Главная              Рефераты - Строительство

Проектирование трехэтажного жилого здания - курсовая работа

1. Исходные данные

Здание трёхэтажное, без подвала, с размерами в плане 30 х 22.2 м в крайних разбивочных осях. Сетка колонн 6,0х7,4 м. Высота этажа -3,0м. Кровля плоская, совмещенная. Нормативная временная нагрузка на перекрытие 3,5 кН/м2, где длительная часть нагрузки - 2 кН/м2, кратковременная часть нагрузки - 1,5 кН/м2. Коэффициент надежности по назначению здания . Температурные условия здания нормальные, влажность воздуха выше 40%. Район строительства г. Ростов. Снеговой район II(карта 1 [4]). Нормативная снеговая нагрузка -1.5 (табл.4[4]).


2. Конструктивная схема здания

Здание многоэтажное каркасное с неполным ж / б каркасом и несущими наружными кирпичными стенами. Железобетонные перекрытия разработаны в двух вариантах: сборном и монолитном исполнение. Пространственная жесткость здания решена по рамно-связевой схеме. В сборном варианте поперечная жесткость здания обеспечивается поперечными рамами и торцевыми стенами, воспринимающими горизонтальные ветровые нагрузки через диски перекрытий. Торцевые стены служат вертикальными связевыми диафрагмами.

В здание жесткость поперечных диафрагм (стен) намного превышает жесткость поперечных рам, и горизонтальные нагрузки передаются на торцевые стены. Поперечные же рамы работают только на вертикальную нагрузку. Жесткость здания в продольном направление обеспечивается жесткими дисками перекрытий и вертикальными связями, установленными в одном среднем пролете на каждом ряду колонн по всей высоте здания.


3. Конструктивная схема сборного перекрытия

Ригели расположены поперек здания, перекрывая большие пролеты, и опираются на продольные несущие стены и консоли колонн. Такое расположение колон с ригелями принято на сварке закладных деталей и выпусков арматуры с последующим замоноличиванием стыков. Опирание ригелей на стены принято шарнирным. Плиты перекрытия пустотные, предварительно напряженные, опирающиеся на ригели поверху. Сопряжение плит с ригелем принято на сварке закладных деталей с замоноличиниваем стыков и швов. Привязка стен к крайним разбивочным осям: к продольным - нулевая, к поперечным -120мм. Заделка ригелей в стены 250 мм.

Конструктивная схема сборного перекрытия представлена на рис.1.

П1-6,0*2,0м-4ш

П2-6,0*2,0м-6ш

П3-6,0*2,4м-4ш

П4-6,0*2,4м-6ш

П5-6,0*1,8м-6ш

П6-6,0*2,0м-8ш


4. Расчет и конструирование пустотной предварительно напряжённой плиты

4.1 Размеры и форма плиты

Рис. 2 Сечение плиты.

LК= LН - b - 20= 6000-350-20= 5630 мм. ВК= ВН-2δ=2000-10=1990 мм.

4.2 Расчётный пролёт плиты.

hр = (1/12)×l =(1/12) ×7400 = 620 мм= 650 мм;

b = 0.5 ×h = 0,5·650 = 325 мм= 350мм.

При опирании на опорный столик ригеля расчетный пролет:

l0 = LН-b-а =6000-350-120 = 5530 мм.

Рис. 3 Опирание плиты на ригель.


4.3 Расчётная схема, расчётное сечение

Рис. 4. Схема нагрузок.

4.4 Характеристики материалов

Пустотную предварительно напряженную плиту армируют стержневой арматурой класса А-V с электрохимическим натяжением на упоры форм. Плиты подвергают тепловой обработке при атмосферном давлении.

Характеристики арматуры:

1) Нормативное сопротивление арматуры растяжению: Rsn=785 МПа,

2) Расчётное сопротивление арматуры растяжению: Rs=680 МПа,

3) Модуль упругости: Еs=190000 МПа.

К плите предъявляют требования 3-й категории по трещиностойкости. Бетон принят тяжёлый класса В25 в соответствии с принятой напрягаемой арматурой.

Характеристики бетона:

1) Нормативная призменная прочность бетона на сжатие: Rbn=18,5 МПа,

2) Расчётная призменная прочность бетона на сжатие: Rb=14,5 МПа,

3) Коэффициент условий работы бетона: b2 = 0,9,

4) Нормативное сопротивление бетона осевому растяжению: Rbtn= 1,6 МПа,

5) Расчётное сопротивление бетона осевому растяжению: Rbt= 1,05 МПа,

6) Модуль упругости бетона: Еb=30000 МПа.

Проверяем выполнение условия:

sp+p<Rsn;

При электротермическом способе натяжения:

p=30+360/l = 30+360/6,0 = 90 МПа,

где: l - длина стержня; l = 6,0 м,

sp=0,75х785=588,75 МПа,

sp+p = 590+93,16 = 683,16 МПа<Rsn=785 МПа - условие выполняется.

Вычисляем предельное отклонение предварительного напряжения по формуле:

где: nр - число напрягаемых стержней плиты. Коэффициент точности натяжения при благоприятном влиянии предварительного напряжения по формуле:


При проверке по образованию трещин в верхней зоне плиты при обжатии принимается:

Предварительное напряжение с учетом точности натяжения:

sp=0,9×588,75=529,875 МПа.

Подсчет нагрузок на 1 м2 перекрытия приведен в таблице 1.

