Главная              Рефераты - Строительство

Проектирование четырехэтажной гостиницы в г. Краснодаре - дипломная работа

Содержание

Введение

1 Исходные данные

1.1 Место строительства

1.2 Расчетные данные

1.3 Геологические данные

1.4 Существующие подъездные пути

1.5 Местные строительные материалы

2 Генеральный план

2.1 Характеристика генплана

2.2 Размещение здания на участке

2.3 Благоустройство участка

2.4 ТЭП генерального плана

2.5 Объемно-планировочное решение

3 Технико-экономическое сравнение вариантов конструкций

3.1 Исходные данные

3.2 Технико-экономическая оценка вариантов конструктивных решений

по методике приведенных затрат

3.2.1 Определение экономического эффекта, возникающего за счет

разности приведенных затрат сравниваемых вариантов

3.2.2 Определение экономического эффекта, возникающего в сфере

эксплуатации здания за период службы выбираемых элементов

3.2.3 Определение экономического эффекта, возникающего в результате сокращения продолжительности строительства

3.3 Определение сметной стоимости трудоемкости вариантов

3.4 Сводные данные о сметной стоимости и трудоемкости выполнения

работ по вариантам конструктивных решений

4 Архитектурно-строительная часть

4.1 Объемно планировочное решение

4.2 Конструктивное решение здания

4.3 Теплотехнический расчет

4.4 Санитарно-техническое и инженерное оборудование

4.4.1 Теплоснабжение

4.4.2 Отопление и вентиляция

4.4.3 Водоснабжение и канализация

4.4.4 Электроснабжение и электрооборудование

4.5 Противопожарная безопасность

4.6 Мероприятия по борьбе с шумом

5 Расчетно-конструктивная часть

5.1 Расчёт монолитной плиты перекрытия

5.1.1 Исходные данные

5.2 Сбор нагрузок на каркас здания

5.3 Расчет каркаса здания

5.4 Результаты расчета плиты перекрытия

5.5 Результаты расчета ригеля перекрытия

5.6 Основания и фундаменты

5.6.1 Исходные данные для проектирования и анализ инженерно-геологических изысканий

5.7 Расчет фундаментной плиты

5.8 Результаты расчета фундаментной плиты

6 Технология строительного производства

6.1 Выбор кранов для монтажа каркаса

6.2 Работы подготовительного периода

6.3 Работы основного периода строительства

6.4 Совмещение монтажных, строительных и специальных строительных работ

6.5 Выполнение работ в зимних условиях

6.6 Указание о методах осуществления контроля за качеством зданий и сооружений

7 Организация строительства

7.1 Календарное планирование

7.2 Расчет трудоемкости

7.3 Технико-экономические показатели

7.4 Таблица работ и ресурсов сетевого графика

7.5 Сетевой график и его оптимизация

7.6 Строительный генеральный план

7.7 Расчет потребности в воде

7.8 Расчет потребности в электроэнергии

8 Экономическая часть

8.1 Локальная смета на общестроительные работы гостиничного

комплекса

8.2 Объектная смета

8.3 Сводный сметный расчет

9. Стандартизация и контроль качества

10 Безопасность жизнедеятельности на производстве и экологичность проекта

10.1 Характеристики проектируемого здания

10.2 Мероприятия по обеспечению безопасности труда при выполнении

строительно-монтажных работ

11 Противопожарные мероприятия

12 Охрана окружающей среды

13. Защита населения и территории в чрезвычайных ситуациях

Литература


Введение

Капитальное строительство имеет большое значение в решении экономических и социальных задач. Все преобразования в промышленности, на транспорте и в других областях производства непосредственно связано со строительством. От реализации программ по капитальному строительству зависит успех дальнейшего расширения производственных мощностей и улучшения бытовых условий населения.

Осуществление задач по последовательному укреплению материально-технической базы общества и улучшению благосостояния народа требует непрерывного увеличения объемов строительства во всех отраслях народного хозяйства.

В данном дипломном проекте запроектирована четырехэтажная гостиница по ул. Мачуги в г. Краснодаре.


