Главная              Рефераты - Здоровье и ОБЖ

Обеспечение безопасности прогнозирование и разработка мероприятий по предупреждению и ликвидации - дипломная работа

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к выпускной квалификационной работе

Обеспечение безопасности, прогнозирование и разработка мероприятий по предупреждению и ликвидации чрезвычайной ситуации на компрессорной станции

Уфа 2008


Реферат

ЧРЕЗВЫЧАЙНАЯ СИТУАЦИЯ, КОМПРЕССОРНАЯ СТАНЦИЯ, СЖИЖЕННЫЙ УГЛЕВОДОРОДНЫЙ ГАЗ, ВЗРЫВ, АВАРИЙНО - СПАСАТЕЛЬНЫЕ И ДРУГИЕ НЕОТЛОЖНЫЕ РАБОТЫ, ТЕХНОЛОГИЯ, УПРАВЛЕНИЕ, БЕЗОПАСНОСТЬ СПАСАТЕЛЬНЫХ РАБОТ, ЭФФЕКТИВНОСТЬ ТЕХНИЧЕСКИХ РЕШЕНИЙ

Цель ВКР - прогнозирование, предупреждение и ликвидация ЧС на компрессорной станции «Сергиевского ЛПУМГ».

Проведена оценка вероятности возникновения ЧС и определены сценарии развития ЧС.

Осуществлено прогнозирование параметров основных поражающих факторов в соответствии с выбранными сценариями развития ЧС.

Спланированы и разработаны мероприятия по ликвидации ЧС.

Разработаны мероприятия по управлению силами и средствами, привлекаемыми для ликвидации ЧС.

Разработаны мероприятия по обеспечению безопасности проведения аварийно-спасательных и других неотложных работ.

Разработаны технические решения, направленные на снижение вероятности возникновения ЧС и предотвращения их дальнейшего развития.

Произведена экономическая оценка последствий чрезвычайной ситуации и оценка эффективности внедрения технических решений.


Содержание

Реферат

1. Характеристика объекта исследования и оценка риска возможных чрезвычайных ситуаций

1.1 Состав сооружений и классификация магистральных газопроводов

1.2 Классификация газопроводов

1.3 Статистические данные по авариям в России на объектах газораспределения и потребления

1.4 Анализ известных аварий на линейной части газопроводов

1.5 Вероятность возникновения аварии

1.6 Источники воспламенения природного газа в технологическом процессе

1.7 Сведения о рассматриваемом объекте

1.8 Сведения о природно-климатических и других условиях района расположения объекта

1.9 Принципиальная технологическая схема КС-21 «Сергиевская»

1.10 Характеристика природного газа

1.11 Оценка количества опасных веществ, участвующих в авариях на газопроводах Сергиевского ЛПУМГ

1.12 Общая обстановка при производственных авариях с взрывом на предприятиях по транспортировке газа

1.12.1 Взрывы газовоздушных смесей в производственных помещениях

1.13 Оценка риска возникновения чрезвычайных ситуаций на

компрессорной станции «Сергиевского ЛПУМГ»

1.14 Разработка сценариев развития чрезвычайной ситуации

1.15 Расчет вероятности возникновения ЧС, вызванной разгерметизацией газопровода в здании компрессорной станции

1.16 Описание чрезвычайной ситуации

2. Прогнозирование параметров основных поражающих факторов и оценка устойчивости зданий, сооружений и технологического оборудования

2.1 Анализ производства по пожаровзрывоопасности

2.2 Описание расчетного сценария чрезвычайной ситуации

2.3 Расчет избыточного давления взрыва для горючих газов

2.4 Расчёт параметров волны давления при разрыве газопровода в открытом пространстве

2.5 Расчет размеров зон, ограниченных НКПР газов при поступлении ГГ в помещение

2.6 Расчет размеров зон, ограниченных НКПР газов при поступлении ГГ в открытое пространство

2.7 Расчетное определение значения коэффициента участия ГГ во взрыве

2.8 Расчет параметров взрыва газовоздушных смесей

2.9 Расчет уровней разрушений при взрыве

2.10 Расчет параметров завала, образовавшегося в результате взрыва

2.11 Расчет интенсивности теплового излучения и времени существования «огненного шара»

2.12 Метод оценки индивидуального риска для аварии в помещении

2.13 Метод оценки социального риска для аварии в помещении

2.14 Оценка индивидуального риска в открытом пространстве

2.15 Оценка социального риска в открытом пространстве

3. Планирование и организация работ по ликвидации ЧС, вызванной взрывом в здании компрессорной станции «Сергиевского ЛПУМГ»

3.1 Основные принципы и требования к планированию и организации аварийно-спасательных и других неотложных работ при ликвидации чрезвычайных ситуаций на объектах по транспортировке газа

3.2 Определение номенклатуры и последовательности проведения мероприятий аварийно – спасательных и других неотложных работ при ликвидации ЧС, в здании компрессорной станции

3.3 Расчет времени выдвижения формирований из мест дислокации в зону чрезвычайной ситуации

3.4 Организация разведки в зоне ЧС

3.5 Рекогносцировка для проведения аварийно-спасательных и других неотложных работ при ликвидации ЧС на компрессорной станции «Сергиевского ЛПУМГ»

3.6 Поисково-спасательные работы в условиях завалов

3.7 Определение численности личного состава подразделений для расчистки подъездных путей к местам ведения спасательных работ

3.8 Способы деблокирования пострадавших из-под завалов

3.9 Определение количества сводных механизированных групп для деблокирования пострадавших и разборки элементов

разрушенного оборудования на КС «Сергиевского ЛПУМГ»

3.10 Определение количества и состава отделений для деблокирования пострадавших

3.11 Транспортировка пострадавших

3.12 Первая доврачебная и первая медицинская помощь в ходе работ по ликвидации чрезвычайной ситуации

3.13 Эвакуация пострадавших и персонала предприятия

3.14 Численность личного состава для проведения аварийно-спасательных и других неотложных работ

3.15 Подразделения охраны общественного порядка

3.16 Выбор и расчет техники, необходимой для эвакуации пострадавших

3.17 Подбор комплектов спасательной техники, необходимой для механизации работ по разборке завала и вывозу обломков завала

3.17.1 Проведение работ по сбору обломков завалов

3.17.2 Производство погрузочных работ элементов завала для вывоза их из зоны ЧС

3.17.3 Производство транспортных работ по вывозу элементов завала на полигон для утилизации твердых бытовых отходов

3.18 Основы организации материально–технического обеспечения подразделений, привлекаемых для ликвидации чрезвычайных ситуаций на объектах газопереработки

3.19 Основные принципы организации первоочередного жизнеобеспечения населения

3.20 Обеспечения формирований, ликвидирующих ЧС, и персонала предприятия водой в зоне ЧС

3.21 Обеспечение формирований, ликвидирующих ЧС, продуктами питания

3.22 Обеспечение пострадавшего персонала и личного состава формирований, ликвидирующих ЧС, жильем и коммунально-бытовыми услугами и предметами первой необходимости

3.23 Обеспечение привлекаемой техники горюче-смазочными материалами.

3.24 Техническое обеспечение спасательной техники, участвующей в работах в зоне ЧС, вызванной взрывом на компрессорной станции

4. Организация управления при ликвидации чрезвычайной ситуации, вызванной взрывом в здании компрессорной станции

4.1 Правовые основы организации управления ликвидацией

чрезвычайной ситуации на КС «Сергиевского ЛПУМГ»

4.2 Оповещение и сбор руководящего состава при возникновении чрезвычайной ситуации

4.3 Организация действий сил и средств, привлекаемых для ликвидации чрезвычайной ситуации

4.4 Структура управления ликвидацией чрезвычайной ситуации на компрессорной станции «Сергиевского ЛПУМГ»

4.5 Решение председателя комиссии по чрезвычайным ситуациям и обеспечению пожарной безопасности – главного инженера «Сергиевского ЛПУМГ» при ликвидации чрезвычайной ситуации

5. Обеспечение безопасности при ликвидации чрезвычайной ситуации, вызванной разгерметизацией газопровода на компрессорной станции «Сергиевского ЛПУМГ»

5.1 Роль обеспечения безопасности формирований РСЧС при ликвидации чрезвычайной ситуации

5.2 Идентификация и анализ негативных факторов в зоне ЧС

5.3 Применение организационных методов для снижения воздействий поражающих факторов в зоне ЧС

5.3.1 Расчет загазованности территории при разгерметизации газопровода в здании компрессорной станции

5.4 Рекомендации по обеспечению безопасности при ликвидации ЧС, вызванной разгерметизацией газопровода в здании

компрессорной станции

5.4.1 Оказание первой медицинской помощи пострадавшему

персоналу компрессорной станции

5.4.2 Разработка комплекса средств индивидуальной защиты для формирований РСЧС и персонала компрессорной станции

5.4.3 Повышение работоспособности спасателей

6. Мероприятия по повышению взрывобезопасности здания компрессорной станции на «Сергиевском ЛПУМГ»

6.1 Превентивные и оперативно – тактические мероприятия по ликвидации и уменьшения последствий чрезвычайной ситуации

6.2 Разработка мероприятий по предупреждению взрывов в здании компрессорной станции «Сергиевского ЛПУМГ»

6.2.1 Молниезащита здания компрессорной станции «Сергиевского ЛПУМГ»

6.2.2 Расчет флегматизирующих концентраций

6.2.3 Система внутритрубной диагностики трубопровода

6.2.4 Способ защиты зданий и сооружений от разрушения при взрыве ГПС и устройство для обеспечения безопасности помещений

6.2.5 Способ защиты здания от разрушений при взрыве

6.2.6 Предохранительно – запорное газовое устройство

Заключение

Список литературы


1. Характеристика объекта исследования и оценка риска возможных чрезвычайных ситуаций

В разделе проводится анализ причин чрезвычайной ситуации по данным научно-технической литературы, разрабатываются сценарии развития чрезвычайной ситуации: наиболее опасного, вероятного и с максимально негативным воздействием на окружающую природную среду, приводится краткая физико-химическая характеристика природного газа, проводится краткий анализ аварийности объектов нефтегазового комплекса в России и за рубежом. Выяснив особенности причины ЧС и условия их возникновения, можно спрогнозировать ЧС и определить последствия воздействия поражающих факторов.

1.1 Состав сооружений и классификация магистральных газопроводов

Система доставки продукции газовых месторождений до потребителей представляет собой единую технологическую цепочку. С месторождений газ поступает через газосборный пункт по промысловому коллектору на установку подготовки газа, где производится осушка газа, очистка от механических примесей, углекислого газа и сероводорода. Далее газ поступает в систему магистрального газопровода. Принципиальная схема магистрального газопровода представлена на рисунке 1.1 [3].


1 – газосборные сети; 2 – промысловый пункт сбора газа; 3 – головные сооружения; 4 – компрессорная станция; 5 – газораспределительная станция; 6 – подземные хранилища газа; 7 – магистральный трубопровод; 8 – ответвления от магистрального трубопровода; 9 – линейная арматура; 10 – двухниточный проход через водную преграду.

Рисунок 1.1 – Принципиальная схема магистрального газопровода

В состав магистрального газопровода входят следующие основные объекты:

- головные сооружения;

- компрессорные станции;

- газораспределительные станции;

- станции подземного хранения газа;

- линейные сооружения.

На головных сооружениях производится подготовка газа, его учет и компримирование с целью дальнейшей транспортировки.

Компрессорные станции (КС) размещаются по трассе газопровода с интервалом 80...120 км и служат для восстановления давления перекачиваемого газа. В большинстве случаев КС оборудуются центробежными нагнетателями с приводом от газотурбинных установок или электродвигателей. В настоящее время газотурбинным приводом оснащено более 88 % всех КС, а электроприводом - около 12 % [3].

Газораспределительные станции (ГРС) предназначены для снижения (редуцирования) давления газа до рабочего давления газораспределительной системы потребителей. ГРС также оборудуются узлами учета и установками очистки и одорирования газа (придания ему специфического запаха для облегчения обнаружения утечки газа с целью предупреждения взрывоопасных ситуаций и отравления людей).

После ГРС газ поступает в газовые сети населенных пунктов, которые подают его к месту потребления. Снижение и поддержание в необходимых пределах давления газа в газораспределительных сетях осуществляется на газорегуляторных пунктах (ГРП).

Для сглаживания неравномерности потребления газа крупными населенными пунктами сооружаются станции подземного хранения газа (СПХГ).

К линейным сооружениям относятся собственно магистральный трубопровод, линейные запорные устройства, узлы очистки газопровода, переходы через искусственные и естественные препятствия, станции противокоррозионной защиты, дренажные устройства. К линейным сооружениям также относятся линии технологической связи, отводы от магистрального газопровода для подачи части транспортируемого газа потребителям и сооружения линейной эксплуатационной службы (ЛЭС) [3].

Расстояние между линейными запорными устройствами (кранами) должно быть не более 30 км. Управление линейными кранами следует предусматривать дистанционным - из помещения операторной компрессорной станции, а также ручным - по месту. Линейная запорная арматура должна оснащаться автоматическими механизмами аварийного перекрытия.

При параллельной прокладке двух и более магистральных газопроводов в одном технологическом коридоре предусматривается соединение их перемычками с запорной арматурой. Перемычки следует размещать на расстоянии не менее 40 и не более 60 км друг от друга у линейных кранов, а также до и после компрессорных станций.

Вспомогательные линейные сооружения магистрального газопровода принципиально не отличаются от сооружений магистрального нефтепровода. К ним относятся линии связи, вдольтрассовые дороги, вертолетные площадки, площадки аварийного запаса труб, усадьбы линейных ремонтеров и т. д.

В зависимости от конкретных условий эксплуатации состав сооружений магистрального газопровода может изменяться. Так, на газопроводах небольшой протяженности может не быть промежуточных КС. Если в добываемом газе отсутствует сероводород или углекислый газ, то необходимость в установках по очистке газа от них отпадает. Станции подземного хранения газа обычно сооружаются только вблизи крупных городов или районов газопотребления.

Исходя из величины рабочего давления, магистральные газопроводы подразделяются на два класса:

1-й класс – при рабочем давлении свыше 2,5 МПа до 10 МПа

включительно;

2-й класс – при рабочем давлении свыше 1,2 МПа до 2,5 МПа

включительно.

Газопроводы, эксплуатируемые при давлениях ниже 1,2 МПа, к магистральным газопроводам не относятся. Протяженность магистральных газопроводов составляет обычно от нескольких десятков до нескольких тысяч километров, а диаметр — от 150 до 1420 мм. включительно. Большая часть газопроводов имеет диаметр от 720 до 1420 мм. включительно. Рассмотрим классификацию газопроводов.

1.2 Классификация газопроводов

Газопровод является важным элементом системы газоснабжения, так как на его сооружение расходуется 70...80% всех капитальных вложений. По назначению газопроводы подразделяют:

- магистральные, транспортирующие газ от мест добычи к городам и крупным промышленным потребителям;

- городские, обеспечивающие подачу и распределение газа внутри города; они могут быть высокого, среднего и низкого давления;

- промышленные.