4.5 Нагрузки. Расчетные и нормативные нагрузки

Подсчет нагрузок на 1м2перекрыти приведен в таблице 1. Находим расчетную нагрузку на 1м длины при ширине плиты , с учетом коэффициента надежности по назначению здания ;

Постоянная

Полная

Нормативная нагрузка на 1м длины:

Постоянная


Полная

В том числе постоянная длительная

Таблица .1

Вид нагрузки

Нормативная нагрузка

кН/м2

Коэф-т надежности по нагрузке

Расчетная нагрузка

кН/м2

Постоянная: Собственный вес ребристой плиты Тоже слоя цементного раствора ( ) Тоже керамической плитки

3,0

0,44

0,24

1.1

1.3

1.3

3,3

0,57

0,264

Итого

Временная: В том числе длительнодействующая кратковременная

3,68

3,5

2,0

1,5

-

1.2

1.2

1.2

4,134

4,2

2,4

1,8

Итог В том числе: Длительная Кратковременная

7,18

5,68

1,5

-

-

-

8,534

6,534

1,8

4.6 Расчёт пустотной плиты по предельным состояниям

Усилия от расчетных и нормативных нагрузок. От расчетной нагрузки:


От нормативной полной нагрузки:

От нормативной постоянной длительной:

4.7 Установление размеров сечения плиты

Высота сечения многопустотной предварительно напряженной плиты h =22 см; рабочая высота сечения h0=h-a=22-3=19 см; толщина верхней полки 3,1см; нижней -3см. Ширина рёбер: средних 3,2см, крайних- 4.1см. В расчетах по предельным состояниям первой группы расчетная толщина сжатой полки таврового сечения h’f=3,0 cм; отношение h’f/h=3,0/22= =0.14 >0.1, при этом в расчет вводится вся ширина полки b’f=196 cм; расчетная ширина ребра: b=196-10×15,9=37 см.

4.8 Расчет прочности плиты по сечению, нормальному к продольной оси,М=60.5295 кН × м

Сечение тавровое с полкой в сжатой зоне.

Вычисляем:


здесь SR=Rs=680+400-588.75=491.25 МПа; в знаменателе формулы принято 500 МПа, поскольку b2<1.

Коэффициент условий работы, учитывающий сопротивление напрягаемой арматуры выше условного предела текучести, согласно формуле:

см2.

Принимаем 10 стержней  8 мм с Аs=5.03 см2.

4.9 Расчет прочности плиты по сечению, наклонному к продольной оси, Q =43.7827 кН

Влияние усилия обжатия P= 245.84 кH:

Проверяем, требуется ли поперечная арматура по расчёту.

Условие:

Qmax=43.7827×103 Н<2,5×Rbt×b×h0=2,5×0,9×1,05×(100)×37×19=166×103 Н – удовлетворяется.

При


и поскольку

0,16×jb4×(1+jn)×Rbt×b=0,16×1,5×(1+0,333)×0,9×1,05×37×100=1118.6Н/см >118.446 Н/см,

принимают с=2,5×h0=2,5×19= 47,5 см.

Другое условие: при

Q = Qmax – q1×c = 43.7827×103 – 118.446×47,5 = 38.1565×103 H,

- удовлетворяется.

Следовательно, поперечной арматуры по расчёту не требуется.

На приопорных участках длиной l/4 арматуру устанавливают конструктивно, в средней части пролёта поперечная арматура не применяется.

4.10 Расчет пустотной плиты по предельным состояниям второй группы

Геометрические характеристики приведенного сечения. Круглое очертание пустот заменяют эквивалентным квадратным со стороной:

h=0.9d=0,9·15,9=14,31см.

Толщина полок эквивалентного сечения: h’f=h=(22-14,31) ·0,5=3,845см.

Ширина ребра 196-9·14,31=52.9 см.

Ширина пустот 196-42.9=143.1 см.

Площадь приведённого сечения Ared=196·22-143.1·14,31=2264.239 см2. Расстояние от нижней грани до центра тяжести приведённого сечения: y0=0,5h=0,5·22=11см. Момент инерции сечения (симметричного):


см4.

Момент сопротивления сечения по нижней зоне:

см3;

то же, по верхней зоне см3.

Расстояние от ядровой точки, наиболее удалённой от растянутой зоны (верхней), до центра тяжести сечения по формуле

cм;

то же, наименее удалённой от растянутой зоны (нижней) rinf =4,74 см. Упругопластический момент сопротивления по растянутой зоне согласно формуле:

см3,

здесь γ=1,5 для двутаврового сечения.

Упругопластический момент по растянутой зоне в стадии изготовления и обжатия W’pl=18950.85 см3.

Потери предварительного напряжения арматуры.

Коэффициент точности натяжения арматуры p=1. Потери от релаксации напряжений в арматуре при электротермическом способе натяжения:

Потери от температурного перепада между натянутой арматурой и упорами, так как при пропаривании форма с упорами нагревается вместе с изделием.

Эксцентриситет этого усилия относительно центра тяжести приведенного сечения:

eop=y0-d=11-3 = 8 см

Напряжение в бетоне при обжатии:

МПа

Устанавливаем величину передаточной прочности бетона из условия:

Rbp=3.09/0,75=4.12<0.5×B25=12,5 МПа

Принимаем Rbp=12,5МПа. Тогда отношение

bp/Rbp=3.09/12,5=0,2472.

Вычисляем сжимающее напряжение в бетоне на уровне центра тяжести напрягаемой арматуры от усилия обжатия Р1 (без учета изгибающего момента от веса плиты):

МПа

Потери от быстронатекающей ползучести при

bp/Rbp=2.59/12,5=0.2072


С учетом потерь:

Р1=Аs×(sp-los1)=5.03×(588.75-25.9505)×(100)=283088 H

МПа;

Усилие обжатия с учетом полных потерь:

Р2=Аs×(sp-los)=5.03×(588.75-100)×(100)=245,84 кН

Расчет по образованию трещин, нормальных к продольной оси

Производится для выяснения необходимости проверки по раскрытию трещин. Коэффициент надежности по нагрузке f=1; М=52,1481 кН×м.

Вычисляем момент образования трещин по приближенному способу ядровых моментов:

Mcrc=Rbt,ser×Wpl+Mrp=1.6×18950,85×(100)+ 2818801,44 =58,51 кН×м

Здесь ядровый момент усилия обжатия при sp=0.9:

Mrp=sp×P2×(eop+r)=0.9×245840×(8+4.74)=2818801,44 H×см

поскольку М=52,1481<Mcrc=58,51 кН×м, трещины в растянутой зоне не образуются. Следовательно, нет необходимости в расчете по раскрытию трещин.

