Главная              Рефераты - Строительство

Проект водоснабжения с. Бурибай Хайбуллинского района - курсовая работа

Содержание

Введение

1 Общий раздел

1.1 Краткая характеристика

1.2 Нормативные данные

2 Расчетно-технологический раздел

2.1 Теоретическое обоснование выбора схемы водоснабжения

2.2 Определение режима водопотребления и расчетных расходов воды

2.3 Трассировка и конструирование водопроводной сети

2.4 Гидравлический расчет водопроводной сети

2.5 Гидравлический расчет водоводов

2.6 Расчет пьезометрических и свободных напоров

2.7 Расчет напорно-регулирующих сооружений

2.8 Расчет сооружений водоподготовки

2.9 Расчет водозаборных сооружений

2.10 Подбор насосов

3 Эксплуатационный раздел

3.1 Автоматизация работы насосов

3.2 Контроль процессов обработки воды

3.3 Техника безопасности и противопожарная защита

4 Мероприятия по охране окружающей среды

5 Экономический раздел

Выводы и заключение

Список литературы

.
Введение

Состояние важнейшей системы жизнеобеспечения водопровода непосредственно отражает уровень развития любого населенного пункта.

Главной целью на новом этапе развития централизованного водоснабжения и канализования городов следует считать обеспечение экологической безопасности водопользования в секторе хозяйственно-питьевого водообеспечения. Удовлетворение насущных потребностей населения в воде, как и прежде, остается базовой составляющей. Усиливается роль социально-экологических составляющих, не снижая роли инженерно-технических факторов. Под безопасностью водопользования понимается такое состояние развития, при котором все потребности населения и экономики гарантированно обеспечиваются водой необходимого качества в потребном количестве. При этом водные ресурсы наиболее эффективно используются для предотвращения экологических и иных угроз и создания условий устойчивого водопользования в настоящем и будущем.

Важнейшей эколого-экономической задачей необходимо считать ликвидацию или хотя бы существенное сокращение потерь воды в водохозяйственных системах. Позитивные результаты по реализации этих мер:

экологические - уменьшение отбора воды из природных источников и, следовательно, оптимизация ресурсопользования; снижение уровня подтопления городских территорий, повышение устойчивости зданий и сооружений; улучшение санитарно-эпидемиологической обстановки и др.;

экономические - уменьшение платежей за отбор воды из источников; значительное сокращение энергопотребления с соответствующей долей расходов, снижение нагрузки на все элементы водохозяйственной системы и уменьшение эксплуатационных расходов.

Эколого-экономический подход делает более привлекательными для населения реформы в сфере ЖКХ, включая водопроводно-канализационное хозяйство, в том числе в тарифном регулировании водопользования.


1. Общий раздел

1.1 Краткая характеристика объекта проектирования

С. Бурибай – находится в Хайбуллинскомо районе РБ, Расчетное население 6 тыс. чел., степень благоустройства зданий: водопровод, канализация с местными водонагревателями; 2 тыс. чел обслуживаются через водоразборные колонки. Застройка - одноэтажная. Территория района характеризуется относительно малым количеством рек и ручьев. Реки имеют снеговое питание. В суровые зимы наблюдается перемерзание рек, в летний период возможно пересыхание.

Подземные воды в районе содержатся в различных по литологическому составу и возрасту пластах рыхлых пород, зонах открытой региональной трещиноватости и тектонических разломов, разнообразных по составу и происхождению скальных образований.

По форме залегания подземных вод выделяются водоносные горизонты и комплексы, воды спорадического распространения и воды экзогенной открытой трещиноватости.

Район занимает Зауральскую возвышенно - холмистую равнину на востоке, Зилаирское плато - на западе. Поверхность имеет общий наклон на восток. Рельеф западной части сильно расчленен, встречается много глубоких и сравнительно узких долин и логов с крутыми, иногда обрывистыми склонами, которые рассекают территорию на ряд извилистых возвышенных хребтов и отдельных холмов. Средняя высота этой части колеблется от 300 до 500 м. над уровнем моря. Максимальная высота - 619 м.