В зависимости от числа ступеней давления газа в газопроводах системы газоснабжения городов и населенных пунктов делятся на одно-, двух-, трех- и многоступенчатые.

Одноступенчатые системы газоснабжения обеспечивают подачу газа потребителям по газопроводам только одного давления, как правило, низкого.

Двухступенчатые системы газоснабжения обеспечивают распределение и подачу газа потребителям по газопроводам среднего и низкого или высокого и низкого давлений.

Трехступенчатая система газоснабжения позволяет осуществлять распределение и подачу газа потребителям по газопроводам низкого, среднего и высокого давлений.

Многоступенчатая система газоснабжения предусматривает распределение газа по газопроводам высокого I категории (до 1,2 МПа), высокого II категории (до 0,6 МПа), среднего (до 0,3 МПа) и низкого (до 0,005 МПа) давлений.

В систему газоснабжения входят распределительные газопроводы всех давлений, газораспределительные станции (ГРС) и газорегуляторные пункты. Все элементы систем газоснабжения должны обеспечивать надежность и безопасность подачи газа потребителям.

Газопроводы высокого давления подают газ через газорегуляторные пункты (ГРП) в газопроводы высокого и среднего давления, газгольдерным станциям и крупным промышленным предприятиям.

Газопроводы среднего давления питают через регуляторные пункты и установки распределительную сеть низкого давления, а также промышленные и крупные коммунально-бытовые предприятия.

Газопроводы низкого давления обслуживают мелких потребителей — жилые дома, небольшие коммунально-бытовые предприятия. К бытовым потребителям газ поступает под низким давлением, к промышленным — под средним или высоким.

Связь между газопроводами различных давлений осуществляется через газорегуляторные пункты (ГРП) и газорегуляторную установку (ГРУ).

В зависимости от расположения газопроводы делятся на наружные (уличные, внутриквартальные, дворовые, межцеховые) и внутренние (расположенные внутри зданий и помещений), а также на подземные (подводные) и надземные (надводные).

В зависимости от назначения в системе газоснабжения газопроводы подразделяются на распределительные, газопроводы-вводы, вводные, продувочные, сбросные и межпоселковые [3].

В зависимости от материала труб газопроводы подразделяют на металлические (стальные, медные) и неметаллические (полиэтиленовые). При строительстве газопроводов применяют, как правило, стальные трубы.

1.3 Статистические данные по авариям в России на объектах газораспределения и потребления

В 2008 году на объектах газораспределения и газопотребления произошло 51 аварий и 4 несчастных случая со смертельным исходом. По сравнению с 2007 годом количество аварий уменьшилось на 9 %, количество несчастных случаев со смертельным исходом уменьшилось на 25 %. Суммарный материальный ущерб от аварий в 2007 году составил примерно 12 млн. рублей, включая 2,5 млн. рублей ущерб причиненный третьим лицам.

В таблице 1.1 приведена динамика протяженности газопроводов, производственного травматизма со смертельным исходом и аварийности за 1998-2008 гг. [11].

К основным проблемам, связанным с обеспечением безопасности и противоаварийной устойчивости, относится износ оборудования, отработавшего нормативный срок, газорегуляторных пунктов, подземных газопроводов, устаревшее оборудование котельных, работающих без автоматики. Недостаточны темпы диагностики малонадежных газопроводов и их перекладки.

Таблица 1.1 - Динамика протяженности газопроводов, производственного травматизма со смертельным исходом и аварийности

Год

Протяжённость подземных газопроводов,

тыс. км.

Число аварий

Тыс. км. газопроводов на одну аварию

Число травмированных смертельно, чел

Тыс. км газопроводов на одну травму со смертельным исходом

1998

261,6

32

8,18

10

26,16

1999

269,5

38

7,09

13

20,75

2000

300,0

31

9,68

12

25,00

2001

320,0

37

8,65

12

26,67

2002

327,0

47

6,96

4

81,75

2003

330,0

39

8,46

15

22,00

2004

357,0

22

16,23

5

71,40

2005

368,0

52

7,08

3

122,67

2006

375,5

49

7,66

4

93,88

2007

380,6

47

7,75

5

90,66

2008

384,7

51

8,51

4

91,8

Сумма

3673,9

445

87

Сред

ний уровень

10,38

43,29


Указанные проблемы дают основание к прогнозированию увеличения числа аварий в связи с работой устаревшего оборудования и старением газопроводов.

1.4 Анализ известных аварий на линейной части газопроводов

Перечень аварий, имевших место на объектах с обращающимся природным газом [12]:

20.01.06 г. На 267-м км. магистрального газопровода «Челябинск-Петровск» ООО «Баштрансгаз» ОАО «Газпром» разрушился газопровод с последующим возгоранием газа.

22.01.06 г. На 122,5-м км. магистрального газопровода «Моздок-Тбилиси» ООО «Кавказтрансгаз» ОАО «Газпром» произошёл взрыв, в результате которого была прекращена подача газа в Грузию.

26.01.06 г. На 39-м км. магистрального газопровода «Аксакай-Гудермес-Грозный» ФГУП «Чеченгазпром» разрушился газопровод с выбросом газа без возгорания.

26.02.06 г. На 1172,5-м км. магистрального газопровода «Ямбур-Западная граница СССР» ООО «Тюменьтрансгаз» ОФО «Газпром» разрушился газопровод с возгоранием.

22.04.06 г. На 50,5-м км. магистрального газопровода «Минибаево-Казань» ООО «Таттрансгаз» ОАО «Газпром» произошло возгорание этановой фракции в результате разрушения трубопровода.

17.04.06 г. На 888-м км. магистрального газопровода «Уренгой-Петровск» ООО «Тюменьтрансгаз» ОАО «Газпром» в процессе эксплуатации разрушился трубопровод с возгоранием газа.

29.05.06 г. На 206-м км. магистрального газопровода «Нижняя Тура-Пермь 3» ООО «Пермтрансгаз» ОАО «Газпром» при транспортировке газа разрушился газопровод с возгоранием.

11.07.06 г. На 1473,8-м км. магистрального газопровода «Уренгой-Петровск» ООО «Пермтрансгаз» ОАО «Газпром» в процессе подготовки к проведению работ по внутритрубной диагностике при подаче давления произошло разрушение камеры запуска поршня. Смертельно травмированы два человека.

09.09.06 г. На 68-м км. магистрального газопровода «Сердобск-Ртищево» ООО «Югтрансгаз» ОАО «Газпром» при прокладке линии связи в результате внешнего воздействия произошёл разрыв трубы без возгорания газа. Пострадали три человека, один из них погиб, два других травмированы и госпитализированы. Участок отсечён задвижками.

24.10.06 г. На 2978,65-м км. магистрального газопровода «Уренгой-Центр-1» филиала ООО «Мострансгаз» Донского УМГ ОАО «Газпром» разрушился газопровод с возгоранием.

24.11.06 г. На 10-м км. магистрального газопровода «Моздок-Тбилиси» ООО «Кавказтрансгаз» ОАО «Газпром» разрушился трубопровод с возгоранием газа.

8.12.06 г. На 652,5-м км. магистрального газопровода «Ямбург Западная граница СССР» ООО «Тюменгазтранс» ОАО «Газпром» произошёл разрыв трубы газопровода с возгоранием газа. Пострадавших нет.

13.12.06 г. На 245 км. магистрального газопровода «Некрасовская-Березанская» ООО «Кубаньгазпром» ОАО «Газпром» разрушился подземный газопровод на участке 11 м. из-за коррозии трубы. Выход природного газа составил 634 м3 . Прекращено газоснабжение станицы Некрасовской.

24.02.07 г. На 179-м км. магистрального газопровода «Майкоп-Самурская-Сочи» ООО «Кубаньгазпром» ОАО «Газпром» произошёл выход газа из трубопровода на переходе через автодорогу 4-й категории вследствии разгерметизации газопровода. Выход газа составил 980 тыс. м3 .

25.03.07 На 1324-м км. магистрального газопровода «Средняя Азия – Центр-2-2» филиала ООО «Югтрансгаз» ОАО «Газпром» при работе в нормальном режиме Р=4 МПа произошёл разрыв газопровода Dy =1020 мм с возгоранием и разрушением трубы.

03.04.07 На 749-754-м км. магистрального газопровода «Уренгой-Центр-2» ООО «Тюменьтрансгаз ОАО «Газпром» в процессе эксплуатации разрушился газопровод Dy =1420 мм. С возгоранием газа. Длина разрушенного участка составила около 25м, давление на момент аварии – 7,31 МПа.

03.06.07 г. На 1030,6-м км. магистрального газопровода «Ухта – Торожок-2» ООО «Севергазпром» ОАО «Газпром» разрушился газопровод Dy =1220 мм. с возгоранием газа.

26.07.07 г. На 799-м км. магистрального газопровода «Белоусово-Ленинград» Северного ЛПУ МГ ООО «Ленинтрасгаз» ОАО «Газпром» произошёл разрыв магистрального газопровода Dy =1020 мм. в рабочем состоянии с выбросом 50 метровой трубы и возгоранием газа.

15.08.07 г. На 21-м км. магистрального газопровода ООО «Баштрансгаз» ОАО «Газпром» разрушился магистральный газопровод Dy =720 мм. с последующим выходом газа и его возгоранием.

27.09.07 г. На 562-м км. магистрального газопровода «Саратов-Горький» Филиал ООО «Волготрансгаз» произошло разрушение участка (2-4м) газопровода Dy =820 мм. без возгорания.

27.09.07 г. На 1303-м км. магистрального газопровода «Уренгой – Центр 1» ООО «Тюменьтрансгаз» ОАО «Газпром» разрушился трубопровод Dy =1420 мм. с выбросом и возгоранием газа.

Из анализа статистических данных по отказам и авариям на рисунке 1.3 представлены основные причины и факторы, способствующие их возникновению[6].

На рисунке 1.2 представлено изменение числа аварий на магистральных газопроводах по годам.


Рисунок 1.2 – Изменение числа аварий на магистральных газопроводах по годам

Из рисунка 1.2. видно, что к настоящему времени видно, что число аварий на магистральных газопроводах остается величиной постоянной.

Рисунок 1.3 – Диаграмма основных причин возникновения аварий на магистральных газопроводах

Источниками воспламенения газовоздушных смесей в закрытом пространстве являются – смотри рисунок 1.4.

Рисунок 1.4 – Диаграмма основных источников воспламенения газовоздушных смесей в закрытом пространстве


На основе основных причин аварий необходимо произвести определение возможных сценариев ЧС на магистральных газопроводах.

1.5 Вероятность возникновения аварии

Вероятность рассмотренных вариантов аварий невысокая.

Частота возникновения аварий на линейной части МГ России по статистике «Газпрома» в период с 1998 по 2008 гг. приведена в таблице 1.2.

Таблица 1.2 – Частота реализации опасности, качественное и количественное описание

Количественная мера

Качественная мера

Случаи реализации опасности

Диапазон частоты реализации опасности, случаев/год

Определение

Диапазон

Толкование

1

2

3

Многочисленные

Более 1

100

Более одного раза в год на объекте

Отдельные

1…0,1

10-1

Несколько случаев за десятилетие эксплуатации

Единичные

01…0,01

10-2

Один раз за время существования объекта

Маловероятные

0,001…0,0001

10-4

Отдельные случаи в практике

Редкие

0,0001…0,00001

10-5

Отдельные случаи в мировой практике

Уникальные

менее 0,000001

10-6

Возможны по законам природы

В соответствии с таблицей по частоте реализации опасности аварии на линейной части МГ для жизненного цикла объекта относятся к маловероятным и редким

1.6 Источники воспламенения природного газа в технологическом процессе

Газ является хорошим диэлектриком, поэтому при движении по трубопроводу образуется статическое электричество. В процессе электризации разность потенциалов достигает весьма больших значений (80 кВ), из-за чего между изолированным незаземленным газопроводом и расположенными рядом предметами возможны разряды [12].

Разряды происходят тогда, когда напряжённость электрического поля над поверхностью диэлектрика или проводника достигает критической величины, которая будет обуславливаться накоплением на них разрядов. Чем сильнее разряд, тем больше вероятность возникновения пожара или взрыва.

Атмосферное электричество может вызвать следующие опасности:

­ прямое нападение молнии, приводящее к пожарам и поражению обслуживающего персонала электрическим током. Напряжение молнии достигает 220 МВ, сила тока составляет 300…1200 кА, температура 10000 о С;

­ ударная волна, приводящая к механическим повреждениям;

­ вторичное проявление, то есть электростатическая индукция, вызывающие искрение в местах плохого контакта, может привести, при наличии взрывоопасной смеси, к взрывам.

Статическое электричество в большинстве случаев образуется при движении газа по технологическим трубопроводам. Величина заряда статического напряжения зависит от удельного объема транспортируемого газа. Степень электролизации газа определяется измерительными приборами во взрывозащищенном исполнении, для соответствующей категории и группы взрывоопасной смеси с обеспечением мер предупреждения взрывов и пожаров. Разность потенциалов, которая может возникнуть, составляет 80 кВ, а разность потенциалов, при которой может произойти пожар (взрыв), составляет 4...8 кВ.

Искрообразование также возможно и при разрушении самого трубопровода (при взаимодействии металлических частиц при движении).

Проведение огневых газоопасных работ с нарушением правил техники безопасности может привести к аварийной ситуации, т.к. есть источники открытого огня.


1.7 Сведения о рассматриваемом объекте

Сергиевское линейное производственное управление магистральных газопроводов (ЛПУМГ) - один из 7-ти газотранспортных филиалов ООО «Самаратрансгаз».

Основная задача ЛПУМГ - транспортирование газа с заданными параметрами по магистральным газопроводам (МГ) «Челябинск - Петровск», «Уренгой - Петровск», «Уренгой - Новопсков» и газопроводам-отводам в целях бесперебойной поставки газа потребителям в соответствии с утвержденным планом.

Общая протяженность газопроводов в однониточном исчислении в зоне ответственности Сергиевского ЛПУМГ– 512,64 км. Прокладка газопроводов – подземная, глубина заложения газопроводов с условным диаметром до 800 мм (газопроводы-отводы) – 0,8 м, с условным диаметром 1400 мм (МГ Северной системы) – 0,8 м до верха трубы.

Для анализа возможных ситуаций необходимо рассмотреть сведения о природно-климатических и других условиях района расположения исследуемого объекта.

1.8 Сведения о природно-климатических и других условиях района расположения объекта

Объекты «Сергиевского ЛПУМГ» располагаются на территории Самарской области, относящейся к умеренному климатическому району Характеристика климатических условий в области приведена в таблице 1.3.


Таблица 1.3 – Характеристика климатических условий в районе расположения объектов Сергиевского ЛПУМГ

№ п/п

Наименование характеристики

Единица измерения

Значение

1

2

3

4

1.

Абсолютный максимум температуры наружного воздуха

0 С

38

2.

Абсолютный минимум температуры наружного воздуха

0 С

минус 41

3.

Продолжительность времени года с положительными суточными температурами

сутки

133

4.