Проверим, образуются ли начальные трещины в верхней зоне плиты при ее обжатии при значении коэффициента точности натяжения sp=1.10 (момент от веса плиты не учитывается).


Расчетное условие:

sp×P1×(eop-rinf)-M<Rbtp×W’pl

1.10×287257×(8-4,74) =1030103,602 H×см

1×18950,85×(100)=1895085 H×см

1030103,602 H×см <1895085 H×см

Условие удовлетворяется, начальные трещины не образуются.

здесь Rbtp=1МПа - сопротивление бетона растяжению, соответствующее передаточной прочности бетона Rbp=12.5 МПа.

Расчет прогиба плиты. Прогиб определяется от нормативного значения постоянной и длительной нагрузок, предельный прогиб

f=l0/200=563/200=2,815 см.

Вычисляем параметры, необходимые для определения прогиба плиты с учетом трещин в растянутой зоне. Заменяющий момент равен изгибающему моменту от постоянной и длительной нагрузок М=41,2536 кН×м; суммарная продольная сила равна усилию предварительного обжатия с учетом всех потерь и при sp=1; Ntot=P2=245,84 кН; эксцентрисистет:

es,tot=M/Ntot=4125360/245840=16,78 см,

(принимаем )

Коэффициент, характеризующий неравномерности деформаций растянутой арматуры на участке между трещинами:


Вычисляем кривизну оси при изгибе:

здесь b = 0.9; b = 0.15 - при длительном действии нагрузок.

Аb= = 196×3,845=754 см2; z1=h0-0.5h =19-0,5*3,845=17,0775 -плечо внутренней пары сил.

Вычисляем прогиб плиты:


5. Расчет сборного неразрезного ригеля

5.1 Конструктивная и расчетная схемы, нагрузки, расчетное сечение

Ригели расположены поперек здания, образуя с колоннами несущие поперечные рамы. Стык ригеля с колонной принят консольным. Жесткость стыка обеспечена сваркой закладных деталей и выпусков арматуры с последующим замоноличиванием стыка. Опирание ригеля на колонну принято шарнирным. Заделка ригеля в стену принято 250 мм. Поперечные рамы работают на восприятие вертикальных нагрузок.

Рис.5 Расчетная схема рамы

Рама имеет регулярную схему этажей и равные пролеты.


Рис. 6 Конструктивная схема опирания ригеля.

Нагрузка от плит перекрытия принята равномерно распределенной, ширина грузовой полосы (шаг поперечных рам) равен l= 6,0 м.

Определяем нагрузки.

1. Расчетная нагрузка на 1 м длины ригеля – постоянная от перекрытия:

где: q – расчетная постоянная нагрузка на плиту с учетом ее собственного веса (см. табл.1); - коэффициент надежности по нагрузке;

2. Постоянная нагрузка от собственного веса ригеля:

где: - размеры сечения ригеля, равные 300×600мм (см. п.п.4. 2.); - коэффициент условий работы бетона; ;


3. Полная постоянная нагрузка:

.

4. Временная длительная:

где: -временная расчетная длительная нагрузка на перекрытие (см. табл. 1);

5. Временная кратковременная:

где: - временная расчетная кратковременная нагрузка на перекрытие (см. табл. 1);

6. Полная временная нагрузка:

.

7. Полная расчетная нагрузка:

5.2 Усилия в сечениях ригеля

Отношение погонных жесткостей ригеля и колонны:


,

где

- момент инерции сечения колонны. Принимаем сечение колонны равным 350×350 мм;

- момент инерции сечения ригеля;

- высота этажа;

Опорные моменты:

от постоянной нагрузки: M=a×g×l2.

от временной нагрузки: M=b×u×l2. от полной нагрузки: M=(a×g+b×u)×l2.

Поперечные силы:

Схема 1:


Схема 2:

Схема 3:

Схема 4:

Пролётные моменты:


Схема 1:

Схема 2:

Схема 3:

Схема 4:

5.3 Опорные моменты ригеля по граням колон

Для схемы 1+2:

Для схемы 1+3:

Для схемы 1+4:

5.4 Построение эпюр

По данным расчетов п.п. 5.2-5.3 строятся эпюры изгибающих моментов и поперечных сил

5.5 Расчет прочности нормального сечения

Бетон тяжелый В25, Rb=14.5 МПа, Rbt=1.05 МПа, , Eb=30 000МПа, hр=650 мм, bр=350 мм, арматура рабочая класса А-III, Rs=365 МПа, Es=200000 МПа. Оптимальная относительная высота сжатой зоны бетона . Требуемая рабочая высота сечения:

.


Принимаем hо = 50 см. Тогда полная высота ригеля составит:

Окончательно принимаем hо = 65 см.

Подбор арматуры:

Сечение 1-1.

(см. рис. 9).

По табл. 3.1 [1] находим

Находим требуемую площадь нижней арматуры:

По приложению 6[1] принимаем нижнюю арматуру 4ф20 А-IIIcAS=12,56 см2, верхнюю арматуру принимаем конструктивно 2ф12 A-III с AS=2.26см2. Сечение 2-2.

По табл. 3.1 [1] находим


По приложению 6[1] принимаем нижнюю арматуру 4ф16 А-IIIcAS=8,04см2, верхнюю арматуру принимаем конструктивно 2ф16 A-III с AS=4.02 см2.

Сечение 3-3.

Нижняя арматура такая же, как в сечение 1-1. Находим верхнюю арматуру.

По табл. 3.1 [1] находим

По приложению 6[1] принимаем верхнюю арматуру 2ф32 А-IIIcAS=16,08см2,

Сечение4-4.

Нижняя арматура такая же, как в сечение 2-2: 2ф16 А-IIIcAS=4,02см2.