Восточная часть представляет собой равнину с пологими холмами, которые расчленены неширокими и неглубокими долинами рек и балками с пологими склонами, максимальной высотой 490м.

Для района характерен резко выраженный континентальный климат, т.е. длительный период отрицательных температур, значительные отклонения по годам от средних норм по тепловому режиму и количеству осадков.

Наиболее теплый месяц года - июль, со среднесуточной температурой воздуха +18°С , +20°С, с максимумом до + 39°С, в январе среднесуточное значение -15,8°С, иногда температура опускается до - 44°С, -47°С. Средняя продолжительность безморозного периода - 100-120 дней. Часты поздние весенние (до 9 июня) и ранние осенние (до 25 августа - 2 сентября) заморозки. Среднегодовое количество осадков колеблется от 210 до 400 мм. в год.

Летние месяцы характеризуются засушливыми днями с частыми сильными ветрами - суховеями южного, юго-западного направлений, с пыльными бурями.

1.2 Нормативные данные

В зависимости от степени благоустройства здания и климатических условий удельное водопотребление принято:

- при потреблении воды через водоразборные колонки - 50 л.чел/сут [1], для водопотребителей, проживающих в зданиях, оборудованных местными водонагревателями - 230л.чел/сут [1]. Нормы приняты с учетом засушливого климата.

В проекте все расчеты и технические решения приняты в соответствии со следующими нормативными документами:

- СНИП 2.04.02-84 Водоснабжение. Наружные сети и сооружения., Москва. Строиздат,1985-136с.

- СанПин2.1.4.1074-01 Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества


2. Расчетно-технологический раздел

2.1 Теоретическое обоснование выбора схемы водоснабжения

Выбор схемы водоснабжения производён на основании сопоставления возможных вариантов ее существования с учетом особенностей объекта, требуемых расходов воды на разных этапах их развития, источников водоснабжения, требовании к напорам, качеству воды и обеспеченности ее подачи.

Схема подачи воды следующая: вода из водозаборных скважин погружными насосами подается по водоводу через установку водоподготовки напорные резервуары и в водопроводные башни, которые расположены на площадке водопроводных сооружений у с.Бурибай и далее в водопроводную сеть.

Водозаборные скважины

В конструкции скважины необходимо предусматривать возможность контроля дебита, уровня и отбора проб воды, а так же производства ремонтно-восстановительных работ при применении импульсных, реагентных и комбинированных методов регенераций при эксплуатации скважин.

Диаметр эксплуатационной колонны в скважинах следует принимать при установке насосов: с погружным электродвигателем— равным номинальному диаметру напорного водовода.

Исходя из местных условий и оборудования устье скважины расположено в наземном павильоне.

Габариты павильона в плане приняты из условия размещения в нем электродвигателя, электрооборудования и контрольно-измерительных приборов (КИП).

Высота наземного павильона принята в зависимости от габаритов оборудования.

Верхняя часть эксплуатационной колонны труб должна выступать над полом не менее чем на 0,5 м.

Конструкция оголовка скважины должна обеспечивать полную герметизацию, исключающую проникание в межтрубное и затрубное пространство скважины поверхностной воды и загрязнений.

Монтаж и демонтаж секций скважинных насосов следует предусматривать через люки, располагаемые над устьем скважины, с применением средств механизации.

Верхняя часть надфильтровой трубы должна быть выше башмака обсадной колонны не менее чем на 3 м при глубине скважины до 50 м и не менее чем на 5м при глубине скважины более 50 м; при этом между обсадной колонной и надфильтровой трубой при необходимости должен быть установлен сальник.

После окончания бурения скважин и оборудования их фильтрами необходимо предусматривать прокачку, а при роторном бурении с глинистым раствором—разглинизацию до полного осветления воды.