Продолжительность времени года с отрицательными суточными температурами

сутки

124

5.

Повторяемость направлений ветра / Средняя скорость ветра по направлениям

север

северо-восток

восток

юго-восток

юг

юго-запад

запад

северо-запад

штиль

% / м/c

Январь

8

9

4

37

24

6

6

6

20

Июль

20

18

7

11

7

8

11

18

20

6.

Преобладающие ветры в теплое время года

Северные

7.

Средняя скорость ветра в теплое время года

м/с

3,5

8.

Преобладающие ветры в холодное время года

Юго-восточные

9.

Среднегодовое количество осадков

мм

461

Объекты Сергиевского ЛПУ МГ располагаются в центральной части Самарской области, относящейся к умеренному климатическому району. План расположения газопроводов представлен в приложении А рисунок А1. Характер местности представляет собой возвышенную волнистую равнину, пересеченную глубокими речными долинами. Большую часть территории занимают пашни, естественные кормовые угодья, леса (смешанные, пойменные), болота. Территория сложена пермскими отложениями (известняками и доломитами), что обусловило широкое распространение здесь остаточно-карбонатных щебневатых и каменисто-щебневатых черноземов, составляющих около 40 % почвенного покрова района. В целом почвы представлены выщелоченными и типичными черноземами (64%), главным образом тяжелого механического состава. Район имеет сложный рельеф и сильно подвержен водной эрозии.

Регион характеризуется сравнительно слабым развитием речной сети и относительной бедности водными ресурсами. Магистральные газопроводы и газопроводы-отводы пересекают в основном небольшие реки, такие как Сургут, Шунгут, Орлянка, Суруш ширина русла которых в межень в местах подводных переходов не превышает 30 м; имеется несколько пересечений реки Сок ширина русла в межень в створе перехода до 100 м (всего 5 рек, не считая более мелких водных преград). В местах переходов нередко наблюдается уменьшение глубины заложения, размывы, а иногда и подмывы трубопроводов. На трассах имеются овраги, через которые оборудованы воздушные переходы (5 переходов).

Из ЧС природного характера в регионе возможны ураганы, лесные пожары. В случае аварий на гидротехнических сооружениях (ГЭС им.Ленина) региона возможно только подтопление местности площадью более 5 га.

Сейсмоактивность в районе промплощадки КС «Сергиевская» не наблюдается.

1.9 Принципиальная технологическая схема КС-21 «Сергиевская»

Технологическая схема компрессорной станции (представлена в приложении А рисунок А3) представляет собой трубопроводную систему высокого давления различного диаметра, связывающую между собой технологические аппараты и оборудование, и образующую тем самым замкнутую цепь, обеспечивающую проведение технологического процесса компремирования природного газа.

Технологической схемой предусматриваются следующие основные процессы:

- очистка газа перед компримированием;

- компримирование газа;

- охлаждение газа после компримирования.

Кроме указанных процессов, технологической схемой компрессорной станции предусмотрен ряд вспомогательных систем и установок, обеспечивающих нормальную работу основного оборудования:

- система смазки, хранения и регенерации масел;

- система циклового воздуха, сбора и утилизации тепла дымовых газов;

- система сжатого воздуха.

КС-21 состоит из одного цеха, подключенного к магистральному газопроводу «Уренгой - Петровск», Ду =1400 мм, Рпр =76 кгс/см2 . Газ высокого давления из магистральных газопроводов через входные шаровые краны № 7, 7а, 7р, 7ар (Ду 1000) узла подключения по всасывающим газопроводам-шлейфам поступает через входные коллекторы на батареи циклонных пылеуловителей (6 пылеуловителей производительностью 20 млн. нм3 /сутки), где очищается от механических и жидких примесей. После очистки газ попадает во всасывающий коллектор (Ду 1000) газоперекачивающих агрегатов, из которого направляется в параллельно работающие нагнетатели 6-и агрегатов СТД - 12500, где сжимается до проектного давления (75 кгс/см2 ). Компримированный газ под давлением 75 кгс/см2 поступает в нагнетательный коллектор (Ду 1000) и далее по трубопроводам (Ду 1000) направляется к батарее из 9 аппаратов воздушного охлаждения газа. Охлажденный газ по выходным шлейфам (Ду 1000) направляется к узлу подключения, попадая через кран № 8, 8а в магистральный газопровод.

Перемычка между всасывающим и нагнетательным шлейфами с кранами № 36, 36р, 6, 6а, 6б, 6в, 6г образует пусковой контур цеха, который предназначен для работы агрегатов на кольцо перед нагрузкой и разгрузкой, а также для регулирования производительности перепуском газа со стороны нагнетания на прием цеха.

Сжатие газа осуществляется с помощью электроприводных газоперекачивающих агрегатов СТД - 12500, каждый из которых представляет собой единую установку электроприводного привода СТД - 12500 и одноступенчатого нагнетателя 370-18-2 в одном цеху.

Импульсный газ отбирается от входного и выходного шлейфа через краны 32,32’,33,33’, а также с выхода пылеуловителей через краны 34’

После очистки импульсного газа в газосепараторах и осушки в адсорберах он подводится к крановым узлам.

Для обеспечения нормальной работы систем смазки, регулирования и уплотнения ГПА в состав цеха входит система маслоснабжения, которая обеспечивает прием, хранение, учет расхода масла, подачу чистого масла в маслобаки ГПА, слив отработанного масла на склад, аварийный слив и перелив из маслобаков, очистку масла в регенераторной.

1.10 Характеристика природного газа

Природный газ – смесь газов, образовавшаяся в недрах земли при анаэробном расположении органических веществ.

Природный газ – основное вещество, которое участвует в технологическом процессе КС, является взрывопожароопасным.

Характеристики природного газа приведены в таблице 1.4.

Таблица 1.4 – Характеристика вещества

Наименование параметра

Параметр

1

2

3

1.

1.1

1.2

Название вещества (смеси):

- химическое

- торговое

Газ природный (метан – свыше 90% об.)

Газ природный

2.

2.1

2.2

Формула:

- эмпирическая

- структурная

CH4 и следы C2 H6 , C3 H8 , CO2 , N2

(процентный состав)

H

H-С-H (свыше 90%)

H

3.

3.1

3.2

Состав, %

- основной продукт

-примеси (с идентификацией)

Метан 98,012... 98,283

Этан 0,608... 0,805

Пропан 0,173... 0,250

Изобутан 0,030... 0,047

Н. бутан 0,020... 0,030

Изопентан 0... 0,005

Н. пентан 0... 0,001

CO2 0,011... 0,055

Азот 0,717... 0,906

4.

4.1

4.2

4.3

Общие данные:

- молекулярный вес

-температура кипения, о С (при давлении 101 кПа)

- плотность при 20о С, кг/м3

16,1

-160

0,6778... 0,6803

5

5.1

5.2

5.3

5.4

Данные о пожароопасности:

- температура вспышки

-температура самовоспламенения

- температура воспламенения

- пределы взрываемости

-

540 о С... 650 о С (метан)

640...800 о С (метан)

5...15 % (в смеси с воздухом)

6

Реакционная способность

В химические реакции в рабочих условиях не вступает

7

Запах

Не имеет запаха

8

Коррозионное воздействие

Коррозионная активность низкая

9

Меры предосторожности

На территории КС и на трассе надо исключать присутствие источников открытого огня (если только их наличие не связано с проведением разрешенных огневых работ). В помещениях надо следить за исправностью систем вентиляции и газоанализаторов.

10

Информация о воздействии на людей

Главные опасности связаны:

1) с возможной утечкой и воспламенением газа с последующим воздействием тепловой радиации на людей;

2) с удушьем при 15-16%-м снижении содержания кислорода в воздухе, вытесненного газом.

11

Средства защиты

Специальных индивидуальных средств защиты в компрессорных цехах и на трассе газопровода не требуется

12

Методы перевода вещества в безвредное состояние

В силу малотоксичности природного газа химические методы не предусмотрены. При утечке газа в помещении цехов включается аварийная вентиляция

13

Меры первой помощи пострадавшим от воздействия вещества

В случае удушья вынести пострадавшего на открытый воздух, вызвать медицинского работника. Давать с перерывами (3-4 подушки в час) кислород. При остановке дыхания немедленно применить искусственное дыхание до восстановления естественного.

На компрессорной станции могут возникнуть следующие виды аварий:

- разрыв газопровода с возгоранием газа;

- пожар на газоперекачивающем агрегате (ГПА);

- утечка газа на технологическом оборудовании;

- разрушение трубопровода подогревателя газа с возгоранием;

- возгорание газа на свече от удара молнии;

- пожар в кабельном канале на одном из ГПА;

- другие аварийные ситуации.[13]

В ЛПУ должны быть разработаны и утверждены графики проведения противоаварийных тренировок персонала в соответствии с разработанными планами ликвидации возможных аварий.

Для обеспечения безаварийной работы технологических установок КС предусматривается:

- оборудование всеми необходимыми средствами контроля автоматики, предохранительной арматурой (сбросные, обратные клапаны и др.), обеспечивающих надежность и безаварийность их работы;

- - аварийное освещение в помещениях газоперекачивающих агрегатов с питанием от аккумуляторных батарей;

- аварийный останов КС диспетчером от одной кнопки;

- применение взрывобезопасного оборудования для взрывоопасных зон;

- во взрывоопасных помещениях предусматриваются кабели с медными жилами;

- все объекты II и III категории, подлежащие защите от прямых ударов молнии, защищаются стержневыми молниеотводами, остальные – заземляются для защиты от вторичных влияний молнии и статического электричества;

- опознавательная окраска газопроводов и др. технологических трубопроводов [4].

1.11 Оценка количества опасных веществ, участвующих в авариях на газопроводах Сергиевского ЛПУМГ

Объемы природного газа, которые могут быть выброшены в атмосферу в результате аварийного разрыва магистрального газопровода, зависят от времени идентификации аварии на диспетчерских пунктах компрессорных станций вверх и вниз по потоку, а также от технологической схемы обвязки параллельных ниток и от показателей надежности (факта срабатывания) линейных кранов. Если управление кранами не телемеханизировано, то определяющим фактором является время, затрачиваемое работниками линейно-эксплуатационной службы (ЛЭС) на дорогу до крановых узлов и перекрытие кранов. При этом массу выброшенного газа можно спрогнозировать при условии задания времени от момента разгерметизации до момента перекрытия кранов. Количество выброшенного газа в атмосферу может достигать десятков млн. куб. м.

В формировании зон действия ударной волны и осколочных поражающих факторов аварии на магистральном газопроводе участвует, в основном, масса сжатого газа, заключенная в пределах длины разрушенного участка. На размеры зоны термического воздействия на людей влияет интенсивность (массовый расход) истекающего газа, в основном, в течение первой минуты после разрыва.

Ниже в таблице приводятся результаты расчета интенсивности аварийных выбросов газа и газопроводов, эксплуатирующихся в «Сергиевском ЛПУМГ» с различными диаметрами и рабочими давлениями на конец первой минуты после разрыва.


Таблица 1.5 – Перечень составляющих Сергиевского ЛПУМГ и количества обращающихся на них опасных веществ

Составляю-щая декларируе-мого бъекта

Краткая характеристика составляющей

Опасное вещество (с признаками идентификации)

Количество опасного вещества,т

Предельное количество оп. вещ-ва,т

1

2

3

4

5

Компрессорная станция

КС-21 с шестью газоперекачивающими агрегатами

1. Природный газ (воспламеняющийся газ)

154,5

200

2. Турбинное масло (горючая жидкость)

- на складах

- в тех. процессе

-

30

50000

200

3. Диз. топливо (горючая жидкость)

- на складах

- в тех. процессе

-

-

50000

200

4. Метанол

отсут.

79

Как видно из табл. 1.5, превышение предельных значений количеств опасных веществ в целом по ЛПУМГ имеет место только по природному газу в магистральных газопроводах. Количества турбинного масла и метанола не превышают предельных значений.

1.12 Общая обстановка при производственных авариях с взрывом на предприятиях по транспортировке газа

В результате разрушения газопроводов возможен выброс хранящегося продукта внутрь промышленного здания или на открытую площадку с образованием газовоздушной смеси (ГВС). Серьезную опасность для персонала, зданий, сооружений и технологического оборудования представляет взрыв образовавшейся ГВС. Источником зажигания при взрыве может являться искры от неисправной проводки, искры от сварочных работ и т.д.

Для определения негативного воздействия поражающих факторов ЧС на человека, его имущество и окружающую природную среду необходимо знать пространственно-временное распределение тех или иных физико-химических, биологических, теплофизических и других параметров:

- при барическом воздействии – избыточное давление на фронте ударной волны и импульс фазы сжатия;

- при термическом воздействии – поле плотностей тепловых потоков излучения;

- при токсическом воздействии – поле концентраций (токсодоз) токсиканта и т.д..

Под сценарием развития техногенной аварии понимается последовательность логически связанных между собой отдельных событий (истечение, выброс, испарение, рассеяние, воспламенение, взрыв, воздействие на людей и соседнее оборудование и т.п.), в соответствии с которыми определяются поля физических параметров, вид и величина поражающих факторов, степень поражения людей, их имущества и окружающей природной среды.

Согласно ГОСТ Р 22.0.07 – 95 параметрами поражающих факторов при взрыве технологического оборудования (таблица 1.6) являются:

Таблица 1.6 – Параметры поражающих факторов при взрыве технологического оборудования.

Наименование поражающего фактора источника

техногенной ЧС

Наименование параметра поражающего фактора источника техногенной ЧС

1

2

Воздушная ударная волна

Избыточное давление во фронте ударной волны.

Длительность фазы сжатия.

Импульс фазы сжатия.

Обломки, осколки

Масса обломка, осколка.

Скорость разлета обломка, осколка

Тепловое излучение

Энергия теплового излучения.

Мощность теплового излучения.

Время действия источника теплового излучения

К вторичным поражающим факторам относятся:

1. Обломки зданий и сооружений, разрушающихся во время взрыва. Нахождение людей во время завала, придавливание конструкциями разрушенных зданий и сооружений при обвалах.

2. Взрывы при разрушении емкостей, коммуникаций и агрегатов с газом.

Наиболее опасным следствием аварии разгерметизации газопровода с природным газом являются пожары и взрывы, в результате которых разрушаются и повреждаются производственные здания, техника и оборудование. В свою очередь, пожары и взрывы, могут стать вторичной причиной аналогичных явлений вследствие повреждений электропроводки, разрушения газопроводов, опрокидывания действующих огневых установок и приборов. Характерны обрушения перекрытий цехов во время пожаров при сильном перегреве металлических конструкций [10].

Для локализации зоны аварии и недопущения увеличения масштаба ЧС необходимо быстрое и эффективное выполнение АСДНР, их правильная организация

В режиме детонационного горения нагрузки значительно возрастают. Поэтому режим детонационного горения принят за расчетный случай для прогнозирования инженерной обстановки при авариях с взрывом.

К основным условиям, влияющим на параметры взрыва, относят: массу и тип взрывоопасного вещества, его параметры и условия хранения или использования в технологическом процессе, место возникновения взрыва, объемно-планировочные решения сооружений в месте взрыва.