По приложению 6[1] принимаем верхнюю арматуру 2ф32 А-IIIcAS=16,08см2.

5.6 Расчет по наклонному сечению

На средней опоре поперечная сила Q=247,3377 кН. Диаметр поперечных стержней устанавливаем из условия сварки их с продольной арматурой диаметром d=2мм и принимаем равным dsw=8 мм (прил.9) с площадью As=0.503 см2.При классе A-IIIRsw=285 МПа; поскольку , вводим коэффициент условий работы и тогда . Число каркасов -2, при этом . Шаг поперечных стержней по конструктивным условиям s=h/3=65/3=21,666 см. На всех приопорных участках длиной l/4 принят шаг s=20 см, в средней части пролета шаг s=3h/4=3*65/4=45 см.

Вычиляем:

.

— условие удовл.

Требование:

— удовлетворяется.

Расчет прочности по наклонному сечению

Вычисляем:

.

Поскольку:

<


значение с вычисляем по формуле:

-

условие не выполняется, поэтому принимаем с=203,13. При этом:

.

Поперечная сила в вершине наклонного сечения:

.

Длина проекции расчетного наклонного сечения:

принимаем .

Вычисляем:

Условие прочности:

— обеспечивается.


Проверка прочности по сжатой полосе между наклонными трещинами:

Условие:

— обеспечивается.

5.7 Построение эпюры материала

Принятая продольная арматура подобранна по максимальным пролетным и опорным моментам. По мере удаления от опор момент увеличивается, поэтому часть продольной арматуры ближе к опорам можно оборвать.

Порядок обрыва продольной арматуры

1. Строим в масштабе огибающую эпюру моментов и поперечных сил от внешней нагрузки.

2. Определяем моменты, которые могут воспринять сечения, армированные принятой арматурой (ординаты моментов эпюры материалов).

3. В масштабе эпюру моментов материалов накладывают на огибающую эпюру моментов.

4. Определяют анкеровку обрываемых стержней за теоретические точки обрыва.

Определение моментов

а) момент, который может воспринять сечение, армированное 4ф20 арматуры класса А-IIIcAs=12,56 см2 (первый пролет, нижняя арматура):

Определяем процент армирования:

,

где величина защитного слоя аs=5см, .

Вычисляем:

,

тогда по табл. 3.1. .

б) момент, который может воспринять сечение, армированное 2ф20 арматуры класса А-IIIcAs=6,28 см2 (первый пролет, нижняя арматура):

аs=3см,

.

Тогда:

,

,


в) момент, который может воспринять сечение, армированное 2ф12 арматуры класса А-IIIcAs=2,26 см2 (первый пролет, верхняя ар-ра): аs=4 см,

,

,

,

отсюда .

г) момент, который может воспринять сечение, армированное 4ф16 арматуры класса А-IIIcAs=8,04 см2 (второй пролет, нижняя арматура):

аs=5см,

.

Тогда:

,

,

д) момент, который может воспринять сечение, армированное 2ф16 арматуры класса А-IIIcAs=4,02 см2 (второй пролет, нижняя арматура):


аs=3см,

,

,

,

отсюда .

е) момент, который может воспринять сечение, армированное 2ф16 арматуры класса А-IIIcAs=4.02 см2 (второй пролет, верхняя арматура):

аs=4см,

,

,

,

отсюда .

ж) момент, который может воспринять сечение, армированное 2ф32 арматуры класса А-IIIcAs=16,08 см2 (на опоре, верхняя арматура):


аs=4см,

,

,

,

отсюда .

Т.о. получаем следующие значения моментов на пролетах и опоре:

Крайний пролет:

Средний пролет:

Опора:

Определение анкеровки обрываемых стрежней.

Из двух условий: выпуск продольной арматуры должен быть больше:

1. ,

2.

где: Q – поперечная сила в точке теоретического обрыва (определяем по эпюре); d- диаметр обрываемого анкерного стержня; Принимаем большее из двух значений.

Таким образом, получаем:

1-я точка теоретического обрыва:

окончательно принимаем значение W1=49 см. 2-я точка теоретического обрыва:

окончательно принимаем значение W2=48 см.


3-я точка теоретического обрыва:

окончательно принимаем значение W3=83 см. 4-я точка теоретического обрыва:

окончательно принимаем значение W4=64 см. 5-я точка теоретического обрыва:

окончательно принимаем значение W5=85 см. 6-я точка теоретического обрыва:

окончательно принимаем значение W4’=41 см. 7-я точка теоретического обрыва:


окончательно принимаем значение W5’=64 см. Значения выпусков выносим на эпюру материала (см. лист 16).


6. Расчет и конструирование колонны

6.1 Определение нагрузок и продольных усилий

Нагрузка от покрытия и перекрытия приведена в таблице 6.1

Таблица 6.1

Вид нагрузки

Нормативная нагрузка

Н/м2

Коэф-т надежности по нагрузке

Расчетная нагрузка

Н/м2

Нагрузка от покрытия:

Постоянная: 1.Рулонный ковер в 3 слоя 2.Цем. стяжка

3. Утеплитель (пенобетонные плиты с )

4. Пароизоляция

5. Сборные плиты покрытия

6. Ригель

0.12

0.44

0.48

0.04

3,0

0.96

1.2

1.3

1.2

1.2

1.1

1.1

0.144

0.572

0.576

0.048

3,300

1,060

Итого: 5,04 5.700
Временная (снеговая): длительнодействующая кратковременная

0.45

1.05

1.4

1.4

0.630

1,470

Итого: 1.50 2.100

ВСЕГО:

В том числе длительная

6,54

5,49

7.800

6,330

Нагрузка от перекрытия:

Постоянная: Собственный вес многопустот. плиты Тоже слоя цементного раствора ( ) Тоже керамической плитки Ригель

3,00

0.44

0,24

0,96

1.1

1.3

1.1

1,1

3,300

0.572

0.264

1,056

Итого: 4,64 - 5,192
Временная: В том числе длительнодействующая кратковременная

2,0

1.5

1.2

1.2

2,4

1.8

Итого: 3,5 4,2
ВСЕГО: В том числе: постоянная (3180Н/м2) и длительная (6500 Н/м2)

8,14

6,64

1.2

9,394

7,594


Грузовая площадь:

,

где l1 и l2- шаг колонн в обоих направлениях, м.