Для установления соответствия фактического дебита водозаборных скважин принятому в проекте необходимо предусматривать их опробование откачками.

Для обеззараживания воды в проекте применена ультрафиолетовая технология обработки воды. Выбор технологии обновлен: во-первых, новыми научными проработками проблемы, доказывающими, что ультрафиолетовое излучение может применяться как альтернативаокислительным методом (хлорирование) за счет простоты, безопасности и низких эксплуатационных затрат. К бесспорным достоинствам технологии ультрафиолетового обеззараживания относится отсутствие какого-либо воздействия на химический состав воды, что позволяет решать задачи обеззараживания без образования побочных токсичных продуктов.

Во-вторых, серийный выпуск отечественных установок, отвечающих требованиям международных стандартов и способных обеспечить приемлемые технико-эксплуатационные и экономические показатели, позволяет значительно расширить область применения ультрафиолетовой обработки. В - третьих, появилась возможность обеспечения надежного санитарно-эпидемиологического контроля за обеззараженной водой, так как в 1998 году были утверждены методические указания, в которых впервые установлена база облучения, а также определены правила эксплуатации и контроля работы ультрафиолетовых установок, величина базы облучения впервые утверждена в качестве косвенного показателя достижения бактерицидного эффекта.

Умягчение воды

Умягчение подземных вод достигается катионитным методом фильтрования воды через загрузку, способную обменивать катионы кальция и магния на катионы натрия или водорода. Анализ проб воды свидетельствует о превышении предельно-допустимой концентрации по жёсткости. Поэтому в данном проекте предусмотрена дополнительно технология умягчения воды катионированием.

Водонапорные башни

Водонапорные башни предназначены для регулирования подачи и расхода воды и обеспечения необходимого напора в каждой точке сети в любое время суток.

В поселке Бурибай сооружены пять водонапорных башен емкостью бака 0 м3 , высотой ствола 12м, диаметром опоры 1420 мм и по типовому проекту 901-5-29, разработанному институтом «ГипроНИИсельхоз» и ЦНИИЭП Госгражданстроя.

Водонапорная башня включает следующие конструктивные элементы: бак (резервуар), ствол или, иначе, несущую конструкцию.

Башня - колонна (ствол) составляется из двух частей, стальной бак сварной, цилиндрической формы, не имеет днища и переходит конической частью (горловиной) в цилиндрическую опору, заполненную водой.

Стальная крыша приваривается на заводе к цилиндрической стенке бака и является диафрагмой жесткости в крыше имеется смотровой люк. На внутренних стенках бака приварены скобы -льдодержатели.

Наружная лестница стальная, с предохранительным ограждением. Внутри башни предусмотрены скобы для спуска обслуживающего персонала при очистке и ремонте башни.

2.2 Определение режима водопотребления и расчетных расходов воды

Максимальный суточный расход, м3 /сут

Qсут max = Kcymmax *K((g1 *N + q 2 N2 )/1000), (1)

где Ксуттах - коэффициент суточной неравномерности водопотреб-ления, Ксуттах = 1,3 [1]

К - коэффициент, учитывающий неучтенные расходы и нужды местной промышленности К = 1,2[1]

q1 - удельное водопотребление для потребителей получающих воду через водоразборные колонки, д1 =50 л * чел/сут [1] N - расчетное население, пользующееся водоразборными колонками, N = 2000 чел.

q2 - удельное водопотребление для жителей проживающих в

зданиях, оборудованных местными водонагревателями q2 = 230 л*чел/сут[1]

N2 - расчетное население, проживающих в зданиях оборудованных местными водонагревателями