Взрывы на промышленных предприятиях и базах хранения можно разделить на две группы - в открытом пространстве и производственных помещениях.

В производственных помещениях на промышленных предприятиях и базах хранения возможны взрывы газовоздушных смесей (ГВС), образующихся при разрушении газопроводов, резервуаров со сжатыми и сжиженными под давлением или охлаждением (в изотермических резервуарах) газами, а также при аварийном разливе легковоспламеняющихся жидкостей [9,11].

1.12.1 Взрывы газовоздушных смесей в производственных помещениях

Аварии со взрывом могут произойти на пожаровзрывоопасных объектах. К пожаровзрывоопасным объектам относятся объекты, на территории или в помещениях которых находятся (обращаются) горючие газы, легковоспламеняющиеся жидкости и горючие пыли в таком количестве, что могут образовывать взрывоопасные горючие смеси, при горении которых избыточное давление в помещении может превысить 5 кПа.

Последствия взрыва на пожаровзрывоопасных предприятиях определяются в зависимости от условия размещения взрывоопасных продуктов.

Если технологический аппарат со взрывоопасными продуктами размещен в зданиях, то авария развивается по сценарию взрыва в замкнутом объеме.

Кратко рассмотрим модели воздействия, позволяющие определить поля давлений при прогнозировании последствий взрывов в производственных помещениях.

Наиболее типичными аварийными ситуациями в этом случае считаются:

- разрушение аппарата или трубопровода со смешанными газами или жидкостями;

- потеря герметичности трубопроводов (разрыв сварного шва, прокладки, отрыв штуцера);

- образование или выброс горючей пыли.

В этом случае газо-, паро-, пылевоздушная смесь займет частично или полностью весь объем помещения. Затем этот объем заменяется расчетной сферой (в отличии от полусферы в открытом пространстве), радиус которой определяется с учетом объема помещения, типа и массы опасной смеси. При прогнозировании последствий считают, что процесс в помещении развивается в режиме детонации.

1.13 Оценка риска возникновения чрезвычайных ситуаций на компрессорной станции «Сергиевского ЛПУМГ»

Практика эксплуатации газовых сетей и сооружений показывает, что при повреждении отдельных элементов системы вытекающий газ может легко воспламениться, после чего начинается его интенсивное горение. Газ загорается, но взрывов при этом не бывает. Объясняется это тем, что взрывоопасен не сам газ, а его смесь с воздухом, так называемая газовоздушная смесь, и притом в строго определенной пропорции. Если в воздухе содержится газа меньше нижнего предела, то смесь не способна ни взрываться, ни гореть [4].

Учитывая причины аварии рассмотренные в пункте 1.9 данного раздела работы построена блок-схема развития различных аварийных ситуаций на магистральном газопроводе «Сергиевского ЛПУМГ» (рисунок 1.5), на основании блок-схемы, построено дерево событий (рисунок 1.6).



Рисунок 1.5 – Схема развития аварии на магистральном газопроводе

Рисунок 1.6 – Дерево событий разрыва магистрального газопровода


Вероятность возникновения инициирующего события – разрушение газопровода, принята равной 1.

Значение частоты возникновения отдельного события или сценария пересчитывается путем умножения частоты возникновения инициирующего события на условную вероятность развития аварии по конкретному сценарию.

1 – разрыв газопровода;

2 – «вырывание» концов разрушенного газопровода из грунта на поверхность («в слабонесущих» грунтах) с разлетом осколков трубы;

3 – образование котлована в грунте (в «твердых» грунтах) с разлетом осколков трубы;

4 – истечение газа из газопровода в виде двух независимых высокоскоростных струй с одновременным образованием ударной воздушной волны;

5 – образование газовоздушного облака;

6 – истечение газа из котлована в виде «колонного» шлейфа с одновременным образованием ударной воздушной волны;

7 – воспламенение истекающего газа с образованием двух настильных струй пламени;

8 – рассеивание истекающего газа без воспламенения;

9 – рассеивание облака;

10 – взрыв газовоздушной смеси;

11 – рассеивание истекающего газа;

12 – воспламенение истекающего газа с образованием «столба» пламени.

Значение частоты возникновения сценария аварийной ситуации при разрыве газопровода, с воспламенением истекающего газа и образованием двух настильных струй пламени равно:


Рн.стр.пл = Р1· Р12 · Р24 · Р47 = 1·0,7·0,7·0,2= 9,8·10-2 . (1.1)

Вероятность возникновения взрыва газовоздушной смеси:

Рвзр = Р1·Р13·Р35·Р510 = 1·0,3·0,05·0,01= 1,5·10-4 . (1.2)

Вероятность возникновения «столба» пламени:

Рст.п. = Р1·Р13·Р36·Р612 =1·0,3·0,25·0,1= 7,5·10-3 . (1.3)

Вероятность возникновения взрыва и пожара:

Рвзр пож = Р71012 = Р1 · Р12 · Р24 · Р47 + Р1 ·Р13 ·Р35 ·Р510 + Р1 ·Р13 ·Р36 ·Р612 = =1·0,7·0,7·0,2+1·0,3·0,05·0,01+1·0,3·0,25·0,1= 9,8·10-2 +1,5·10-4 +7,5·10-3 =0,105(1.4)

Таким образом, наиболее вероятным сценарием развития аварии является разрушение газопровода без воспламенения, но, учитывая статистику ЧС, связанных с разрушением газопровода, наибольшие разрушающие последствия имеют разрывы с образованием опасной газовоздушной смеси c последующим разрушением зданий, поэтому будет рассматриваться именно этот сценарий ЧС.

1.14 Разработка сценариев развития чрезвычайной ситуации

Результаты расследования ранее произошедших аварий позволяют предположить возможность трех типов техногенных аварий, которые могут произойти на компрессорной станции.

Группа сценариев С1 (наиболее опасное): Разгерметизация соединительного газопровода, от блока пылеуловителей до электроприводного газоперекачивающего агрегата в блоке компримирования газа в замкнутом пространстве (помещении), вследствие резкого увеличения давления ® выброс газа ® образование взрывоопасной ГВС в замкнутом пространстве ® взрыв ГВС от источника инициирования (источником инициирования взрыва явилось соударение металлических предметов при выбросе из трубопровода газа, либо, стало результатом взаимодействия (трения) частиц вещества и металлических конструкций трубопровода) ® поражение оборудования и персонала ударной волной, осколками оборудования.

Группа сценариев С2 (наиболее вероятное): Разгерметизация нагнетательного газопровода с природным газом в блоке компримирования газа в здании компрессорной станции, в результате нарушения целостности сварного шва ® выброс газа в пределах помещения ® воспламенение от источника зажигания (источником воспламенения послужила электрическая искра от неисправного оборудования) ® термическое поражение оборудования и персонала.

Группа сценариев С3 (максимально негативное воздействие на окружающую среду): Разгерметизация трубопровода с природным газом на открытом пространстве, вследствие дефекта сварного шва ® выброс газа в открытое пространство ® образование переобогащенной ГВС ® сгорание ГВС по модели «огненный шар» при наличии источника инициирования (источником инициирования послужил разряд молнии) ® прямое огневое воздействие на окружающую среду ® термическое воздействие на окружающую среду.

Взрывоопасные облака топливно-воздушной смеси, как правило, воспламеняются через некоторое время после их образования. Это позволяет оповестить персонал предприятия о необходимости включения устройств защиты (паровые или водяные завесы для его рассеивания) и принять меры по предотвращению возможных взрывов на соседних объектах. Таким образом, весьма актуальным является обнаружение загазованности воздушной среды территории предприятий на ранних стадиях аварии.

Для расчета вероятности возникновения ЧС необходимо построить дерево отказов для каждого сценария.

1.15 Расчет вероятности возникновения ЧС, вызванной разгерметизацией газопровода в здании компрессорной станции

Моделирование аварийной ситуации представлено на дереве событий.

Дерево отказов - это графическое представление связей между отказами оборудования и аварийными ситуациями. Одним из достоинств метода является систематическое логически обоснованное построение множества отказов элементов системы, которые могут привести к аварии. В соответствии с формулами 1.5 и 1.6 проведем расчет вероятности возникновения взрыва в парке высокого давления.

; (1.5)

. (1.6)

На рисунке 1.6 приведено дерево отказов для наиболее вероятного сценария, разгерметизация газопровода в здании компрессорной станции с последующим воспламенением истекающего газа.


Рисунок 1.6 – Дерево отказов для наиболее вероятного сценария развития ЧС

В таблице 1.7 приведены значения вероятности возникновения конечных событий для нежелательного события – разгерметизация нагнетательного газопровода ГПА в блоке компримирования газа в здании компрессорной станции с последующим воспламенением истекающего газа.

Таблица 1.7 – Исходные события «дерева отказов»

Событие или состояние модели

Вероятность события Pi

Отказ предохранительных клапанов

0,04

Отказ автоматических отсекающих задвижек

0,03

Дефект сварного шва

0,06

Коррозионный износ сварного шва газопровода

0,07

Механическое повреждение газопровода

0,08


Значение для события Х, по формуле 1.5

Рx = =1-(1-0,0738)∙(1-0,08)=0,1478;

Для события Y, по формуле 1.5:

Рy = =1-(1-0,0041)∙(1-0,07)=0,0738;

Для события Z, по формуле 1.6:

РZA ∙РВ =0,06∙0,0688=0,0041;

Для события В:

РВ = 1-(1-0,04)∙(1-0,03)=0,0688.

В соответствии с данными таблицы 1.5 ЧС, вызванная разгерметизацией газопровода, с дальнейшим воспламенением от источника зажигания, является редкой.

В таблице 1.8 приведены значения вероятности возникновения конечных событий для нежелательного события – разгерметизация подземного газопровода в открытом пространстве с последующим воспламенением.

Таблица 1.8 – Вероятность возникновения события

Событие

Вероятность

1

2

3

1

Недостаточный материал изоляции

1,3∙10-4

2

Механические повреждения изоляции при ремонте и строительстве МГ

2,3∙10-3

3

Неудовлетворительное нанесение покрытия

3,6∙10-3

4

Неудовлетворительный контроль состояния изоляции

1∙10-2

5

Недостаток работы катодной защиты

3,6∙10-3

6

Высокая коррозионная активность грунта

9∙10-3

7

Низкое качество работы сварщика

9∙10-2

8

Некачественный контроль швов

1,5∙10-4

9

Дефекты при строительстве и ремонте

2,9∙10-2

10

Дефекты при транспортировке труб

3,6∙10-3

11

Проведение ремонтных работ в охранной зоне

1∙10-3

12

Трасса МГ не обозначена

10-4

13

Неосведомленность строительных организаций о наличии МГ

10-3

14

Оползень

0,14

15

Паводок

10-4

16

Разряд молнии

1∙10-2

17

Селевой поток

10-3

18

Дефекты заводского продольного шва трубы

1,3∙10-4

19

Низкое качество металла трубы

1,5∙10-4

Значение для события Y(по формуле 1.5):

;

Для события M:

1-(1-1,3∙10-4 )∙(1-2,3∙10-3 )∙(1-3,6∙10-3 )=0,006;

Для события G:

РG = РM ∙Р4 ∙Р5 ∙Р6 =0,006∙1∙10-2 ∙3,6∙10-3 ∙9∙10-3 =0,02∙10-7 ;

Значение для события H:

РH7 ∙Р8 =9∙10-2 ∙1,5∙10-4 =1,35∙10-5 ;


Для события I:

;

Для события B:

Для события J:

РJ11 ∙Р12 ∙Р13 =1∙10-3 ∙10-4 ∙10-3 =1∙10-10 ;

Для события K:

Для события С:

1-(1-1∙10-10 )∙(1-0,1495)∙(1-10-3 )=0,1503;

Для события D:

;

Таким образом, для события Х:

Рх =1-(1-0,02∙10-7 )∙(1-0,0466)∙(1-0,1503) ∙(1-0,003) ∙(1-0,001)=0,193.


В соответствии с данными таблицы 1.5 ЧС, вызванная разгерметизацией трубопровода с природным газом в открытом пространстве, с дальнейшим сгоранием ГВС по модели «огненный шар», является отдельной (несколько случаев за десятилетие эксплуатации).

В таблице 1.9 приведены значения вероятности возникновения конечных событий для нежелательного события – полная разгерметизация соединительного газопровода, всасывающего коллектора ГПА в блоке компримирования газа.

Таблица 1.9 – Вероятность возникновения события

Событие

Вероятность

1

2

3

L

Абразивный износ регулятора давления

1,3∙10-4

M

Дефекты не ликвидируются

10-3

1

Отбор пробы до продувочной свечи через вентиль

1,7∙10-4

2

Отсутствие на продувочном трубопроводе после запорного устройства крана со штуцером для отбора пробы

2,3∙10-4

3

Отсутствие или неисправности систем контроля диагностики

3,6∙10-3

4

Нарушение требуемой периодичности контроля диагностики МГ

1∙10-2

5

Внутренняя коррозия

3,8∙10-3

6

Атмосферная коррозия

2,4∙10-3

7

Повышение рабочего давления

2,9∙10-2

8

Возникновение локальных напряжений

1,5∙10-4

9

Некачественная диагностика и выявление дефектов перед вводом в эксплуатацию

3,2∙10-2

10

Дефекты производства и СМР

3,6∙10-2

11

Недостаточный контроль за регулятором

1,3∙10-2

12

Недостаточный контроль персонала за дат-чиками давления

1∙10-2

13

Неправильная работа манометра

2,3∙10-3

На рисунке 1.8 приведено дерево отказов для нежелательного события – разгерметизациия газопровода в помещении, с дальнейшим полным разрушением здания компрессорной станции. Это является наиболее опасным сценарием развития чрезвычайной ситуации.


Рисунок 1.8 – Дерево отказов для наиболее опасного сценария развития аварии на магистральном газопроводе


Значение для события Y(по формуле 1.5):

;

Для события D:

;

Для события А:

РАM ∙РD =0,39∙10-3 ∙10-3 =0,39∙10-6 ;

Для события К:

РК9 ∙Р10 =3,2∙10-2 ∙3,6∙10-2 =1,15∙10-3 ;

Для события J:

;

Для события I:

РIК ∙РJ =1,15∙10-3 ∙0,029=3,33∙10-5 ;

Для события H:

;


Для события G:

;

Для события F:

;

Значение для события E:

РEF ∙РG =0,0135∙0,0062=0,83∙10-4 ;

Значение для события B:

РBE ∙РM =0,83∙10-4 ∙10-3 =0,83∙10-7 ;

Для события C:

1-(1-1,3∙10-2 )∙(1-2,3∙10-3 )∙(1-1∙10-2 )=0,025;

Таким образом, для события Х:

РХ =1-(1-0,39∙10-6 )∙(1-1,3∙10-4 )∙(1-0,83∙10-7 ) ∙(1-0,025)=0,025.

В соответствии с данными таблицы 1.5 эта ЧС является единичной (один раз за время существования объекта).