Определяем нагрузку от веса колонны в пределах одного этажа:

.

Расчетная длина колонны в многоэтажных зданиях принимается равной высоте этажа.

Подсчет нагрузки на колонну приведен в таблице 6. 2.

6.2 Определение изгибающих моментов колонны от расчетных нагрузок

Изгибающие моменты стоек определяются по разности абсолютных значений опорных моментов ригеля в узле. Для определения опорных моментов ригелей 1- го этажа находят коэффициент:

I. Определение максимальных моментов в колонне при загружении по схеме 1+2:


Здесь: значения и определяются по приложению 11(табл. 1) [1] по схемам 1 и 2 соответственно. Разность абсолютных значений опорных моментов в узле: — от действия полной нагрузки

от действия длительной нагрузки

Изгибающие моменты колонны 1- го этажа:

при действии полной нагрузки

;

при действии длительной нагрузки

;

Изгибающие моменты колонны 2- го этажа:

при действии полной нагрузки

;

при действии длительной нагрузки

;


II. Определение максимальных моментов в колонне при загружении по схеме 1+1(постоянная + временная нагрузки) от действия полной нагрузки определяется разность абсолютных значений опорных моментов в узле:

Изгибающие моменты колонны 1- го этажа.

при действии полной нагрузки

;

при действии длительной нагрузки

;

Изгибающие моменты колонны 2- го этажа:

при действии полной нагрузки

;

при действии длительной нагрузки

;


6.3 Расчет прочности средней колонны

Расчет ведется по двум основным комбинациям усилий:

по схеме 1+1, дающей максимальные продольные усилия;

по схеме 1+2, дающей максимальные изгибающие моменты;

Схема загружения 1+2: — от действия полной нагрузки

;

здесь: NMAX=1302,1298кН - принято по таблице 6.2; l=lСР=7,4 м — от действия длительной нагрузки

Схема загружения 1+1: — от действия полной нагрузки

— от действия длительной нагрузки

Подбор сечений симметричной арматуры. Класс тяжелого бетона В25 и класс арматуры А-III принимаем такими же, как и для ригеля. Для расчета принимаем большую площадь. Рабочая высота сечения , ширина b = 35 см, эксцентриситет силы


.

Случайный эксцентриситет

,

но не менее 1 см. Для расчета принимаем . Находим значение момента в сечении относительно оси, проходящей через точку наименее сжатой (растянутой) арматуры:

-при длительной нагрузке:

;

-при полной нагрузке:

;

Отношение - следует учитывать влияние прогиба колонны, где . Выражение для критической продольной силы при прямоугольном сечении с симметричным армированием (без предварительного напряжения) с учетом, что , - примет вид:

,


где для тяжелого бетона

.

Значение < , которое равно

Принимаем для расчета

Отношение модулей упругости

Задаемся коэффициентом армирования =0.025 и вычисляем критическую силу:

.

Вычисляем коэффициент :

Значение равно:

.

Определяем граничную относительную высоту сжатой зоны по формуле (2.42)[1]:


,

где: ; Рис. 8

Вычисляем по формулам (18.1), (18. 2), (18.3)[1]:

,

,

.

Т.к. α<0, то принимаем конструктивно по минимальному проценту армирования. Принимаем 2ф12 с As=2,26 см2 (прил. 6[1]), , для определения было принято — перерасчет можно не делать. Поперечная арматура принята из стали А-III диаметром 8 мм (из условия свариваемости с продольными стержнями). Шаг принят равным 200 мм, что удовлетворяет условиям:

S=200мм<20×d=20×12=440мм

S=200мм<bk=350мм.

Шаг принят из условия обеспечения устойчивости продольных стержней и кратен 50мм.


6.4 Расчет консоли колонны

транснациональный корпорация обрабатывающий промышленность

Опорное давление ригеля (см. рис. 12).

Длина опорной площадки ригеля из условия смятия бетона:

,

где: - коэффициент при равномерно распределенной нагрузке;

.

Здесь: - для бетона класса В25 и ниже, - при местной краевой нагрузке на консоль, ; b = 0.35 м – ширина колонны; Наименьший вылет консоли с учетом зазора с между гранью колонны и равномерно распределенной нагрузкой -:

.

Принимаем .

Пересчитываем значение длины опорной площадки:

.

Т.к. консоль короткая

( ), то .


Высота сечения консоли:

— у грани колонны

,

принимаем ;

— у свободного края

м,

принимаем .

Момент в опорном сечении:

,

.

Принимаем расчетную высоту сечения

.

Определяем требуемую площадь арматуры:

.

Принимаем 2ф12 арматуры класса А-IIIcAs=2,26 см2 (см. рис.13,б).

Проверка прочности наклонной сжатой полосы.


1.

В качестве горизонтальных хомутов принимаем 2ф6 А-I с .

Принимаем шаг хомутов S=100 ( ). Определяем:

,

где: , ,

тогда условие примет вид:

— удовлетворяется.

2.Условие:

— удовлетворяется.

Следовательно, прочность консоли обеспечена. Продольные стержни объединяют в каркас. Площадь сечения отогнутых стержней:

.

Принимаем 2ф14 класса А-IIIcAs= 3,08 см2.