1. Исходные данные для проектирования

1.1 Место строительства и характеристика района строительства

Проектом предусмотрено строительство четырехэтажной гостиницы по ул. Мачуги в г. Краснодаре.

1.2 Ветровая и снеговая нагрузка. Расчетные температуры, глубина промерзания, сейсмичность района

Проект разработан для строительно-климатического района III Б со следующими природно-климатическими условиями:

нормативная ветровая нагрузка для IV района – 0,48 кПа;

вес снегового покрова для I района – 0,50 кПа;

расчетная температура наружного воздуха – -19 ;

глубина промерзания грунта – 0,80 м;

сейсмичность района – 8 баллов;

зона влажности – сухая;

внутренняя расчетная температура – 20

1.3 Основные сведения о грунтах, уровне грунтовых вод

В геоморфологическом отношении площадка расположена на II‑й надпойменной террасе.

Согласно техническому отчету об инженерно-строительных изысканиях выполненных ООО «Изыскатель», заказ №05–1133–2004 г. геологический разрез представлен отложениями четвертичного возраста различного генезиса: техногенного, делювиально-эолового, аллювиального. Описание указанных отложений приводится в разделе «основания и фундаменты» данного проекта.

Поверхность площадки ровная, с асфальтовым покрытием, с уклоном к северу, в сторону улицы Мачуги. Отметки поверхности на площадке изменяются от 31.1 м до 32.2 м.

Подземные воды в процессе изысканий были вскрыты в песках на глубине 7,3 – 8,0 м (абсолютные отметки 23.9 – 23.2 м). Вскрытый горизонт обладает слабым местным напором, высота напора составила 1,2 – 2,3 м, установившийся уровень подземных вод был зафиксирован на отметке 23,4 м.

1.4 Существующие подъездные пути, сооружения очистки сточных вод

Въезды на участках предусматриваются со стороны ул. Мачуги. Расположение подъездов учитывает необходимость дальнейшего подъезда к общественным зданиям, входам в жилые дома, а так же проезда пожарных машин.

Отвод ливнестоков от зданий и с участка проектируется путем создания уклонов к ливне приемным колодцам, и нежилым строениям, подлежащим сносу. Строения в основном ветхие и малоценные.

Улицы, прилегающие к участку строительства характеризуются:

ул. Мачуги – улица местного значения

Рельеф участка спокойный, горизонт грунтовых вод – высокий. Господствующее направление ветров восток, северо-восток.

В проекте максимально сохранен существующий рельеф и объем земляных работ минимален. Излишек нерастительного грунта отвозится в места складирования, растительного грунта – используется для озеленения.

Уклоны пешеходных дорожек достаточны для отвода поверхностных вод. Отметки рельефа колеблются в пределах 31.1 – 32.2.

Предусмотрено восстановление прилегающего к проектируемому зданию покрытия.

1.5 Местные строительные материалы, наличие в районе строительства предприятий стройиндустрии

В г. Краснодар, где ведется строительство гостиницы, широко развиты предприятия стройиндустрии, что дает возможность большую часть подготовительных процессов вынести за пределы строительной площадки.

песчаный карьер – 20 км

кирпичный завод – 35 км

завод ЖБИ – 15 км

рубероидный завод – 27 км

карьер инертных материалов – 28 км


2 Генплан

2.1 Краткое описание участка строительства

Площадка проектируемой четырехэтажной гостиницы по ул. Мачуги.

Рельеф участка относительно ровный, со слабым уклоном в северном направлении.

Генеральным планом, проектируемая территория делится на следующие функциональные зоны:

подъездная;

зона отдыха;

хозяйственная.

2.2 Размещения здания на участке и его ориентация по сторонам света

Таблица 2.1 – Роза ветров

с

св

в

юв

ю

юз

з

сз

январь

5

21

24

6

7

14

14

9

июль

8

16

13

4

7

20

18

14

Рисунок 2.1 – Роза ветров


2.3 Благоустройство (дороги, площадки, озеленение и др.)