1.16 Описание чрезвычайной ситуации

В здании компрессорной станции происходит полная разгерметизация соединительного газопровода, всасывающего коллектора ГПА (f 1020*16мм 38 м) в блоке компримирования газа. Причиной возникновения ЧС на компрессорной станции было резкое увеличение давления в трубопроводе. В результате происходит образование газовоздушной смеси с взрывоопасной концентрацией газа. Источником инициирования взрыва явилось соударение металлических предметов при выбросе из трубопровода газа, либо, стало результатом взаимодействия (трения) частиц вещества и металлических конструкций трубопровода.

Для проведения расчетов принимаем, что авария произошла в 12 часов дня. Время года – весна, 17 мая, скорость ветра 1,0 м/с, температура воздуха 15 ºС. Степень вертикальной устойчивости – изотермия. План компрессорной станции на рис.А2.

В результате взрыва из-за воздействия избыточного давления произошло разрушение здания компрессорной станции и близстоящих сооружений. Схема разрушений представлена в приложении А рисунок А4.

В данном разделе представлено краткое описание объекта исследования, технологическая схема «Сергиевского ЛПУМГ», приведены основные характеристики опасного вещества (природный газ). Разработаны сценарии возникновения и развития чрезвычайных ситуаций, возможных на газопроводе высокого давления. Так же рассчитаны вероятности их возникновения. Информация, полученная в данном разделе, позволяет провести расчет параметров поражающих факторов по определенным сценариям развития чрезвычайной ситуации. Цель, поставленная в разделе достигнута.


2. Прогнозирование параметров основных поражающих факторов и оценка устойчивости зданий, сооружений и технологического оборудования

В данном разделе рассчитываются показатели пожаровзрывоопасности объекта, определяется категория компрессорной станции по пожаровзрывоопасности, оцениваются социальный и индивидуальный риски, разрабатываются мероприятия по предупреждению пожаров и взрывов.

2.1 Анализ производства по пожаровзрывоопасности

В нефтегазовом комплексе используется и перерабатывается большое количество горючих и взрывоопасных материалов. Для повышения безопасности технологических процессов необходима правильная оценка взрыво- и пожароопасности этих процессов и выполнение ряда мероприятий, направленных на более рациональное проектирование и безопасную эксплуатацию.

Газоперекачивающая компрессорная станция относится к взрывопожароопасным производствам категории «А». Производства, относящиеся к данной категории, связаны с применением, транспортированием или получением горючих газов, нижний предел воспламенения которых составляет 10 % и менее по отношению к объему воздуха, жидкостей с температурой вспышки паров до 28 градусов при условии, что указанные газы могут образовывать взрывоопасные смеси.

Основными факторами, определяющими опасность участка, являются:

а) наличие и применение в больших количествах природного газа;

б) ведение процесса при высоких давлениях (до 7,5 МПа) и высоких температурах (до 300º С);

в) возможность образования зарядов статического электричества при движении газов и жидкостей по аппаратам и трубопроводам [12].

Пожаровзрывоопасность компрессорной станции обусловлена физико-химическими свойствами транспортируемых веществ. Зависимость параметров газа (давление), а также сложная пространственная конструкция трубопроводов, значительные переменные температурные и газодинамические нагрузки являются основными источниками опасностей в газопроводном транспорте.

2.2 Описание расчетного сценария чрезвычайной ситуации

В 17.05 происходит полная разгерметизация соединительного газопровода высокого давления, всасывающего коллектора газоперекачивающего агрегата от блока питания до ЭГПА (f 1020*16мм, 38 м, Р=7,5 МПа) в результате резкого повышения давления в трубопроводе. Происходит образование облака газовоздушной смеси с взрывоопасной концентрацией газа. Источником инициирования взрыва явилось соударение металлических предметов при выбросе из трубопровода газа, либо, стало результатом взаимодействия (трения) частиц вещества и металлических конструкций трубопровода.

2.3 Расчет избыточного давления взрыва для горючих газов

Избыточное давление взрыва ∆Р, кПа, для индивидуальных горючих веществ определяется по формуле:

∆Р = (Рmax – Р0 ) ∙ ((mZ)/(Vсв ρг.п. )) ∙ (100/Сст ) ∙ (1/Кн ), (2.1)

где Рmax – максимальное давление взрыва стехиометрической газовоздушной смеси в замкнутом объеме, определяемое экспериментально или по справочным данным. При отсутствии экспериментальных или справочных данных допускается принимать Рmax равным 900 кПа;

Р0 – начальное давление, кПа (допускается принимать равным 101кПа);

m – масса ГГ, вышедших в результате аварии в помещение

m = Vг ∙ ρг . (2.2)

где Vг – объем газа, поступившего в помещение в результате гипотетической аварии на газопроводе, м3 ;

ρг – плотность газа при расчетной температуре tp , кг∙м3 , вычисляемая по формуле

ρг = = кг/м3 , (2.3)

где М- молярная масса вещества, кг/кмоль;

V0 - мольный объем, равный 22,413 м3 / кмоль;

tp - расчетная температура, ºС. В качестве расчетной температуры следует принимать максимально возможную температуру воздуха в данном помещении в соответствующей климатической зоне или максимально возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации, в нашем случае 21 ºС.

Произведем расчет параметров взрыва при разгерметизации соединительного газопровода для наиболее опасного сценария С1 развития аварии: разгерметизация трубопровода в замкнутом пространстве (помещении) (полная разгерметизация соединительного газопровода, всасывающего коллектора ГПА от блока питания до ЭГПА, f 1020*16мм 38 м в блоке компримирования газа) ® выброс газа ® образование взрывоопасной ГВС в замкнутом пространстве ® взрыв ГВС от источника инициирования ® поражение оборудования и персонала ударной волной, осколками оборудования, дальнейшее развитие аварии на территории компрессорной станции.

Исходные данные:

Трубопровод высокого давления Рт =7,5 МПа;

Максимальный расход q=5 м3 /с;

Диаметр трубопровода d=1020 мм;

Время срабатывания задвижек (автоматическое отключение) Т=30 с;

Расстояние между задвижками l=30 м.

Объем газа, вышедшего из трубопроводов определяется по следующей формуле

Vг = V + V = 150+3315= 3465 (м3 ); (2.4)

где V – объем газа вышедшего из трубопровода до его отключения,м3 ;

V =q∙T = 5∙30=150 (м3 ); (2.5)

где q – расход газа, равный 5 м3 /с;

Т – время, до перекрытия трубопровода, равное 30 с;

V - объем газа, вышедшего из трубопровода после его отключения,м3 ;

V =0,01πp2 (r2 1 l1 +r2 2 l2 +,…,r2 n ln ),= 0,01∙ 3,14∙ 7,5∙10 3 ∙0,685²·30= 3315 (м3 );(2.6)

π = 3,14;

Р2 – максимальное давление в трубопроводе по технологическому регламенту, равное 7,5∙103 кПа;

r – внутренний радиус трубопроводов, равный 1 м;

L – длина трубопроводов от аварийного аппарата до задвижек, 30 м.

Следовательно, согласно формуле (3.2) вычислим массу ГГ, вышедших в результате аварии и в помещение:

m =3465∙0,67= 2322 (кг).

Z – коэффициент участия горючего вещества во взрыве, который допускается принимать для горючих газов Z = 0,5;

Vсв – свободный объем помещения, в нашем случае Vсв =44200 м3 ;

Сст – стехиометрическая концентрация ГГ, %(об.), вычисляемая по формуле

Сст = 100/(1+4,84β), (2.7)

где β = nc +((nH -nX )/4)-(no /2) – стехиометрический коэффициент кислорода в реакции сгорания; (2.8)

Следовательно стехиометрическая концентрация ГГ будет равна:

Сст =100/(1+4,84 ∙2) = 9,36%(об.).

Кн – коэффициент, учитывающий негерметичность помещения и неадиабатичность процесса горения. Кн допускается принимать равным 3.

Из всего выше вычисленного можно найти значение избыточное давление взрыва ∆Р для индивидуальных горючих веществ:

∆Р =(900-101) ∙((2322∙0,5)/(44200∙0,67)) ∙ (100/9,36) ∙ (1/3) = 112 кПа

Определим степень разрушения здания компрессорной станции по таблице 2.1


Таблица 2.1 Предельно допустимое избыточное давление взрыва в помещениях или на открытом пространстве

Степень поражения

Избыточное давление, кПа

Полное разрушение зданий

100

50 %-ное разрушение зданий

53

Средние повреждения зданий

28

Умеренные повреждения зданий (повреждение внутренних перегородок, рам, дверей и т.п.)

12

Нижний порог повреждения человека волной давления

5

Малые повреждения (разбита часть остекления)

3

В соответствии с таблицей определяем, что при ∆Р=112 кПа происходит полное разрушение здания компрессорной станции.

Произведем расчет параметров пожара для наиболее вероятного сценария С2: разгерметизация трубопровода с природным газом (частичная разгерметизация всасывающего газопровода ГПА f 1020*16,5 мм 285 м в блоке компримирования газа в здании компрессорной станции) ® выброс газа в пределах помещения ® воспламенение от источника зажигания ® термическое поражение оборудования и персонала, дальнейшее развитие аварии на территории предприятия.

Исходные данные:

Трубопровод высокого давления Рт =7,5 МПа;

Максимальный расход q=5 м3 /с;

Диаметр трубопровода d=1020 мм;

Время срабатывания задвижек (автоматическое отключение) Т=20 с;

Расстояние между задвижками l=20 м;

Параметры помещения 85×65×10.

Находим массу горючего газа, вышедшего в результате расчетной аварии в помещение:


V=m∙ρг;

По формуле 2.3:

ρг = = кг/м3 ,

По формуле 2.6: V = 0,01∙ 3,14∙ 7,5∙10 3 ∙0,5²·20= 1178 м3 ;

По формуле 2.5: V =q∙T = 5∙20=100 м3 ;

По формуле 2.4 рассчитаем объем газа вышедшего из трубопроводов:

Vг = 100+1178= 1278 м3 ;

Согласно формуле 2.2 вычислим массу ГГ, вышедших в результате аварии и в помещение:

m =1278∙0,67=856 кг;

Vсв = 0,8∙55250= 44200 м3 - свободный объем помещения;

СН4 :β =1+((4-0)/4-(0/2) =2;

По формуле (2.7):

Сст =100/(1+4,84 ∙2) = 9,36%(об.);

Z=0,5 по таблице 2.7.

По формуле (2.1) избыточное давление сгорания газовоздушной смеси ∆Р, кПа, для индивидуальных горючих веществ определяется:


∆Р = (900 –101) ∙ ((2023∙0,5)/(44200∙0,67. )) ∙ (100/9,36) ∙ (1/3)=97кПа,

В соответствии с таблицей 2.1, при ∆Р=97 кПа происходит полное разрушение здания компрессорной станции.

2.4 Расчёт параметров волны давления при разрыве газопровода в открытом пространстве

Рассчитаем параметры волны давления при разрыве газопровода в открытом пространстве, для сценария С3 развития аварии с максимально негативным воздействием на окружающую среду

Параметрами волны давления являются избыточное давление в положительной фазе волны Dp и безразмерный импульс положительной фазы волны i.

При разрушении газопровода с природным газом на полное сечение реализуются три основных сценария:

1 – образование воздушных волн сжатия в воздухе за счет расширения в атмосфере природного газа, выброшенного под высоким давлением из объема разрушившейся части газопровода с воздействием избыточного давления и импульса, разлет фрагментов трубы и обломков грунта;

2 – образование огневого шара, возникающего на начальной стадии истечения газа из разрушенного трубопровода (не более 1 минуты после разрушения), с воздействием теплового поля;

3 – горение факела с воздействием теплового поля от пламени, образованного горением высокоскоростных струй газа, истекающих из разрушенной части трубопровода.

При моделировании опасных факторов взрыва учитывались только факторы нагружения импульсным и барическим действием воздушных волн сжатия, образующихся при расширении в атмосфере природного газа, выброшенного под высоким давлением из объема разрушившейся части газопровода. Для расчета этих характеристик были использованы широко применяемые на практике соотношения М.А.Садовского для сферической волны в свободном пространстве [13, 14]:

– избыточное давление на фронте волны сжатия:

, МПа, (2.8)

где - приведённый радиус, рассчитан по формуле 2.11;

– импульс положительной фазы сжатия:

, кПа×с, (2.9)

где -масса тротилового эквивалента, рассчитан по формуле 3.5;

– период положительной фазы сжатия:D

, с, (2.10)

где R – расстояние от места аварии, принимается равным 60 м, расстояние до первого садового участка.

Приведённый радиус рассчитывается по формуле:

, (2.11)


Приведение энергии расширения массы газа, участвующей в формировании первичных волн сжатия к эквивалентной энергии от взрыва тротилового эквивалента в соответствии с законами подобия [15,16] позволяет выражение (2.5), в котором энергия распределения сферической волны при наземном взрыве удваивается и имеет форму полусферы:

, кг. (2.12)

где h – поправочный коэффициент, равный для слабонесущих и средних грунтов (пески, супеси) примерно 0,6, а для плотных грунтов (суглинки и глины) – 0,8;

QТНТ – теплота сгорания тротила, равная 4,2×106 Дж/кг;

МГ – масса сжатого газа, участвующая в формировании первичных волн сжатия, кг (3.11),

, кг. (2.13)

АГ – работа расширения единицы массы газа, Дж/кг, и, полагая процесс расширения газа адиабатическим (PVk =const), имеем [13]:

, Дж/кг. (2.14)

P0 – атмосферное давление, 101,3 кПа;

r0 =0,7168 – плотность природного газа при 0ºС;

P1 – рабочее давление перекачки, 5,5 МПа;

r1 – плотность газа при перекачке, 0,71 кг/м3 ;

Lp – длина разрушенного участка, 65 м (рисунок 2.1).

Как показал анализ статистики аварий на газопроводах [12,15], существует определенная корреляция между протяженностью разрыва Lp и технологическими параметрами трубопроводов (рисунок 2.1).

Рисунок 2.1 – Зависимость протяженности аварийного разрыва от диаметра трубопровода

Таким образом, по формулам 2.8-2.14 для расчетной аварии подземного трубопровода, получим, что лесопосадка, расположенная в 60 метрах от места разрыва получит избыточное давление в 3,5 кПа. Зависимость значения избыточного давления от расстояния представлена на рисунке 2.2.

Результаты расчета свидетельствуют о том, что возникающая при разрушении газопровода волна сжатия не представляет серьезной угрозы для жизни человека, оказавшегося даже в непосредственной близости (не ближе 50 м) от места аварии, и не способна вызвать каких-либо повреждений зданий и сооружений, расположенных за пределами существующих охранных зон, что также подтверждается отечественным и зарубежным опытом ликвидации аналогичных аварий.

При разгерметизации и взрыве газопровода по произведенным расчетам ожидается, что избыточное давление от взрыва на расстоянии 60 м. составит 3,5 кПа (формула 2.8).

2.5 Расчет размеров зон, ограниченных НКПР газов при поступлении ГГ в помещение

Для определения размеров газопаровоздушного облака паров веществ, поступившего в открытое пространство произведем расчет размеров зон ограничивающих область концентраций, превышающих нижний концентрационный предел распространения пламени.