6.5 Расчет стыка колонн

Наиболее экономичный стык по расходу металла осуществляется ванной сваркой выпусков продольной рабочей арматуры колонны с последующим замоноличиванием стыка (см. рис13, а). Такой стык является равнопрочным с сечениями колонны в стадии эксплуатации. В стадии монтажа рассчитывается прочность ослабленного подрезами сечения колонны на местах смятия. Для производства работ стык колонны назначают на 0.8-1.2 м выше перекрытия

(принимаем 1 м). При расчете в стадии монтажа учитываются усилия в стыке только от постоянной нагрузки:

— вес покрытия

;

— вес перекрытия

, где n=3 - количество этажей;

— вес колонны

;

Тогда полная нагрузка составит: .

Определяем площадь ослабленного сечения в колонне:

Расчетное сечение стыка:

Значение принимается как площадь ядра сечения, ограниченного контуром свариваемой сетки (в осях крайних стержней). Сетки косвенного армирования принимаем из проволоки ф4 класса Вр-1(см. рис. 13). Шаг проволоки принимаем в пределах от 45 до 100 мм.

Определяем

,

где: - количество ячеек; - площадь ячейки.

Толщина центрирующей прокладки 2 см.

Размер стороны прокладки

Площадь распрямляющих листов с целью экономии металла принимается:

.

Принимаем .

Площадь листов определяют как площадь смятия: .

Условие прочности при косвенном армировании сварными сетками: .

-


приведенная призменная прочность бетона.

коэффициент, учитывающий повышение несущей способности бетона с косвенным армированием;

- расчетное сопротивление арматуры сеток;

,

где: - количество горизонтальных и вертикальных стержней в сетке соответственно; - длина соответственно горизонтальных и вертикальных стержней в сетке; - площадь одного горизонтального и вертикального стержней соответственно; S= 100 мм – шаг сеток, принятый в соответствии с условиями:

1) ,

2) ,

3) .

- коэффициент повышения несущей способности бетона с повышенным армированием;

,


тогда

.

Тогда:

Окончательно условие примет вид:

-удовл.

Количество сеток:

.

Принимаем конструктивно 4 сетки.

6.6 Размеры и форма колонны

Схема для расчета представлена на рис. 11.

Высоту колонны определяем по формуле:

величину заделки определяют из условий:

1) ;

2) ;

Определяем:

.

7. Расчет и конструирование фундамента под колонну

7.1 Определение глубины заложения фундамента

Нагрузка, передаваемая колонной 1-го этажа по обрезу фундамента - (см. табл. 6. 2) – расчетная;

Нормативная нагрузка

,

По конструктивным требования минимальная высота фундамента:

Глубина заложения подошвы фундамента:

7.2 Назначение размеров подошвы фундамента

Необходимая площадь подошвы фундамента:

,

где: R=300кПа – расчетное сопротивление грунта под подошвой фундамента (по заданию); - усредненный вес грунта на уступах фундамента; Пренебрегая малыми значениями моментов, фундамент рассчитывается как центрально загруженный. Наиболее рациональная форма центрально загруженного фундамента – квадратный в плане. Тогда сторона подошвы .

Принимаем . Затем пересчитываем площадь: .

7.3 Расчет прочности фундамента

Схема для расчета представлена на рис. 12.

Сечение1-1:

.

Сечение2-2:

Сечение3-3:

.

Плитная часть армируется сеткой со стержнями арматуры класса А-III с .

Требуемая площадь арматуры:

Определяем шаг стержней и их требуемое количество:

1) ,

2) ,

3) , .

Окончательно принимаем 20ф10 класса А-IIIcAs= 15,7 см2 с шагом S=100мм (см. рис. 13).


8. Расчет и конструирование монолитного ребристого перекрытия с балочными плитами

8.1 Исходные данные

Сетка колонн 6,0×7,4м.

Для железобетонных конструкций принят тяжелый бетон класса В25: Rb=14.5 МПа,

Rbt=1.05 МПа, ,

Eb=30 000МПа,

Rbn=18.5МПа,

Rbtu=1.6МПа.

Арматура: продольная рабочая для второстепенных балок из стали класса А-II:

Rs=280МПа,

Rsw=225МПа,

Es=210000МПа;

Поперечная (хомуты) из стали класса А-I:

Rs=235МПа,

Rsw=175МПа,

Es=210000МПа;

Арматура сварных сеток для армирования плиты из обыкновенной стальной проволоки класса Вр-I с Rs=370МПа для .


8.2 Компоновка перекрытия

Для прямоугольной сетки колонн следует принять балочный тип перекрытия.

Расположение главных балок (ригелей рам) принимаем поперек здания с пролетом . Привязка продольных и торцевых каменных стен . Шаг второстепенных балок (пролет плиты) в соответствии с рекомендациями таблицы I при толщине плиты

.

Пролет второстепенных балок - . Толщина плиты - Глубина опирания на стены: плиты , второстепенных балок , главных балок . Бетон класса В 15 с Rb=8.5 МПа, Rbt=0,75 МПа. Предварительно задаемся размерами второстепенной и главной балок.

8.3 Расчет плиты перекрытия

Для расчета плиты условно вырезаем полосу шириной 1м, опертую на второстепенные балки и нагруженную равномерно распределенной нагрузкой. Расчетная схема представлена на рис. 14.

Расчетные пролеты:

— крайний ;

— средний ;


В продольном направлении расчетный пролет плиты:

.

Отношение , т.е. плита должна рассматриваться как балочная. Нагрузку на 1 м2 плиты перекрытия записываем в таблицу 7.1.

При принятой ширине полосы 1 м нагрузка, приходящаяся на 1 м2 плиты, в то же время является нагрузкой на 1 м погонной полосы. С учетом коэффициента надежности по назначению здания нагрузка на 1пог. м будет . За расчетную схему плиты принимаем неразрезную балочную с равными пролетами.

8.3.1 Определение расчетных моментов. Расчетные изгибающие моменты в сечениях плиты определяются с учетом их перераспределения за счет появления пластических деформаций:

- в среднем пролете и на средних опорах:

;

- в крайнем пролете и не первой промежуточной опоре:

Подбор арматуры

Требуемое количество продольной арматуры для обеспечения прочности нормальных сечений при рабочей высоте сечения плиты

.