Таблица 1 - Сводное водопотребление

Часы

Население

Баня

Всего

%

расход

1

2

3

4

5

0-1

0,75

10,64

10,64

1-2

0,75

10,64

10,64

2-3

1

14,18

14,18

3-4

1

14,18

14,18

4-5

3

42,55

42,55

5-6

5,5

78,01

78,01

6-7

5,5

78,01

78,01

7-8

5,5

78,01

10,8

88,81

8-9

3,5

49,64

10,8

60,44

9-10

3,5

49,64

10,8

60,44

10-11

6

85,1

10,8

95,9

11-12

8,5

120,56

10,8

131,36

12-13

8,5

120,56

10,8

131,36

13-14

6

85,1

10,8

95,9

14-15

5

70,92

10,8

81,72

1516

5

70,92

10,8

81,72

16-17

3,5

49,64

10,8

60,44

17-18

3,5

49,64

10,8

60,44

18-19

6

85,1

10,8

95,9

19-20

6

85,1

10,8

95,9

20-21

6

85,1

10,8

95,9

21-22

3

42,55

10,8

53,35

22-23

2

28,37

10,8

39,17

23-24

1

14,18

14,18

Итого

100

1418

172,8

1591,2

Qcymmax= 1,3 * 1,2 ((50 * 2000 + 230*4000)/1000) = 1591,2 м3 /сут

Коэффициент максимальной часовой неравномерности:

Кч.тах = αтах * 1,4 = 1,82 (2)

где αтах - коэффициент, учитывающий степень благоустройства зданий, αтах = 1,3 [1] βтах - коэффициент, учитывающий число жителей в населенном пункте, βтах =1,4 [1]

Кч.тах = 1,3 * 1,4 = 1,82

Расчетный часовой расход, м3

Qч max = Кч.тах * Qcymmax /24 (3)

Qч max = 1,82 * 1591,2/24 = 120,67м3

2.2.1 Определение расчетных расходов на хозяйственно-питьевые нужды

Сосредоточенный расход воды (для бани), м3

Qсоср = , (4)

где g- норма водопотребления, g = 150 л [8]

N - расчетное население, N = 6000 чел

Qcocp =150*8* 6000/106 = 7,2 m3 /ч или 172.8 m3 /сутки , или 2 л/с

2.2.2 Определение противопожарного расхода

Противопожарный расход, л/с:

Qпож =gпож *nпож +gвр (5)

гдe g пож - норма расхода воды на тушение одного пожара, g пож = 10 л/с п пож - количество одновременных пожаров п пож - 1[1] gвр - расход на внутренние пожары, gвр = 2,5л/с [2]

Qпож =10*1+2,5=12,5 л/с

2.2.3 Определение расчетных расходов по участкам сети

Удельный расход, л /с*м

Qуд = (6)

где Σl - сумма длин участков сети, Σl =24145M

Qуд = =0,00127л/см

Путевой расход, л/с

g i =gуд* l1

где gуд - удельный расход, gуд = 0,00127 л/с l1 - длина рассматриваемого участка (7)