Расстояние ХНКПР , YНКПР , ZНКПР рассчитывают по следующим формулам:

ХНКПР = К1 l(K2 ln(δC0 /CНКПР )0.5 ; (2.15)

YНКПР = К1 b(K2 ln(δC0 /CНКПР )0.5 ; (2.16)

ZНКПР = К3 h(K2 ln(δC0 /CНКПР )0.5 . (2.17)

где К1 – коэффициент, принимаемый равным 1,1314 для ГГ;

K2 - коэффициент, равный 1 для ГГ;

К3 - коэффициент, принимаемый равным 0,0253 для ГГ при отсутствии подвижной воздушной среды; 0,02828 для ГГ при подвижной воздушной среде;

h – высота помещения, равная 10м;

b – ширина помещения, равная 65м;

l – длина помещения, равная 85м;

δ – допустимое отклонение концентраций при задаваемом уровне значимости Q(C > c), равный 1,63;

размеры помещения 65 на 85;

U – подвижность воздушной среды при работающей вентиляции;

СНКПР – по табличным данным для метана составляет 5,28% (об.)

Вычислим Со – предэкспоненциальный множитель, %(об.), равный:

при отсутствии подвижной среды для ГГ:

Со = 3,77 ∙ 103 ∙ (m / (ρг. ∙ Vсв ); (2.18)

где m - масса ГГ, вышедших в результате аварии и в помещение;

ρг. - плотность газа, вышедшего из трубопроводов, ρг =0,67 м3

Vсв - свободный объем помещения, в нашем случае Vсв =44200 м3 ;

при подвижности воздушной среды для ГГ:

Со = 3 ∙ 102 ∙ (m / (ρг. ∙ Vсв ∙U) ; (2.19)

Рассчитаем размеры зон, ограниченных НКПР газов при поступлении ГГ в помещение, для наиболее опасного сценария С1 развития аварии, по формулам 2.15...2.17:

Данные для расчета: масса вышедшего газа, в результате аварии 2322 кг, свободный объем помещения 44200 м3 .

Со = 3,77 ∙ 103 ∙(2322 /(0,67. ∙44200) = 296 %(об.);

Со = 3∙ 102 ∙(2322 /(0,67. ∙44200. ∙ 0,1) = 235 % (об.);

Рассчитаем размеры зон, ограниченных НКПР газов при поступлении ГГ в помещение:

при работающей вентиляции:

ХНКПР =1,1314 ∙ 85 (1. ∙ ln ((1,63. ∙235) / 5,28))0,5 = 199 м;

YНКПР =1,1314 ∙ 65 ((1. ∙ ln (1,63. ∙235) / 5,28))0,5 = 152 м;

ZНКПР =0,02828 ∙ 10 ((1. ∙ ln (1,63. ∙ 235) / 5,28))0,5 =0,58 м;


при неработающей вентиляции:

ХНКПР =1,1314 ∙ 85 ((1. ∙ ln (1,63. ∙ 296) / 5,28))0,5 = 204 м;

YНКПР =1,1314 ∙ 65 ((1. ∙ ln (1,63. ∙296) / 5,28))0,5 = 156 м;

ZНКПР =0,0253 ∙ 10 ((1. ∙ ln (1,63. ∙296) / 5,28))0,5 = 0,54 м;

Цилиндр, внутри которого располагается источник возможного выделения горючих газов, будет ограничен размерами здания компрессорной станции (85×65×10). В пределах этой зоны создается взрывоопасная среда.

Рассчитаем размеры зон, ограниченных НКПР газов при поступлении ГГ в помещение, для наиболее вероятного сценария С2 развития аварии, по формулам 2.15...2.17:

Данные для расчета: масса вышедшего газа, в результате аварии 856 кг, свободный объем помещения 44200 м3 .

Вычислим Со – предэкспоненциальный множитель, %(об.):

при отсутствии подвижной среды для ГГ, по формуле 2.18:

Со = 3,77 ∙ 103 ∙(856 /(0,67. ∙44200) = 109 %(об.);

при подвижности воздушной среды для ГГ, по формуле 2.19:

Со = 3∙ 102 ∙(856 /(0,67. ∙44200. ∙ 0,1) = 87 % (об.);

при работающей вентиляции:

ХНКПР =1,1314 ∙ 85 ((1. ∙ ln (1,63. ∙87) / 5,28))0,5 = 175 м;

YНКПР =1,1314 ∙ 65 ((1. ∙ ln (1,63. ∙87) / 5,28))0,5 = 134 м;

ZНКПР =0,02828 ∙ 10 ((1. ∙ ln (1,63. ∙ 87) / 5,28))0,5 =0,5 м;


при неработающей вентиляции:

ХНКПР =1,1314 ∙ 85 ((1. ∙ ln (1,63. ∙ 109) / 5,28))0,5 = 180 м;

YНКПР =1,1314 ∙ 65 ((1. ∙ ln (1,63. ∙109) / 5,28))0,5 = 138 м;

ZНКПР =0,0253 ∙ 10 ((1. ∙ ln (1,63. ∙109) / 5,28))0,5 = 0,5 м;

Цилиндр, внутри которого располагается источник возможного выделения горючих газов, будет ограничен размерами здания компрессорной станции (85×65×10). В пределах этой зоны создается взрывоопасная среда.

2.6 Расчет размеров зон, ограниченных НКПР газов при поступлении ГГ в открытое пространство

Произведем расчет зон, ограниченных НКПР газов для сценария С3 с максимально негативным воздействием на окружающую среду.

Критериями размеров зон, ограниченных НКПР газов, при аварийном поступлении горючих газов в открытое пространство при неподвижной воздушной среде являются расстояния ХНКПР , YНКПР , ZНКПР , м.

Эти расстояния для горючих газов рассчитываются по формулам:

, (2.20)

, (2.21)

где mг – масса поступившего в открытое пространство ГГ при аварийной ситуации, кг;

ρг – плотность ГГ при расчетной температуре и атмосферном давлении, кг/м3 ;

СНКПР – нижний концентрационный предел распространения пламени ГГ % (об.).

Для определения плотности ГГ применяется формула:

, (2.22)

где М – молярная масса, равна 16,1 кг/моль – для природного газа;

V0 – мольный объем, равный 22,413 м3 /кмоль;

tp – расчетная температура, равная 12 0 С;

Отсюда, ρг = 16,1/(22,413·(1+0,00367·12)) = 0,71 кг/м3 .

Произведем расчёт зон НКПР пламени для сценария С3 с максимально негативным воздействием на окружающую среду, при беспламенном истечении газа из образовавшегося свища в газопроводе в 5 м3 /с и длительностью 15 минут.

Для определения массы поступившего в открытое пространство ГГ при разгерметизации трубопровода применяется формула 2.2:

mг =Vт ∙ρг,

Объем газа, вышедшего из трубопровода, по формуле 2.4:

Vт = 5∙900=4500 м3 ;

mг =4500 × 0,71 =3195 кг.

Т.о. по формулам (2.20) и (2.21) рассчитаем расстояния XНКПР , YНКПР и ZНКПР для природного газа, ограничивающие область концентраций, превышающих НКПР:

м;


м.

Для ГГ геометрически зона, ограниченная НКПР, будет представлять цилиндр с основанием радиусом Rб и высотой hб = 2Rб при Rб £ h и hб = h + Rб при Rб > h, внутри которого расположен источник возможного выделения ГГ [17].

Таким образом, для расчетной аварии подземного трубопровода, геометрически зона, ограниченная НКПР газов, будет представлять цилиндр с основанием радиусом Rб = XНКПР = YНКПР = 142,6 м и высотой hб = Z НКПР =3,2 м.

2.7 Расчетное определение значения коэффициента участия ГГ во взрыве

Приведенные расчеты применяются для случая

100т/(ρг.п ∙ Vсв )<0.5 ∙ CНКПР – нижний концентрационный предел распространения пламени газа, % (об.), и для помещений в форме прямоугольного параллелепипеда с отношением длины к ширине не более 5.

Коэффициент Z участия ГГ во взрыве при заданном уровне значимости рассчитывается:

Z = ((5∙10-3 ∙π)/m) ∙ ρг ∙(C0 + CНКПР /δ) ∙ ХНКПР ∙ YНКПР ∙ ZНКПР ; (2.23)

Рассчитаем коэффициент Z участия ГГ во взрыве при заданном уровне значимости для наиболее опасного сценария С1.

Данные для расчета:

m =2322 кг, согласно формуле (2.2);

ρг = 0,67 кг/м-3 , согласно формуле (2.3);

С0 = 296 %(об.), согласно (2.11) – при отсутствии воздушной среды;

С0 = 235 %(об.), согласно (2.12) – при подвижной воздушной среде;

δ = 1,63

при отсутствии воздушной среды

Z = ((5∙10-3 ∙3,14)/2322) ∙0,67 ∙(296+(5,28/1,63)) ∙204 ∙156 ∙0,54 = 23;

при подвижной воздушной среде:

Z = ((5∙10-3 ∙3,14)/2322) ∙0,67 ∙(235+(5,28/1,63)) ∙199 ∙152 ∙0,58 = 19.

Таким образом коэффициент участия горючих газов во взрыве при отсутствии воздушной среды равно 23, при подвижной воздушной среде – 19.

2.8 Расчет параметров взрыва газовоздушных смесей

При взрыве газовоздушных смесей (ГВС) зону детонационной волны, ограниченную радиусом r0 , можно определить по формуле

r0 = , м, (2.24)

где 1/ 24 - коэффициент, м/кДж1/3 ;

Э - энергия взрыва смеси, определяемая из выражения

Э = , кДж, (2.25)

где С - стехиометрическая концентрация горючего по объему в %, для метана 9,45 об.%;

rстх - плотность смеси стехиометрического состава, кг/м3 , для метана составит 1,232 кг/м3 ;

Qстх - энергия взрывчатого превращения единицы массы смеси стехиометрического состава, кДж/кг;

V0 - свободный объем помещения, м3 .

Произведем расчет параметров взрыва газовоздушных смесей для наиболее опасного сценария С1:

Данные для расчета: Qстх – для метана 2,763∙103 кДж/кг,

V0 =0,8∙Vп =0,8∙55250=44200 м3 .

Э = =1592,1∙106 , кДж,

r0 = =48,7, м,

Зона действия воздушной ударной волны (ВУВ) начинается сразу за внешней границей облака ГВС. Давление во фронте ударной волны DРф зависит от расстояния до центра взрыва и определяется таблице 2.2, исходя из соотношения

ф = f (r / r0 ), (2.26)

где r - расстояние от центра взрыва до рассматриваемой точки.

Таблица 2.2- Зависимость DРф от расстояния до центра взрыва

r/r0

0 – 1

1,01

1,04

1,08

1,2

1,4

1,8

2,7

ф ,кПа

1700

1232

814

568

400

300

200

100

r/r0

3

4

5

6

8

12

20

ф ,кПа

80

50

40

30

20

10

5


Данные определенные по формуле 2.10 в соответствии с таблицей 2.2 занесем в таблицу 2.3.

Таблица 2.3 – Зависимость избыточного давления на фронте ударной волны и расстояния до центра взрыва

Расстояние до центра взрыва, м

r/r0

DPф , кПа

20

1,4

300

40

1,8

200

60

2,2

100

100

3

80

150

4

50

200

5

40

250

6

30

350

8,2

20

500

12

10

Рассмотрим воздействие избыточного давления ударной волны на человека.

Таблица 2.4 – Воздействие избыточного давления ударной волны на человека

Уровень поражения

Величина избыточного давления, кПа

Расстояние до центра взрыва, м

Летальный исход

300

27

Перелом ребер

130

40

Состояние контузии

70

54.5

Общее сотрясение организма, кровоизлияние в легкие, мышечное кровоизлияние

50

65.5

Разрыв барабанных перепонок

20

114

Избыточным давлением ударной волны будет поражен персонал компрессорной станции.

Рассчитаем уровни разрушений при взрыве в здании компрессорной станции.


2.9 Расчет уровней разрушений при взрыве

Произведем расчет уровней разрушений при взрыве для наиболее опасного сценария С1 развития аварии.

Расстояние от предполагаемого центра взрыва до объекта, т.е. радиус разрушений, который определяют по формуле:

, (2.27)

где W – тротиловый эквивалент взрыва, кг;

К – константа соответствующих разрушений;

Выделяют шесть основных зон опасности для следующих значений константы:

1) К=1 – условный радиус полного разрушения.

2) К=3,8 – зона полного разрушения зданий.

3) К=5,6 – зона 50%-го разрушения зданий.

4) К=9,6 – зона разрушений зданий без обрушения.

5) К=28 – зона умеренного разрушения зданий с разрушением дверей, оконных переплетов, внутренних перегородок.

6) К=56 – зона малого повреждения с разрушением около 10% остекления.

Тротиловый эквивалент взрыва рассчитывается по формуле:

W= , (2.28)

где Z – доля приведенной массы паров, участвующих во взрыве (принимается Z=0,1),

q – низшая теплота сгорания, кДж/кг (для прир. газа q = 53082,492 кДж/кг)

qt – удельная энергия взрыва тротила, кДж/кг (qt = 4520 кДж/кг),

m – общая масса газа, кг.

W = = 1212 кг.

Отсюда, согласно формуле 3.13 находим радиус разрушений:

R = K· = K·7,55.

Результаты расчетов по всем зонам опасности сведены в таблице 2.5.

Таблица 2.5 – Зоны разрушений при взрыве природного газа

п/п

Зоны разрушений

Радиус

разрушений, м

1

Зона полного разрушения, К=1

7,6

2

Зона полного разрушения зданий, К=3,8

28,7

3

Зона 50%-го разрушения зданий, К=5,6

42,3

4

Зона разрушения зданий без обрушений, К=9,6

72,5

5

Зона умеренного разрушения зданий, К=28

211,4

6

Зона повреждения около 10 % остекления, К=56

423

Ситуационный план рассматриваемого сценария развития аварии представлен в приложении А.

Все полученные данные сведем в таблицу.


Таблица 2.6 – Сводная таблица

Наименование показателя

Разгерметизация газопровода в помещении

Масса горючих газов, вышедших в атмосферу, кг

2322

Удельная теплота сгорания газа, кДж/кг

35996,03

Расстояние от эпицентра взрыва, м, соответствующее избыточному давлению:

DPф = 100 кПа

DPф = 50 кПа

DPф = 30 кПа

DPф = 12 кПа

60

150

250

500

Среднее число людей в соответствующей зоне действия ударной волны, чел.

0

0

2

3

Число пораженных от действия ударной волны, чел.

5

Радиус зоны, ограниченной НКПР, м

85

Число пораженных от действия открытого пламени в результате взрыва, чел.

0

В связи с тем, что наличие очагов возгорания возможно, применение средств пожаротушения необходимо. Но на территории компрессорной станции располагается сеть пожарных гидрантов.

2.10 Расчет параметров завала, образовавшегося в результате взрыва

Рассчитаем параметры завала, образовавшегося в результате взрыва, для наиболее опасного сценария С1.