Для среднего пролета .

Расчетный табличный коэффициент при :

.

По приложению Ⅹ [2] определяем табличные коэффициенты , .

Так как отношение не превышает 30, то можно снизить величину момента на 20% за счет благоприятного влияния распора. Тогда требуемая площадь сечения арматуры:

.

По сортаменту сварных сеток ГОСТ8478-81 (прил. УП [2]) принимаем: для средних пролетов и над средними опорами 5ф4 Вр-I с АS=0.63см2 или сетку С-1:

Сетки С-1 раскатывают поперек второстепенных балок. В учебных целях при разработке курсового проекта допускается проектировать индивидуальные сетки. Коэффициент армирования

,


т.е. больше минимально допустимого. Для крайнего пролета плиты ;

По приложению Ⅹ [2] определяем табличные коэффициенты , . Для крайних пролетов плит, опора которых на стену является свободной, влияние распора не учитывают.

.

Кроме сетки С-1, которая должна быть перепущена из среднего пролета АS=0.5см2, необходима дополнительная сетка (С-2) с площадью сечения рабочей арматуры

.

Можно принять дополнительную сетку С-2:

Так как условие выполняется, то хомуты в плите перекрытия не ставят:

,

.


9. Расчет второстепенной балки монолитного ребристого перекрытия

Второстепенная балка рассчитывается как многопролетная неразрезная балка таврового сечения. Конструктивная и расчетная схема второстепенно балки показана на рис.

Расчетные пролеты:

— крайние ;

— средние ;

Расчетные нагрузки на 1м определим с помощью таблицы 7, путем умножения их значений на шаг второстепенных балок, т.е. . Тогда постоянная нагрузка (от собственной массы перекрытия и второстепенной балки) с учетом коэффициента надежности по назначению здания, :

Временная нагрузка с учетом :

.

Полная нагрузка:

.


Статический расчет балки. Расчетные усилия в сечениях балки определяются с учетом их перераспределения за счет появления пластических деформаций. Изгибающие моменты:

- в первом пролете

;

- на первой промежуточной опоре

;

- в средних пролетах и на средних опорах

;

Для средних пролетов балки определяют минимальные изгибающие моменты от невыгодного расположения временной нагрузки на смежных пролетах при отношении

.

Тогда в сечении 6 на расстоянии от опоры :

,

в сечении 7 на расстоянии от опоры :


.

Поперечные силы:

- на опоре А:

;

- на опоре В слева:

;

- на опоре В справа и на остальных опорах:

.

Определение высоты сечения второстепенной балки. Высота сечения балки определяется по опорному моменту при значении коэффициента и (для элементов, рассчитываемых с учетом перераспределения внутренних усилий):

,

.

Принимаем ранее принятую , тогда . Проверяем достаточность высоты сечения второстепенной балки для обеспечения прочности бетона при действии главных сжимающих усилий:


.

Условие удовлетворяется, следовательно, высота сечения второстепенной балки достаточна.

Расчет по прочности сечений, нормальных к продольной оси балки. Отношение , значит в расчет может быть введена ширина полки таврового сечения в пролете балки. ,что больше, чем . Изгибающий момент, воспринимаемый сжатой полкой сечения и растянутой арматурой:

.

Т.к. , то нейтральная ось пересекает полку и пролетное сечение балки рассчитывается как прямоугольное. Определение площади сечения нижней рабочей продольной арматуры в крайнем пролете балки:

,

по приложению Ⅹ [2] определяем табличные коэффициенты , .


Принимаем 2ф18 класса А-IIcAs= 5,09 см2. Коэффициент армирования:

Определение площади сечения арматуры в среднем пролете балки:

,

табличные коэффициенты , , тогда

.

Принимаем 2ф14 класса А-IIcAs= 3.08 см2. Растянутую рабочую арматуру в опорных сечениях второстепенных балок монолитных перекрытий конструируют в виде рулонных сеток с поперечной рабочей арматурой, раскатываемых вдоль главных балок. Размеры расчетного сечения: . Определение рабочей арматуры в сечении над второй от края опорой:

,

по приложению Ⅹ [2] определяем табличные коэффициенты , .


Принимаем 20ф5Вр-1 cAs= 3,92 см2.

Коэффициент армирования:

В сечении сеток, располагаемых в два слоя на ширине , требуемый шаг стержней . Ставим две рулонные сетки:

Обрывы надопорных сеток назначаем на следующих расстояниях: для одного конца сетки ; для другого . Определение рабочей арматуры в сечении над остальными опорами:

,

по приложению Ⅹ [2] определяем табличные коэффициенты , .

Принимаем 14ф5 Вр-1 cAs= 2.75 см2.

Требуемый шаг стержней .

Принимаем .

Рулонные сетки с обрывами на 1.8 и 1.45 м от оси опор. За пределами длины надопорных сеток, т.е. на расстоянии от опор, минимальный отрицательный момент должен быть воспринят верхними стержнями арматурного каркаса балки и бетоном. Отрицательный изгибающий момент в сечении на расстоянии от опоры находим по интерполяции между величинами и :

При прямоугольном сечении :

,

, .

.

Принимаем 2ф10 класса А-IIcAs= 1.57 см2.

Расчет по прочности сечений, наклонных к продольной оси балки.

Расчет ведется на действие поперечной силы. Прочность элемента по наклонному сечению на действие поперечной силы считается обеспеченной при отсутствии наклонных стержней, если соблюдается условие: ,

где: - поперечная сила в элементе; - сумма осевых усилий в поперечных арматурных стержнях, пересекаемых сечением; - проекция на нормаль к продольному направлению элемента равнодействующей усилий в сжатой зоне бетона; Наибольшее значение поперечной силы на первой промежуточной опоре слева . Вычисляем проекцию расчетного наклонного сечения (С) на продольную ось.

Влияние свесов сжатой полки:

,

где принимается не более , тогда

.