На участке, перед проектируемом гостиничным комплексом, предусмотрены площадки:

разворотная площадка

парковка на 12 автомобилей

Проектом предусматривается посадка высоко декоративных деревьев и кустарников в зонах свободных от застройки, покрытий, сохраняемых и проектируемых инженерных коммуникаций. В местах прокладки инженерных сетей предлагается устройство цветников и газонов с посевом многолетних трав.

2.4 Технико-экономические показатели по генплану

Таблица 2.2 – Технико-экономические показатели

2.5 Объемно планировочные и архитектурные решения

Четырехэтажная гостиница по ул. Мачуги в г. Краснодаре запроектирована с высотой первого этажа 4.2 м, второго и последующих 3.6–3.5 м.

Здание состоит из 2‑х блоков:

1 блок П-образный основной, в котором будут располагаться гостиничные номера, помещения администрации и вспомогательные помещения.

2 блок прямоугольной формы, часть которого находится внутри 1 блока, а часть выступает в сторону улицы Мачуги. Во втором блоке будут располагаться террасы, помещения развлекательного характера, лифт.

Размер здания в плане 33.3х21.9 м.

Цокольный этаж обеспечен двумя самостоятельными выходами наружу. Входы в лестницы выполнены через тамбуры с противопожарными дверями.

Типы гостиничных номеров, предусмотренные проектам отвечают социальным современным условиям и представлены одно-, и двухкомнатными номерами.


3 Технико-экономическое сравнение вариантов конструкций и выбор основного варианта

Целью этого раздела является выбор экономически наиболее целесообразного варианта конструктивного решения здания. Подбор вариантов конструктивных решений здания необходимо выполнять в соответствии с объемно-планировочным решением, вытекающим из функционального назначения здания.

3.1 Исходные данные

Четырехэтажная гостиница по ул. Мачуги.

Наружные стены жилого дома могут быть выполнены в трех вариантах, которые по заданию нужно сопоставить по стоимости, расходу материалов и трудоемкости.

3.2 Технико-экономическая оценка вариантов конструктивных решений по методике приведенных затрат

Для принятия решения о наиболее эффективном варианте конструкций наружных стен необходимо в рамках методики приведенных затрат определить суммарный экономический эффект по формуле (3.1):

Э общ = Э пз + Э э + Э т ; (3.1)

где:

Эпз - экономический эффект, возникающий за счет разности приведенных затрат сравниваемых вариантов конструктивных решений;

Ээ - экономический эффект, возникающий в сфере эксплуатации здания за период службы выбираемых конструктивных элементов;

Эт - экономический эффект, возникающий в результате сокращения продолжительности строительства здания.

Определим составляющие суммарного экономического эффекта.

3.2.1 Определение экономического эффекта, возникающего за счет разности приведенных затрат сравниваемых вариантов конструктивных решений

Экономический эффект, возникающий за счет разности приведенных затрат сравниваемых вариантов конструктивных решений, определяется по формуле:

Э пз = Зб * Кр – З i ; (3.2)

где:

Зi , Зб - приведенные варианты по базисному и сравниваемым вариантам конструктивных решений;

За базисный вариант в расчетах принимается вариант, имеющий наибольшую продолжительность (трудоемкость) строительства, т.е. вариант кирпичной стены с утеплителем (второй).

Кр - приведенный коэффициент реновации, который учитывает разновременность затрат по рассматриваемым вариантам, поскольку период эксплуатации конструктивных решений может быть различным; он определяется по формуле (3.3)

Кр =(Рб + Ен ) / (Р i + Ен ) ; (3.3)

где:

Е н – норматив сравнительной экономической эффективности капитальных вложений, который принимаем равным 0,22;

Рб, Рi - коэффициенты реновации по вариантам конструктивных решений, которые учитывают долю сметной стоимости строительных конструкций в расчете на 1 год их службы.