Высота завала (h) – расстояние от уровня земли до максимального уровня обломков в пределах контура здания.

Основными факторами, определяющими высоту завала, являются этажность здания и величина действующего давления во фронте воздушной ударной волны. Чем больше давление, тем дальше разлетаются обломки, что приводит к уменьшению высоты завала (рисунок 2.2). Максимальной по величине высота завала будет в том случае, если на здание подействует минимальное давление, вызывающее разрушение стен здания. За минимальное давление обычно принимают Pф =0,05МПа.

Высоту завала можно определить из условия равенства объема образовавшегося завала

, (2.29)

и объема обелиска

, (2.30)

где А, В, Н - длина, ширина и высота здания, м;

g - объем завала на 100 м3 строительного объема здания, принимаемый: для промышленных зданий – g = 20 м3 ; для жилых зданий – g = 40 м3 ;

h – высота завала;

L – дальность разлета обломков (при авариях со взрывом L=0,5H);

Азав , Взав – длина и ширина завала.

Рисунок 2.2 – Расчетная схема образования завала при различных давлениях


Размеры завалов при взрыве в здании определяются по формулам

Азав = А+2L; Взав =В+2L (2.31)

Вне здания: Азав = А+L; Взав =В+L (2.32)

Приравняв правые части формул (2.22) и (2.23), найдем высоту завала

, (2.33)

Из приложения Б видно, что полному разрушению подвергнутся здание компрессорной станции (А=85 м, В=65 м, Н=10 м, Азав =95 м, Взав =75 м) и установка подготовки газа (А=4 м, В=5 м, Н=4 м, по формулам 3.17: Азав =6 м, Взав =7 м). Таким образом, подставив значения получим высоту и объем завала, образовавшегося при полном разрушении строения

;

;

;

;

;


.

Объем завала зданий, получивших сильную степень разрушения, принимают равным половине от объема завала полностью разрушенного здания. В зоне сильных разрушений находятся установка охлаждения газа (А=45м, В=20 м, Н=4 м, Азав =47 м, Взав =22 м), здание ремонтного управления (А=30 м, В=10 м, Н=3 м, Азав =33 м, Взав =13 м) и установка очистки газа (А=38 м, В=15 м, Н=4 м, Азав =40 м, Взав =17 м).

;

;

;

;

;

;

;


;

;

Общие потери людей на объекте будут суммироваться из чисел пострадавших в зданиях и вне зданий

Nоб = Nоб.зд + Nоб.откр. , (2.34)

где Nоб.зд – пострадавшие, находившиеся в зданиях (17 человек);

Nоб.откр – пострадавшие, находившиеся вблизи здания (0 человек).

Следовательно,

Nоб = 17+0=17 чел.

Безвозвратные потери людей под завалами составят

Nб = 0,6∙Nоб (2.35)

Nб = 0,6×17=10 чел.,

а санитарные потери в завалах

Nс = Nоб – Nб (2.36)

Nс = 17 – 10=7 чел.

Таким образом, общее число пострадавших при ЧС на компрессорной станции будет определяться как сумма пострадавших от избыточного давления ударной волны взрыва и пострадавших, находящихся под завалами:

Nсан =7+5=12; Nбезвозвр =10+0=10.

Общее число пострадавших при ЧС на компрессорной станции составит– 22 человека.


2.11 Расчет интенсивности теплового излучения и времени существования «огненного шара»

Облако газовоздушной смеси, переобогащенное топливом, и не способное поэтому объемно детонировать, начинает гореть вокруг своей внешней оболочки, образуя огневой шар. Такие шары, вызванные горением углеводородов, светятся и излучают тепло, что может причинить смертельные ожоги и вызвать возгорание горючих веществ. Огневой шар как поражающий фактор оценивается следующими параметрами:

- максимальный размер;

- время существования;

- плотность теплового потока.

Данные для расчета.

По сценарию С3 с максимально негативным воздействием на окружающую среду, перед образованием «огненного шара», 902,5 кг. газа участвует в образовании избыточного давления, т.о. масса газа в «огненном шаре» составит 2292,5 кг. Плотность газа 0,71 кг/м3 . Расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром «огненного шара» 60м.

Расчет интенсивности теплового излучения «огненного шара» q, кВт/м2 , проводят по формуле:

q = Ef · Fq · t, (2.37)

где Ef — cреднеповерхностная плотность теплового излучения пламени, кВт/м2 ;

Fq — угловой коэффициент облученности;

t - коэффициент пропускания атмосферы.

Ef определяют на основе имеющихся экспериментальных данных. Допускается принимать Ef равным 450 кВт/м2 [17].

Fq рассчитывают по формуле:

, (2.38)

где Н— высота центра «огненного шара», м;

Ds — эффективный диаметр «огненного шара», м;

r — расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром «огненного шара», м.

Эффективный диаметр «огненного шара» Ds рассчитывают по формуле:

Ds =5,33∙ m 0,327 , (2.39)

где т — масса горючего вещества, кг.

H определяют в ходе специальных исследований. Допускается принимать H равной Ds /2.

Время существования «огненного шара» ts , с, рассчитывают по формуле:

ts = 0,92 m 0,303 (2.40)

Коэффициент пропускания атмосферы t рассчитывают по формуле:

t = ехр [-7,0 · 10-4 ( - Ds / 2)], (2.41)

Доза теплового излучения Q, Дж/м2 ,рассчитывается по формуле:

Q = q · ts, (2.42)


Расчет.

По формуле (2.39) определяем эффективный диаметр «огненного шара» Ds :

Ds = 5,33 · 2292,50,327 = 66,9 м.

По формуле (2.38), принимая H = Ds /2 = 33,5 м, находим угловой коэффициент облученности Fq :

По формуле (2.41) находим коэффициент пропускания атмосферы t:

t = ехр [-7,0 · 10-4 · ( )] = 0,97.

По формуле (2.37), принимая Ef = 200 кВт/м2 , находим интенсивность теплового излучения q:

q = 450 · 0,1· 0,97 = 45,3 кВт/м2 .

По формуле (2.40) определяем время существования «огненного шара» ts :

ts = 0,92 · 2292,50,303 = 9,5 с.

Доза теплового излучения Q определяем по формуле (2.42):

Q = 45300·9,5 = 0,43 МДж/м2 .

Зависимость величины теплового излучения огневого шара от расстояния до его центра представлена в таблице 2.7 и на рисунке 2.3.


Таблица 2.7 – Зависимость величины теплового потока от расстояния до его центра

Расстояние до центра огневого шара

Тепловой поток, q, кВт/м2

Доза теплового излучения,

105 Дж/м2

1

2

3

40

70,2

6,7

60

45,3

4,4

80

28,6

2,8

100

18,4

1,8

120

12,2

1,2

140

8,4

0,8

160

5,9

0,6

180

4,3

0,4

200

3,2

0,3

220

2,4

0,2

240

1,9

0,2

260

1,5

0,1

280

1,2

0,1

Площадь пожара на промплощдке КС составила 2352 м2 .

За время существования огневого шара (9,5 сек.), допустим, что 3 человека получат ожоги различной степени тяжести. На таблице 2.8 представлена численность и степень ожогов пострадавшего населения.

Таблица 2.8 – Предельно допустимая доза теплового излучения при воздействии «огненного шара» на человека

Расстояние до центра огневого шара, м

Доза теплового излучения, Дж/м2

Степень ожога

Численность пострадавшего населения

до 75

3,2×105

III

1

От 75 до 90

2,2×105

II

1

От 90 до 115

1,2×105

I

1

Т.о. 1 человек, находящийся в радиусе до 75 метров от газопровода получит ожоги III степени,1 человек в радиусе от 75 до 90 метров II степень и 1 человек в радиусе от 90 до 115 метров I степень. Всего пострадает 3 человека.

Учитывая масштаб и расстояние, на котором расположен газопровод, необходимо произвести оценку риска для населения находящиеся на промплощадке компрессорной станции.

2.12 Метод оценки индивидуального риска для аварии в помещении

Уровень обеспечения безопасности людей при пожарах отвечает требуемому, если:

, (2.43)

где — нормируемый индивидуальный риск, = 10-6 год-1 ;

Qв — расчетный индивидуальный риск.

Расчетный индивидуальный риск Qв в каждом здании (помещении) рассчитывают по формуле

Qв = Qп Pпp (1 - Рэ ) (1 - Pп.з ), (2.44)

где Qп — вероятность пожара в здании в год (Qп =10-4 – по статистическим данным);

Рпр — вероятность присутствия людей в здании;

Рэ — вероятность эвакуации людей;

Рп.з — вероятность эффективной работы технических решений противопожарной защиты.

Вероятность эвакуации Рэ рассчитывают по формуле

Рэ = 1 - (1 - Рэ.п )(1 - Рд.в ), (2.45)


где Рэ.п — вероятность эвакуации по эвакуационным путям;

Рд.в — вероятность эвакуации по наружным эвакуационным лестницам (Рд.в =0, поскольку в здании не предусмотрены наружные лестницы).

Вероятность Рэ.п рассчитывают по формуле

, (2.46)

где — время от начала пожара до блокирования эвакуационных путей в результате распространения на них ОФП, имеющих предельно допустимые для людей значения, мин ( =18 мин);

tр — расчетное время эвакуации людей, мин;

интервал времени от возникновения пожара до начала эвакуации людей, мин ( =3 мин).

Произведем расчет индивидуального риска для наиболее вероятного сценария С2 развития аварии.

В помещении компрессорного цеха на этот момент находилось N=30 чел. (персонал), здание одноэтажное Рпр = 1. Помещение имеет 2 выхода (1 – центральный и 1 – эвакуационный). Ширина путей эвакуации –2 м; ширина дверей – не менее 0,8 м; двери по путям эвакуации предусмотрены открывающимися по направлению выхода из здания или помещения; высота проходов по путям эвакуации – не менее 2,5 м.


- место пожара; I, II - эвакуационные выходы; 1, 2 - участки эвакуационного пути.

Рисунок 2.4 - Расчетная схема эвакуации

Примем, что эвакуация осуществляется одновременно по двум направлениям с приблизительно равной плотностью.

Плотность людского потока на участке пути D рассчитывают по формуле

. (2.47)

где N — число людей на участке, чел (примем N=30 чел.);

f — средняя площадь горизонтальной проекции человека, м2 , принимаемая равной 0,100 — взрослого в домашней одежде; 0,125 — взрослого в зимней одежде; 0,070— подростка;

l — средняя длина участка пути, м (примем l=50 м);

— ширина участка пути, м ( =2 м).

Таки образом, плотность людского потока на участках эвакуационных путей:

м-2 .


Время движения людского потока по участку пути ti , мин, рассчитывают по формуле

, (2.48)

где l — средняя длина участка пути, м;

— скорость движения людского потока по горизонтальному пути на участке, м/мин (определяют по таблице 2.9 в зависимости от плотности D).

Таблица 2.9 — Интенсивность и скорость движения людского потока при различной на разных участках путей эвакуации в зависимости от плотности

Плотность

потока D,

м22

Горизонтальный путь

Дверной

проем, интенсивность q, м/мин

Лестница вниз

Лестница вверх

Скорость v, м/мин

Интенсивность q, м/мин

Скорость v, м/мин

Интенсивность q, м/мин

Скорость v, м/мин

Интенсивность q, м/мин

0,01

100

1,0

1,0

100

1,0

60

0,6

0,05

100

5,0

5,0

100

5,0

60

3,0

0,10

80

8,0

8,7

95

9,5

53

5,3

0,20

60

12,0

13,4

68

13,6

40

8,0

0,30

47

14,1

16,5

52

16,6

32

9,6

0,40

40

16,0

18,4

40

16,0

26

10,4

0,50

33

16,5

19,6

31

15,6

22

11,0

0,70

23

16,1

18,5

18

12,6

15

10,5

0,80

19

15,2

17,3

13

10,4

13

10,4

0,90 и более

15

13,5

8,5

8

7,2

11

9,9

Примечание — Интенсивность движения в дверном проеме при плотности потока 0,9 и более, равная 8,5 м/мин, установлена для дверного проема шириной 1,6 м и более, а при дверном проеме меньшей ширины d интенсивность движения следует определять по формуле q = 2,5 + 3,75 d


Следовательно, время движения людского потока по участку:

мин.

Расчетное время эвакуации людей tр следует определять как сумму времени движения людского потока по отдельным участкам пути ti по формуле:

tp = t1 + t2 , (2.49)

где t1 , t2 ,— время движения людского потока на каждом участке пути, мин.

Расчетное время эвакуации:

tр = 2×t = 2×0,5 = 1 мин.

Таким образом, вероятность Рэ.п :

Подставив полученные значения, вероятность эвакуации Рэ

Рэ = 1 - (1 -0,999)×(1 - 0)=0,999.

Вероятность эффективного срабатывания противопожарной защиты Рп.з рассчитывают по формуле:

, (2.50)

где п — число технических решений противопожарной защиты в здании (n=1)-автоматическая установка водяного пожаротушения;

R — вероятность эффективного срабатывания i-го технического решения (R=0,67– автоматическая установка водяного пожаротушения разрушена воздушной ударной волной при взрыве ТВС разрушена частично;).

Следовательно, вероятность эффективного срабатывания противопожарной защиты

.

Подставив полученные значения в выражение (5.2) получим:

Qв = ×10-4 ×1×(1 – 0,999) (1 – 0,67)=33×10-9 год-1 .

Их расчетов видно, что условие безопасности людей выполнено, значение индивидуального риска меньше допустимого. Для еще более меньшего риска для персонала необходимо внедрение систем пожаропредупреждения и пожарозащиты, разработка мер по снижению вероятности возникновения рассматриваемой чрезвычайной ситуации, проведение пожарно-тактических учений с участием работающего персонала.

2.13 Метод оценки социального риска для аварии в помещении

Социальный риск оценивается как вероятность гибели в результате пожара 10 и более человек в течение года.

Вероятность Q10 гибели 10 и более человек в результате пожара рассчитывается по формуле


, (2.51)

Таким образом, вероятность гибели 10 и более человек в результате пожара т.к. 1+3 < 18

А значит, и вероятность гибели от пожара 10 и более человек в течение года R10 = 0.

R10 = Qп ×Pпр ×(1 - Рэ )×(1 - Рпз )×Q10 . (2.52)

Социальный риск в компрессорном цехе для персонала предприятия будет равен 0.

2.14 Оценка индивидуального риска в открытом пространстве

Произведем расчет индивидуального риска для сценария С3 с максимально негативным воздействием на окружающую среду.

Для проведения расчетов примем следующие данные.

Во взрывном превращении участвует природный газ (метан – 98%). Температура воздуха 15 ºС. Расстояние от места возникновения аварии до человека, для которого определяют индивидуальный риск, составляет 65 м. Анализ статистики аварий показал, что вероятность возникновения ЧС на установке составляет 2,4×10-6 год -1 .

Статистические вероятности различных сценариев развития аварии приведены в таблице 2.10 [6].