Вычисляем:

,

где - для тяжелого бетона; - коэффициент, учитывающий влияние продольных сил.

В расчетном наклонном сечении , тогда

.

Принимаем , тогда ;

,


т.е. поперечные стержни по расчету не требуются. Диаметр поперечных стержней устанавливаем из условия сварки в продольными стержнями и принимаем класса А-Ic .

Число каркасов два, .

Шаг поперечных стержней по конструктивным условиям , но не более 15 см. Для всех приопорных участков промежуточных и крайней опор балки принимаем . В средней части пролета (на расстоянии ) шаг .

Производим проверку по сжатой полосе между наклонными трещинами:

; ;

;

.

Условие:

— удовлетворяется.

Расчет по прочности сечений, наклонных к продольной оси балки, на действие изгибающего момента.

Прочность наклонного сечения на действие изгибающего момента обеспечивается надлежащим заанкерованием рабочей продольной арматуры на опорах балки и в местах обрыва продольных стержней. Продольные стержни растянутой и сжатой арматуры должны быть заведены за нормальное к продольной оси элемента сечение, в котором они учитываются с полным расчетным сопротивлением, на длину не менее , равную:


, но не менее .

На свободной опоре балки напряжение продольной арматуры теоретически равно нулю, и длина заделки стержней периодического профиля ф18 А-II за грань должна быть не менее . Конструктивно глубина заделки балки в стену 25см. В среднем пролете балки до опоры доводятся два нижних продольных стержня

Ф14 А-II. Расчет по раскрытию трещин и по деформациям для конструкций монолитного ребристого перекрытия допускается не производить, т.к. на основании практики из применения установлено, что величина раскрытия трещин в них не превышает предельно допустимых величин и жесткость конструкций в стадии эксплуатации достаточна.

9.1 Исходные данные

Сетка колонн 7,4×6,0м, число этажей-3, высота этажа 3.0м, размер оконного проема принимаем 1.5×1.4м, толщина наружной стены 510 мм.

Материалы: кирпич (обожженная глина пластического прессования) по [3]; раствор марки М50. Кладка сплошная, плотность кладки 18.000 , ширина оконного проема , высота . Ширина рассчитываемого простенка . Грузовая площадь

(см. рис. 19),

шаг колонн в поперечном направлении,

шаг колонн в продольном направлении.

Нагрузка от верхних этажей, перераспределившись, прикладывается в центр тяжести сечения простенка. Нагрузка от перекрытия рассматриваемого этажа приложена с

фактическим эксцентриситетом. Расстояние от точки приложения опорной реакции балки до внутренней поверхности стены

.

Принимаем .

9.2 Сбор нагрузок на простенок для сборного варианта перекрытия

1. Нагрузка от покрытия и перекрытия в уровне верха плиты перекрытия 1-го этажа:

здесь - количество этажей;

2. Расчетная нагрузка от веса кирпичной кладки в уровне верха плиты перекрытия 1-го этажа:

3. Нагрузка от кладки над оконным проемом 1-го этажа:


4. Нагрузка от перекрытия 1-го этажа:

.

5. Полная расчетная нагрузка в сечении II-II:

Определим расчетные моменты:

- момент в сечении I-I:

;

- момент в сечении II-II:

,

где .

9.3 Расчетные характеристики

Площадь сечения простенка:

.


Коэффициент условия работы кладки . Расчетное сопротивление кладки на растворе М50 с . Упругая характеристика кладки . Расчетная линия простенка

.

Гибкость простенка

.

По таблице 18 [3] определяем коэффициент продольного изгиба (по интерполяции). Найденное значение принимается для средней трети высоты простенка. Расчетное сечение I-I (см. рис), поэтому значение для сечений I-I принимаем откорректированным . Расчетный эксцентриситет продольной силы:

.

Проверку несущей способности простенка в сечении I-I производим из расчета его на внецентренное сжатие по формуле: ,

Здесь: - площадь сжатой части сечения. Для прямоугольного сечения:

;


- коэффициент продольного изгиба для внецентренно сжатых элементов: ;

где ; - коэффициент продольного изгиба для сжатой части сечения, определяемый по таблице 18[3] в зависимости от:

,

где

; ;

;

При

( ) ; ,

тогда несущая способность простенка в сечении I-I:

Прочность простенка обеспечена.


Список литературы

1. СНиП 2.03.01-84*. Бетонные и железобетонные конструкции. Госстрой СССР, 1989г.

2. СНиП 2.01.07-85. Нагрузки и воздействия. Госстрой СССР, 1986г.

3. СНиП II-22-81. Каменные и армокаменные конструкции. Госстрой СССР, 1983г.

4. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции: общий курс: Учебник для вузов М.: Стройиздат, 1991г.

5. Бондаренко В.М., Суворкин Д.Г. Железобетонные и каменные конструкции: Учебник для студентов ВУЗов по спец. ПГС. М.: Высшая школа, 1987г.

6. Бондаренко В.М., Судницин А.И. Расчёт строительных конструкций. Железобетонные и каменные конструкции. М.: Высшая школа, 1988г.

7. Манриков А.П. Примеры расчёта железобетонных конструкций: Учебное пособие для техникумов. М.: Стройиздат, 1989г.

8. Пособие по проектированию каменных и армокаменных конструкций (к СНиП II-22-81) Госстрой СССР, 1989г.

9. Пособие по проектированию бетонных и железобетонных конструкций из тяжёлых и лёгких бетонов без преднапряжения арматуры (к СНиП 2.03.01-84). Госстрой СССР, 1986г.

10. Пособие по проектированию предварительно напряжённых железобетонных конструкций из тяжёлых и лёгких бетонов (к СНиП 2.03.01-84). Часть 1. Госстрой СССР, 1988г.

11. Пособие по проектированию предварительно напряжённых железобетонных конструкций из тяжёлых и лёгких бетонов (к СНиП 2.03.01-84). Часть 2. Госстрой СССР, 1988г.