 3 = 70

3

[+]

4

20

5

6

7

[-] 50

u 3 = 5
vj v 1 =1 v 2 =-1 v 3 =2 v 4 =1 v 5 =2

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui , vi . по зайнятих клітинам таблиці, в яких ui + vi = cij , вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi >cij

(2;4): 1 + 1 > 1; ∆24 = 1 + 1 - 1 = 1

(3;1): 5 + 1 > 3; ∆31 = 5 + 1 - 3 = 3

(3;3): 5 + 2 > 5; ∆33 = 5 + 2 - 5 = 2

max(1,3,2) = 3

Вибираємо максимальну оцінку вільної клітини (3;1): 3

Для цього в перспективну клітку (3;1) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (3, 5) = 50. Додаємо 50 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 50 з Хij , що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Ai Bj ui
b 1 = 100 b 2 = 20 b 3 = 70 b 4 =90 b 5 =180
а 1 = 300

1

[-] 50

4

2

70

1

90

2

[+] 90

u 1 = 0
а 2 = 90

2

2

[+]

3

1

3

[-]90

u 2 = 1
а 3 = 70

3

[+] 50

4

[-] 20

5

6

7

u 3 = 2
vj v 1 =1 v 2 =2 v 3 =2 v 4 =1 v 5 =2

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui , vi . по зайнятих клітинам таблиці, в яких ui + vi = cij , вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi >cij

(2;2): 1 + 2 > 2; ∆22 = 1 + 2 - 2 = 1

(2;4): 1 + 1 > 1; ∆24 = 1 + 1 - 1 = 1

max(1,1) = 1

Вибираємомаксимальнуоцінкувільноїклітини (2;2): 2

Для цього в перспективну клітку (2;2) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (3, 2) = 20. Додаємо 20 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 20 з Хij , що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai Bj ui
b 1 = 100 b 2 = 20 b 3 = 70 b 4 =90 b 5 =180
а 1 = 300

1

30

4

2

70

1

[-]90

2

[+] 110

u 1 = 0
а 2 = 90

2

2

20

3

1

[+]

3

[-] 70

u 2 = 1
а 3 = 70

3

70

4

5

6

7

u 3 = 2
vj v 1 =1 v 2 =1 v 3 =2 v 4 =1 v 5 =2

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui , vi . по зайнятих клітинам таблиці, в яких ui + vi = cij , вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi >cij

(2;4): 1 + 1 > 1; ∆24 = 1 + 1 - 1 = 1

Вибираємомаксимальнуоцінкувільноїклітини (2;4): 1

Для цього в перспективну клітку (2;4)поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (2, 5) = 70. Додаємо 70 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 70 з Хij , що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai Bj ui
b 1 = 100 b 2 = 20 b 3 = 70 b 4 =90 b 5 =180
а 1 = 300

1

30

4

2

70

1

20

2

180

u 1 = 0
а 2 = 90

2

2

20

3

1

70

3

u 2 = 1
а 3 = 70

3

70

4

5

6

7

u 3 = 2
vj