Расчеты по определению путевых расходов сведены в таблицу 2

Таблица 2 -Определение расчетных расходов по участкам сети

Номер участка

Путевой

Длина

1

2

3

83'-83

0,10795

85

81-83

0,10795

85

82'-82

0,14605

115

81-82

0,15875

125

81-82

0,15875

125

80-81

0,5715

450

80'-81

0,1905

150

80-79

0,4953

390

86'-86

0,3048

240

86-79

0,2794

220

79-78

0,1397

110

92-91

0,7874

620

91'-91

0,08255

65

91"-91

0,14605

115

91-88

0,1397

110

90'-90

0,0762

60

90-89

0,17145

135

89-88

0,61595

485

87 -87

0,1143

90

88-87

0,23495

185

33'-33

0,04445

35

33-32

0,1651

130

32-27

0,65405

515

32-93

0,18415

145

93'-93

0,09525

75

72'-72

0,4826

380

72-73

0,1397

110

73'-73

0,4699

370

52-1

0,0889

70

8-2

0,22225

115

2-1

0,4445

350

2-1

0,4445

350

2-3

0,37465

295

05.-5

0,127

100

3-4

0,254

200

4-5

0,3175

250

5-6

0,1524

120

3-7

0,46355

365

7-6

0,24765

195

1-вЗ

0,57785

455

74'-71

0,14605

115

74"-74

0,0635

50

47'-47

0,0635

50

47"-47

0,03175

25

47"'-47

0,08255

65

47-46

0,0508

40

46'-46

0,0508

40

46"-46

0,03175

25

46-45

0,10795

85

45'-45

0,0508

40

45-44

0,09525

75

44'-44

0,12065

95

44-43

0,1143

90

43'-43

0,3175

250

43"-43

0,03175

25

43-42

0,14605

115

42-36

0,14605

115

41 -41

0,127

100

41-40

0,2032

160

40'-40

0,28575

225

40-39

0,127

100

39-38

0,17145

135

38'-38

0,03175

25

38-37

0,01905

15

37'-37

0,0889

70

37-36

0,1651

130

36-35

0,05715

45

35'-35

0,03175

25

35-34

0,03175

25

34'-34

0,08255

65

34-31

0,04445

35

87-93

0,17145

135

93-31

0,01905

15

31-30

0,27305

215

30-29

0,27305

215

51'-51

0,15875

125

51"-51

0,127

100

51-50

0,08889

70

50'-50

0,127

100

50-49

0,127

100

49'-49

0,0635

50

49-48

0,1905

150

48'-48

0,0635

50

48-29

0,36195

285

29-26

0,1397

110

26'-26

0,0508

40

28'-28

0,508

400

28"-28

0,33655

265

28-27

0,09525

75

27-26

0,2921

230

26-25

0,0508

40

25'-25

0,1905

150

25-24

0,09525

75

24'-24

0,08255

65

24-23

0,12065

95

23'-23

0,24765

195

23-18

0,03175

25

22,1-22

0,22225

175

22"-22

0,05715

45

22-21

0,20955

165

21'-21

0,1905

150

21-19

0,1016

80

20"-20

0,05715

45

20"'-20

0,0508

40

20" "-20

0,03175

25

20-19

0,1778

140

19-18

0,127

100

18 -18

0,03175

25

78-71

0,17145

135

71-70

0,4699

370

78-77

0,14605

115

70'-70

0,0508

40

70"-70

0,15875

125

70-68

0,34925

275

72-71

0,1016

80

77,1-77

0,36195

285

77-76

0,3683

290

84'-84

0,2286

180

85'-85

0,1143

90

85-84

0,15875

125

84-76

0,29845

235

76-75

0,14605

115

11 -11

0,127

100

11"-11

0,1016

80

11"'-11

0,127

100

11-10

0,1524

120

12 -12

0,08255

65

12-10

0,15875

125

10-9

0,12065

95

17 -17

0,09525

75

17-16

0,09525

75

69'-69

0,14605

115

16-15

0,17145

135

15-9

0,2667

210

9-8

0,2286

180

15-14

0,09525

75

14-13

0,3048

240

13-9

0,127

100

13-53

0,22225

175

14-69

0,2032

160

69-68

0,4318

340

68-67

0,254

200

75-67

0,3175

250

67'-67

0,5207

410

67-66

0,1651

130

66-65

0,0762

60

65'-65

0,1524

120

65-64

0,4445

350

64-58

0,1905

150

58-59

0,29845

235

58-57

0,12065

95

57-56

0,12065

95

57-63

0,2794

220

59-63

0,13335

105

59-60

0,27305

215

63'-63

0,13335

105

63-62

0,13335

105

56-55

0,12065

95

60-61

0,23495

185

55-54

0,04445

35

61-62

0,23495

185

52-61

0,28575

225

52,1-52

0,0254

20

54-53

0,13335

105

52-53

0,69215

545

2.3 Трассировка и конструирование водопроводной сети

Первоочередной задачей при проектировании и расчете водоводов и водопроводных сетей является обоснование выбора трасс линий на плане. Трассировку водоводов и сетей производят исходя из условия обеспечения требуемой надежности их работы и наименьшей строительной стоимости. Размещение линий водоводов и сетей зависит от следующих условий:

- местоположения источников водоснабжения, характера планировки населенного пункта или промышленного предприятия, размещения отдельных потребителей воды, формы и размеров жилых кварталов, цехов, зеленых насаждений, расположения проездов и т. п.;

- наличия естественных и искусственных препятствий для прокладки труб (реки, овраги, каналы, железные и шоссейные дороги и т.п.);

- рельефа местности.

На выбор трассы магистральных линий существенное влияние оказывает рельеф местности. Их по возможности следует прокладывать по наиболее возвышенным точкам территории. При соблюдении этих условий наличие достаточных свободных напоров в магистральной сети гарантирует создание достаточных напоров и в распределительной сети, получающей воду от магистральной сети и располагаемой на более низких отметках рельефа. Подобная трассировка магистралей обеспечивает относительно меньшее давление в трубах больших диаметров. Кроме того, выбор трассы магистральных линий зависит от места расположения регулирующих емкостей.

Разработку схемы водопроводной сети населенных пунктов начинают с определения места расположения регулирующей емкости. Затем наносят на план основные линии водопроводной сети с таким расчетом, чтобы они снабжали водой все жилые районы и промышленные предприятия. Из числа линий, расположенных в направлении движения основной массы воды и подающих воду к регулирующим емкостям, назначают магистрали. Они должны быть равномерно распределены на территории населенного пункта, охватывая все наиболее крупные водопотребители. Для надежности водоснабжения по основному направлению прокладывают не менее двух параллельных -магистральных линий на расстоянии 400—800 м. Основные магистрали соединяют перемычками обычно через 600—1000 м. К регулирующим емкостям должна быть предусмотрена подача воды не менее чем по двум линиям.

Выполнив трассировку сети, задают режим подачи воды в нее и определяют расходы воды, поступающие в сеть, а также объемы регулирующих емкостей. Дальнейшая методика расчета и проектирования сети заключается в следующем: намечают расчетную схему отбора воды из сети; задают начальное распределение потоков воды по отдельным линиям сети и находят расчетные расходы воды по участкам; руководствуясь давлением воды, геологическими и другими местными условиями, выбирают материал труб; определяют диаметры труб, потери напора па участках; осуществляют гидравлическую увязку сети, подбор насосов, уточняют первоначально принятые объемы регулирующих емкостей и расходы воды, подаваемой в сеть.

Водопроводная сеть является, как правило, наиболее дорогостоящей частью системы водоснабжения объекта. Она должна удовлетворять основному требованию — бесперебойная подача воды в необходимом количестве к точкам ее отбора под требуемым напором. В соответствии с этим к водопроводным сетям предъявляют следующие требования: герметичность, минимальные гидравлические сопротивления на трение при движении воды в трубах, высокое сопротивление внутренними внешним нагрузкам, длительный срок службы труб и оборудования на сети. Кроме того, водопроводные сети должны удовлетворять требованиям максимальной экономичности.

Трубы, используемые для устройства водопроводных сетей, должны обеспечивать возможность их простого, быстрого и надежного соединения. Они должны быть рассчитаны на давление транспортируемой воды на внутреннюю поверхность, а также иметь необходимую прочность для сопротивления давлению грунта, прогибам от собственного веса и нагрузкам от транспорта.

Важное значение имеет герметичность как самих труб, так и стыковых соединений. Она является необходимым условием успешной и экономичной эксплуатации водопровода. При нарушении герметичности трубопроводов происходят утечки воды, повышаются эксплуатационные затраты, создается опасность загрязнения питьевой воды в результате инфильтрации грунтовой. Кроме того, утечки вызывают размыв грунта, что приводит к серьезным авариям.