Кр = 1 и в нашем случае

Э пз = З б – З i ; (3.4)

Причем, приведенные затраты по вариантам определяются так

З i = Сс i + Е н * ( З м i + Сс i ) / 2 (3.5)

Где:

Сс i - сметная стоимость строительных конструкций по варианту конструктивного решения;

З м i - стоимость производственных запасов материалов, изделий и конструкций, находящихся на складе стройплощадки и соответствующая нормативу; определяется по формуле

m

З м i = ∑ М j * Ц j * Н зом j ; (3.6)

J=1

где:

М j - однодневный запас основных материалов, изделий и конструкций, в натур. Единицах;

Ц j - сметная цена франко – приобъектный склад основных материалов, изделий и конструкций;

Н зом j - норма запаса основных материалов, изделий и конструкций, дн., принимается равной 5 – 10 дней;

Используем данные о стоимости материалов для расчета величины (З м i ). Величина стоимости однодневного запаса материалов по вариантам конструктивных решений может определиться так

М j * Ц j = М i / t дн i ;

где:

М i - сметная стоимость материалов по данным локальных расчетов i – го варианта;

t дн i - продолжительность выполнения варианта конструктивных решений i – го варианта, в днях, определяемая по формуле (3.7)

t дн i = mi / (n *r*s) ; (3.7)

где:

mi - трудоемкость возведения конструкций варианта, чел.-дн; принимается по данным сметного расчета;

n – количество бригад, принимающих участие в возведении конструкций вариантов;

r – количество рабочих в бригаде, чел.;

s – принятая сменность работы бригады в сутки.

3.2.2 Определение экономического эффекта, возникающего в сфере эксплуатации здания за период службы выбираемых конструктивных элементов

Эксплуатационные затраты, учитываемые в расчете, зависят от конкретных условий работы конструкций; к ним относятся: затраты на отопление, вентиляцию, освещение, амортизацию и содержание конструкций.

Затраты на отопление, вентиляцию, освещение и прочие при сравнении конструкций фундаментов можно принять одинаковыми и в расчетах не учитывать.

Затраты на содержание строительных конструкций складываются из следующих видов которые нормируются в виде амортизационных отчислений от их первоначальной стоимости в составе строительной формы здания: затрат, связанных с восстановлением конструкции; затрат на капитальный ремонт конструкций; затрат на содержание конструкций, связанных с текущими ремонтами, окраской, восстановлением защитного слоя покрытий и т.п.

Размер этих затрат определяется по формуле

С экс = ( a 1 + a 2 + a 3 ) / С с *100 ; (3.8)

где:

a 1 - норматив амортизационных отчислений на реновацию, %;

a 2 - норматив амортизационных отчислений на капитальный ремонт, %;

a 3 - норматив амортизационных отчислений на текущий ремонт и содержание конструкций, %;

Тогда экономический эффект инвестора, возникающий в сфере эксплуатации зданий, определится по формуле

Э э = С б экс /(Рб + Ен ) – С i экс / (Р i + Ен ) + ∆ К ; (3.9)

где:

∆ К – разница приведенных сопутствующих капитальных вложений, связанных с эксплуатацией конструкций по вариантам; под ними понимаются затраты, предназначенные для приобретения устройств, которые используются в процессе эксплуатации конструкций; при их отсутствии сопутствующие капитальные вложения не учитываются.

Для условий нашей задачи (отсутствие сопутствующих капитальных вложений, одинаковый срок эксплуатации конструкций разных вариантов) формула (3.9) принимает вид

Э э = С б экс - С i экс ; (3.10)

формулу (3.8) можно представить в виде

Э э = [( a 1 + a 2 + a 3 ) * (1/ С б экс - 1 / С i экс) ] /100 ; (3.11)

3.2.3 Определение экономического эффекта, возникающего в результате сокращения продолжительности строительства здания

Экономический эффект для жилого дома определяется по формуле

Э т = 0,5 *Ен * (К б * Тб - К i * Т i ) ; (3.12)

где:

Кс б , Кс i – средний размер капитальных вложений, отвлеченных инвестором за период строительства, по базовому и сравниваемому вариантам.

Величина капитальных вложений по сравниваемым вариантам определяется, исходя из того, что в здании меняются только конструкции по вариантам, по формуле

К i = К б – ( Cc б - С с i ) ; (3.13)

где:

Cc б , Сс i - сметная стоимость базисного и сравниваемого вариантов конструктивного решения здания; принимается по данным сметных расчетов.