Таблица 2.10 - Статистические вероятности различных сценариев развития аварии

Сценарий аварии

Вероятность

Сценарий аварии

Вероятность

Факел

Огненный шар

Горение пролива

Сгорание облака

0,0574

0,7039

0,0287

0,1689

Сгорание с развитием избыточного давления

Без горения

Итого

0,0119

0,0292

1

Вероятность сгорания газовоздушной смеси природного газа в открытом пространстве с образованием волны избыточного давления составит:

Qс.д. = 2,4×10-6 · 0,0119 = 2,8 · 10-8 год -1 .

Вероятность факельного горения:

Qф.г. = 2,4· 10 -6 · 0,0574 = 1,37 · 10 -7 год -1 .

Вероятности возникновения «огненного шара»:

Qо.ш = 2,4· 10 -6 · 0,7039 = 1,69 · 10 -6 год -1 .

Вероятности развития аварии в остальных случаях принимаем равными 0.

Значения избыточного давления и импульс для расстояния в 60 м рассчитаны п.2.4.

Для приведенных значений поражающих факторов определяем значения «пробит» - функции Pr по формулам:

- при воздействии избыточного давления при сгорании газовоздушных смесей


Pr = 5 - 0,26 ln (V), (2.53)

где (2.54)

Dp — избыточное давление, Па, из формулы 2.8;

i — импульс волны давления, Па · с, из формулы 2.9;

По формулам (2.53) и (2.54) получим, что

V = (17500/3500)8,4 + (290/41)9,3 = 8,04 ·107 ;

Pr - при поражении человека тепловым излучением при возникновении «огненного шара»:

Рr = -14,9 + 2,56 · ln (t · q1,33)= -14,9+2,56 · ln(9,5 · 45,31,33)= 3,85 (2.55)

где t — эффективное время экспозиции, с, из формулы 2.15;

q — интенсивность теплового излучения, кВт/м2 , из формулы 2.36.

С помощью табл. 2.12 определим условную вероятность Qп поражения человека.

Для полученных значений «пробит» - функции по таблице 2.11 условная вероятность поражения человека для воздействия ударной волны, воздействия теплового излучения «огненного шара»:

Qп1 = 0 % = 0;

Qп2 = 12 % = 0,12.


Таблица 2.11 - Значения условной вероятности поражения человека в зависимости от Рr

Услов-ная

вероят-ность поражения, %

Рr

0

1

2

3

4

5

6

7

8

9

0

-

2,67

2,95

3,12

3,25

3,36

3,45

3,52

3,59

3,66

10

3,72

3,77

3,82

3,90

3,92

3,96

4,01

4,05

4,08

4,12

20

4,16

4,19

4,23

4,26

4,29

4,33

4,36

4,39

4,42

4,45

30

4,48

4,50

4,53

4,56

4,59

4,61

4,64

4,67

4,69

4,72

40

4,75

4,77

4,80

4,82

4,85

4,87

4,90

4,92

4,95

4,97

50

5,00

5,03

5,05

5,08

5,10

5,13

5,15

5,18

5,20

5,23

60

5,25

5,28

5,31

5,33

5,36

5,39

5,41

5,44

5,47

5,50

70

5,52

5,55

5,58

5,61

5,64

5,67

5,71

5,74

5,77

5,81

80

5,84

5,88

5,92

5,95

5,99

6,04

6,08

6,13

6,18

6,23

90

6,28

6,34

6,41

6,48

6,55

6,64

6,75

6,88

7,05

7,33

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

99

7,33

7,37

7,41

7,46

7,51

7,58

7,65

7,75

7,88

8,09

Индивидуальный риск R, год-1, определяют по формуле

, (2.56)

где — условная вероятность поражения человека при реализации i-й ветви логической схемы;

Q(A,) — вероятность реализации в течение года i -й ветви логической схемы, год-1 ;

п — число ветвей логической схемы.

Согласно формуле (2.45) определим индивидуальный риск:

R = 0,12 · 1,69 · 10-6 = 2,02 · 10 -7 год -1 ;

Следовательно, индивидуальный риск на расстоянии 60 м от газопровода составит 2,02 · 10-7 год -1 , что не превышает допустимый уровень риска, составляющий 1 · 10-6 год -1 . Значит, условие безопасности людей на трубопроводе выполнено.

2.15 Оценка социального риска в открытом пространстве

Произведем оценку социального риска для сценария С3 для аварии с максимально негативным воздействием на окружающую среду

Расчет социального риска при аварии на наружном газопроводе высокого давления произведен в соответствии с ГОСТ Р 12.3.047-98. Для вычисления социального риска территория вокруг эпицентра взрыва делится на две зоны поражения. Для каждой из зон определяется средняя условная вероятность поражения человека и среднее число людей, находящихся в данной зоне, рассчитывается ожидаемое число погибших N. В случае если при любом варианте развития аварийной ситуации N меньше 10 (в соответствии с ГОСТ Р 12.3.047-98 социальный риск допускается оценивать по поражению не менее 10 человек).

Для проведения расчетов примем следующие данные.

Температура воздуха 15 ºС. Общая численность персонала компрессорной станции составляет 1300 человек. Анализ статистики аварий показал, что вероятность возникновения ЧС на установке составляет 2,4×10-6 год -1 .

Согласно расчетам, вероятности сгорания газовоздушной смеси с образованием волны давления, образования «огненного шара» и факельного горения составляет:

Qс.д. = 2,4× 10 -6 · 0,0119 = 2,8 · 10-8 год -1 ;

Qо.ш = 2,4· 10 -6 · 0,7039 = 1,7 · 10 -6 год -1 ;

Qф.г. = 2,4· 10 -6 · 0,0574 = 1,4 · 10 -7 год -1 .


Вероятности развития аварии в остальных случаях принимаем равными 0.

Рассчитаем значения поражающих факторов, соответствующих рассматриваемым вариантам развития аварии, и значения условных вероятностей поражения Qп на различных расстояниях от места возникновения ЧС [16].

Выберем следующий диапазон расстояний – от 60 до 120 м через каждые 15 м.

Исходя из приведенных выше расчетов, выбираем наиболее вероятное значение и по аналогии рассчитываем значения поражающих факторов огневого шара - сгорание газовоздушной смеси с образованием волны давления

Результаты вычислений представлены в таблице 2.12.

Таблица 2.12 - Значения параметров поражающих факторов

Параметр

Расстояния

20

40

60

80

100

Pr

6,49

5,39

3,84

2,28

0,77

Qп

0,93

0,65

0,12

0

0

Строим графическую зависимость Qпi = f(r), которая представлена на рисунке 2..

Результаты вычислений, необходимых для расчета социального риска занесем в табл. 2.13.

Таблица 2.13 - Результаты вычислений, необходимые для определения социального риска

Зона

Расстояние от газопровода, м

Число человек в зоне

Условные вероятности поражения человека

Ожидаемое число погибших человек

Qп с.д.

Nс.д.

А

75

1

0,12

1

Б

90

1

0

0

В

115

1

0

0

Социальный риск рассчитываем по формуле:

(2.57)

Таким образом, социальный риск составляет 1,69∙10-6 год-1 .

Анализируя результаты можно сделать заключение: на магистральном газопроводе Сергиевского ЛПУ МГ социальный риск равен 1,69·10-6 год -1 и лежит в промежутке 10-7 год -1 < 1,69·10-6 год -1 < 10-5 год -1 , т.е. эксплуатация наружного газопровода высокого давления может быть допущена после проведения возможных и достаточных мер для уменьшения пожарной опасности.

В данном разделе был произведен расчет основных поражающих факторов и оценка устойчивости зданий, сооружений и технологического оборудования при разгерметизации газопровода, необходимых для планирования и организации работ при ликвидации ЧС вызванной взрывом в здании компрессорной станции «Сергиевского ЛПУМГ».


3. Планирование и организация работ по ликвидации ЧС, вызванной взрывом в здании компрессорной станции «Сергиевского ЛПУМГ»

Газопроводы являются на сегодняшний день самым доступным и дешевым видом транспорта, но тем не менее не застрахованным от аварий, сопровождающихся пожарами и взрывами, а также значительным материальным ущербом, необходима ликвидация чрезвычайной ситуации и проведение аварийно-спасательных и других неотложных работ в кратчайшие сроки и в полном объеме.

Для снижения ущерба и защиты персонала объекта экономики в результате ЧС необходимо планирование и организация аварийно-спасательных и других неотложных работ формирований гражданской защиты, расчет сил, средств и времени, необходимых для ликвидации чрезвычайной ситуации, вызванной техногенной аварией на компрессорной станции.

Целью данного раздела дипломного проекта является разработка мероприятий по планированию и организации работ по ликвидации чрезвычайной ситуации, вызванной взрывом в здании компрессорной станции «Сергиевского ЛПУМГ».

Исходными данными для разработки раздела является:

- объект исследования – компрессорная станция «Сергиевское ЛПУМГ» ООО «Газпром трансгаз Самара» (расположение КС на карте Самарской области - см. рис. 1.1, схема расположения зданий представлена в приложении А, рис.А2);

- разгерметизация газопровода высокого давления;

- масса газа, вышедшего в результате ЧС в помещение m=2322 кг (пункт 2.3);

- выброс природного газа в замкнутое пространство;

- образование взрывоопасного газовоздушного облака;

- взрыв газовоздушного облака от источника зажигания (источником инициирования взрыва явилось соударение металлических предметов при выбросе из трубопровода газа, либо, стало результатом взаимодействия (трения) частиц вещества и металлических конструкций трубопровода) (∆р =112 кПа), данный сценарий графически представлен в приложении А, рисунок А4;

- от воздействия избыточного давления были полностью разрушены здание компрессорной станции, установка подготовки газа; сильному разрушению подверглись: установка охлаждения газа, здание ремонтного управления, установка очистки газа (с параметрами завала представленными в пункте 2.10);

- количество пострадавших со смертельным исходом 10 человек (считается, что все они находятся в завалах), легкой степени и средней степени тяжести 12 человек, все находятся в завалах (пункт 2.10);

- время года – весна (17 мая), скорость ветра 1,0 м/с, температура воздуха 15 ºС.

Для успешной ликвидации ЧС необходима правильная организация и технология аварийно-спасательных работ.

3.1 Основные принципы и требования к планированию и организации аварийно-спасательных и других неотложных работ при ликвидации чрезвычайных ситуаций на объектах по транспортировке газа

Аварийно-спасательные работы - это действия по спасению людей, материальных и культурных ценностей, защите природной среды в зоне чрезвычайных ситуаций, локализации чрезвычайных ситуаций и подавлению или доведению до минимально возможного уровня воздействия характерных для них опасных факторов. Аварийно-спасательные работы характеризуются наличием факторов, угрожающих жизни и здоровью проводящих эти работы людей, и требуют специальной подготовки, экипировки и оснащения [39].

Неотложные работы при ликвидации чрезвычайных ситуаций - это деятельность по всестороннему обеспечению аварийно-спасательных работ, оказанию населению, пострадавшему в чрезвычайных ситуациях, медицинской и других видов помощи, созданию условий, минимально необходимых для сохранения жизни и здоровья людей, поддержания их работоспособности.

Основные требования к организации АСДНР:

- сосредоточение основных усилий на спасении людей;

- организация и проведение работ в сроки, обеспечивающие выживание пострадавших и защиту населения в опасной зоне;

- применение способов и технологий ведения аварийно-спасательных работ, соответствующих сложившейся обстановке, обеспечивающих наиболее полное использование возможностей спасателей и технических средств, а также безопасность пострадавших и спасателей.

Для ликвидации ЧС на компрессорной станции, с разгерметизацией газопровода и взрывом газовоздушной среды, необходимо:

- определить аварийный участок газопровода;

-отключить его от действующих газопроводов (сброс газа) производятся, как правило, диспетчерской службой с применением средств телемеханики, а при их отсутствии - направлением бригад к отключающей запорной арматуре предполагаемого аварийного участка;

- при возникновении пожара, взрыва или внезапном выбросе газа в машинном зале, галерее нагнетателей, укрытиях ГПА, площадках пылеуловителей, оперативный персонал должен аварийно остановить компрессорную станцию.

- организовать доставку людей и технических средств к месту аварии.

На объектах газопереработки первоочередной задачей является, прежде всего, спасение пострадавших людей, оказавшихся в завалах зданий вследствие взрыва газовоздушных смесей. Важно установить, где и в каких условиях находятся пострадавшие, успели ли они укрыться в защитных сооружениях. Для этого необходимо в первую очередь найти и вскрыть убежища и укрытия, тщательно обследовать завалы, используя сведения очевидцев, планы территории с убежищами.

Для обнаружения оказавшихся в завалах людей могут быть использованы акустические приборы, способные улавливать слабые звуковые сигналы и определять направление их излучения.

Часть производственного персонала, находящихся в укрытии может оказаться в завалах: под обломками, в подвальных этажах обрушившихся зданий или в помещениях первых этажей. Люди могут находиться также и в полостях завала, которые образуются в результате неполного обрушения крупных элементов и конструкций зданий. Такие полости чаще всего могут возникать между сохранившимися стенами зданий и наклонно лежащими балками или плитами перекрытий, под лестничными маршами и т.п [39].

Выбор того или иного способа осуществления операции по высвобождению пострадавших из-под обломков определяется в первую очередь степенью повреждения и типом конструктивного решения зданий или сооружений, на котором предстоит вести работы [20].

При ликвидации последствий взрывов зона ЧС, как правило, ограничена сравнительно небольшой территорией. Однако количество жертв при этом может быть велико.

Если в результате взрыва различные объекты претерпели неодинаковые разрушения, а общая площадь разрушений значительная, то в этом случае работы проводятся в первую очередь на тех объектах, где помощь пострадавшим гарантировано обеспечит спасение их жизни.

Когда имеется достаточно сил и средств, спасательные работы должны выполняться по всей зоне ЧС.

Вскрытие и разборку конструкций производят только в размерах, необходимых для полного проведения намеченных работ.

При вскрытии и разборке конструкций следят, чтобы не ослаблялись несущие конструкции и не вызывалось их обрушение, не повреждались газопроводы, теплофикационные и электрические сети и электроустановки.

Спасательные работы начинаются немедленно, в случаях:

– людям угрожает опасность от взрыва или обрушения конструкций;

– люди самостоятельно не могут покинуть опасные места [49].

3.2 Определение номенклатуры и последовательности проведения мероприятий аварийно – спасательных и других неотложных работ при ликвидации ЧС, в здании компрессорной станции

Для ликвидации ЧС необходимо выполнить действия по поиску и спасению пострадавших, разбору завала. Ликвидация ЧС начинается с момента получения сообщения о произошедшей ЧС, считается законченными по возвращении подразделений на место постоянной дислокации и включают в себя следующие мероприятия:

- обработку информации о ЧС;

- выезд и следование к месту ЧС;

- общую, инженерную, медицинскую разведку;

- расчистка подъездных путей для расстановки техники;

- охрана общественного порядка;

- разбор завалов;

- разбор обломков разрушенных наружных установок и их складирование;

- поисково-спасательные работы;

- деблокирование пострадавших;