В данном проекте приняты полимерные водопроводные трубы по ГОСТу 18599 - 83 Достоинствами труб являются: долговечность, малые сопротивления, малый вес, простота монтажа и демонтажа, санитарная надёжность.

2.4 Гидравлический расчет водопроводной сети

Расчётные расходы воды по участкам сети представлены на схеме отбора воды в л/с - рис. 1

Гидравлический расчет кольцевой сети выполнен с использованием таблиц [3 ]Потери напора, м

h = l.2S*q2 (8)

где S - сопротивление участка трубы

Рисунок 1- Схема отбора воды (узлы 1-2;1-54;1-53;1-14;1-16)


Рисунок 1- Схема отбора воды (узлы 52-61; 54-55;14-69), продолжение

Рисунок 1- Схема отбора воды (узел 2-3), продолжение


Рисунок 1- Схема отбора воды (узлы 16-18; 18-27; 18-26), продолжение

Рисунок 1- Схема отбора воды (узлы 26-29; 27-32; 29-35; 29-93), продолжение


Рисунок 1- Схема отбора воды (узлы 93-87; 87-92), продолжение

Рисунок 1- Схема отбора воды (узлы 35-36; 73-74), продолжение


Рисунок 1- Схема отбора воды (узлы 76-77;70-71;73-74), продолжение

Рисунок 1- Схема отбора воды (узлы 64-65;69-68;70-71;76-77), продолжение


S=S0 *q (9)

где: Sо - удельное сопротивление, принимаемое в зависимости

от диаметра и материала труб [3 ] q q- расход воды по участку, л/с

Результаты гидравлического расчета сети сведены в таблицу

Таблица 3 Гидравлический расчет сети

Номер участка

Длина, 1,м

Расход, д. л/с

Диаметр, d мм

Скорость, м/с

Уд.сопротивление, S0 *W6

Сопротивление S=SO*I

Потери напора, п, м

1

2

3

4

5

6

7

8

в 3-1

455

33,51

250

0,68

0,000001454

0,0020266

2,73

1-2

350

18,51

200

0,58

0,00001426

0,004991

2,05

1-52

70

15

140

1,45

0,00009162

0,0064134

1,73

2-3

295

1,937

90

9,54

0,0009268

0,273406

1,23

3-4

200

0,9509

90

0,22

0,0009268

0,18536

0,2

4-5

250

0,6969

90

0,22

0,0009268

0,2317

0,14

5-5'

100

0,127

90

0,019

0,0009268

0,09268

0,002

5-6

120

0,2524

90

0,039

0,0009268

0,111216

0,01

6-7

195

0,2476

90

0,038

0,0009268

0,180726

0,015

3-7

365

0,6112

90

0,096

0,0009268

0,338282

0,1

52-52'

20

0,025

90

0,004

0,0009268

0,018536

0,000014

52-61

225

10

140

1,57

0,00009162

0,020615

2,47

52-53

545

4,9

180

0,223

0,00002476

0,0134942

0,41

53-54

105

0,956

90

0,22

0,0009268

0,097314

0,11

54-55

35

1

90

0,24

0,0009268

0,032438

0,04

55-62

115

2

90

10,4

0,0009268

0,106582

0,51

55-56

95

0,854

90

0,13

0,0009268

0,088046

0,08

61-62

185

4,7

90

0,74

0,0009268

0,171458

4,55

61-60

185

5

125

0,41

0,0001666

0,03082

0,92

60-59

215

4,77

125

0,38

0,0001666

0,035819

0,98

59-63

105

0,867

90

0,14

0,0009268

0,097314

0,08

63'-63

105

0,1333

90

0,02

0,0009268

0,097314

0,002

63-62

105

2,46

90

15,5

0,0009268

0,097314

0,71

63-57

105

1,347

90

4,87

0,0009268

0,097314

0,21

57-56

95

0,733

90

0,12

0,0009268

0,088046

0,06

57-58

95

1,96

90

9,54

0,0009268

0,088046

0,41

59-58

235

5,205

200

0,82

0,00001426

0,0033511

0,11

58-64

150

6,97

180

1,65

0,00002476

0,003714

0,22

2-8

175

16,128

160

1,55

0,00004591

0,0080343

2,51

8-9

180

16,128

180

1,55

0,00002476

0,0044568

1,39

53-13

175

5,6337

180

0,89

0,00002476

0,004333

0,16

13-9

100

0,87

90

0,14

0,0009268

0,09268

0,08

13-14

240

4,329

140

0,68

0,00009162

0,0219888

0,49

14-15

75

2,905

90

0,457

0,0009268

0,06951

0,703

9-10

95

0,87

90

0,14

0,0009268

0,088046

0,08

10-11

120

0,508

90

0,08

0,0009268

0,111216

0,03

11-11'

100

0,127

90

0,019

0,0009268

0,09268

0,001

11-11"

80

0,1016

90

0,01

0,0009268

0,074144

0,009

11-11"'

100

0,127

90

0,019

0,0009268

0,09268

0,002

10-12

125

0,241

90

0,04

0,0009268

0,11585

0,01

12-12'

65

0,083

90

0,013

0,0009268

0,060242

0,0004

9-15

210

15,862

140

1,5

0,00009162

0,0192402

5,81

15-16

135

18,595

160

1,38

0,00004591

0,00619785

2,57

16-17

75

0,1905

90

0,03

0,0009268

0,06951

0,003

17-17'

75

0,0952

90

0,015

0,0009268

0,06951

0,0007

16-18

115

18,45

180

1,34

0,00002476

0,0028474

1,16

14-69

160

1,1258

90

4,22

0,0009268

0,148288

0,23

69-69'

115

0,1461

90

0,023

0,0009268

0,106582

0,003

69-68

340

0,548

90

0,09

0,0009268

0,315112

0,11

64-65

350

6,526

250

1,03

0,000004454

0,0015589

0,079

65'-65

120

0,1524

90

0,023

0,0009268

0,111216

0,003

65-66

60

6,2974

90

2,09

0,0009268

0,055608

2,65

66-67

130

6,1323

90

2,06

0,0009268

0,120484

5,44

67'-67

410

0,5207

90

0,08

0,0009268

0,379988

0,12

67-68

200

4,022

90

0,63

0,0009268

0,18536

3,6

67-75

250

1,3355

90

0,21

0,0009268

0,2317

0,49

68-70

275

4,221

90

0,66

0,0009268

0,25487

5,45

70'-70

40

0,1587

90

0,025

0,0009268

0,037072

0,001

70"-70

125

0,0508

90

0,008

0,0009268

0,11585

0,0004

70-71

370

4,9

180

0,77

0,00002476

0,0091612

0,2639

71-72

80

4,566

90

0,71

0,0009268

0,074144

1,85

75-76

115

1,016

90

0,16

0,0009268

0,106582

0,13

76-84

235

0,502

90

0,078

0,0009268

0,217796

0,076

84-85

125

0,2731

90

0,042

0,0009268

0,11585

0,01

85-85'

90

0,1143

90

0,017

0,0009268

0,083412

0,001

84-84'

180

0,2286

90

0,04

0,0009268

0,166824

0,01

76-77

290

0,3683

90

0,06

0,0009268

0,268772

0,04

7Т-77

285

0,3619

90

0,06

0,0009268

0,264138

0,04

77-78

115

0,854

90

0,13

0,0009268

0,106582

0,09

71-78

135

1,331

90

4,87

0,0009268

0,125118

0,27

71-72

80

4,566

90

0,72

0,0009268

0,074144

1,85

78-79

110

2,502

90

15,5

0,0009268

0,101948

0,77

86'-86

240

0,3048