Тб , Тi - продолжительность строительства по базовому и сравниваемому вариантам, год.

Продолжительность строительства по базисному варианту принимаем на основании СНиП «Нормы задела и продолжительности строительства».

Здание имеет общую площадь 2917 м 2

Для сравниваемых вариантов конструктивных решений продолжительность возведения здания определяется по формуле

Т i = Тб - ( t б - t i ) ; (3.14)

где:

t б , t i - продолжительность осуществления конструктивного решения для варианта с наибольшей продолжительностью и для сравниваемых вариантов, год;

Продолжительность возведения конструкций (в годах) определяется по формуле:

t i = ( mi / ( n * r * s ) / 260 ; (3.15)


4. Архитектурно-строительная часть

4.1 Объемно планировочное решение

Здание жилого дома запроектировано из 2‑х конструктивно связанных блок-секций.

Кровля наклонная, с внешним водостоком. Высота этажа 4.2, 3.6, 3.5 м

Фундаменты запроектированы как монолитная железобетонная плита высотой 70 см с бетонной подготовкой 10 см.

Стены тех подполья сборно-монолитные с вертикальными монолитными включениями из монолитных ж/б сердечников, соединяющими фундаментную плиту с перекрытием подвала.

4.2 Конструктивное решение здания

Конструктивная схема несущих конструкций здания выполнена как жесткий монолитный железобетонный каркас состоящий из колонн и балочного монолитного перекрытия. Такие конструктивные мероприятия обусловлены переходным периодом в строительной отрасли Краснодарского края к строительству зданий и сооружений с повышенной сейсмоустойчивостью.

Настоящим проектом предусмотрено:

геометрические соотношения размеров простенков, проемов в стенах, и элементов стен приняты с учетом нормативных антисейсмических требований;

установка дополнительных закладных деталей для усиления отдельных узлов ограждающих конструкций;

Лестницы запроектированы из сборных ж/б ступеней по металлическим косоурам.

Самонесущие наружные стены состоят из 3 слоев:

Кирпич керамический t=120 мм;

Утеплитель пенополистирол типа ISOVER t=52 мм;

Блоки из ячеистого бетона t=200 мм.

Перегородки кирпичные t=120 мм.

Под всем зданием выполнен подвал. Запроектирован фундамент в виде монолитной железобетонной плиты из бетона класса В25, W4. Толщина плиты -700 мм. Основное армирование плиты – отдельными стержнями. Стыки рабочей арматуры (по длине стержней) располагать в разбежку.

Под фундаментную плиту выполнить бетонную подготовку толщиной 100 мм из бетона кл В7.5. Ниже выполняется подушка из песка средней плотности h=1.0 м. Подушку выполнять с послойным уплотнением, толщина уплотняемого слоя 20 см. Ниже лежащий грунт основания предварительно уплотнить щебнем.

Кирпичную кладку стен и перегородок выполнить из полнотелого керамического кирпича М100 на растворе М50 с обязательным армированием сетками (первая сетка укладывается на первый ряд кладки, последующие с шагом 450 мм) и добавлением пластифицирующих добавок. Применение раствора без пластификатора не допускается. Перевязка кладки – цепная с полной перевязкой и заполнением всех швов. Многорядная кладка не допускается.

Категория кладки по нормальному сцеплению II. Расчетное сопротивление кладки Rр>1.2кГ/см2 (временное сопротивление осевому растяжению по неперевязанным швам. Данные о фактическом Rр должны подтверждаться актом лаборатории.

Горизонтальную гидроизоляцию выполнить из цементного раствора состава 1:2 с уплотняющими добавками. Вертикальную гидроизоляцию выполнить обмазкой горячим битумом за два раза по грунтовке. После устройства вертикальной обмазочной гидроизоляции выполнить глиняный замок.

Отверстия во внутренних стенах техподполья после прокладки коммуникаций заделать упругими материалами (после антикоррозийной защиты труб).

В углах и пересечениях стен устанавливаются арматурные сетки.

4.3 Теплотехнический расчет ограждающих конструкций

Общая информация о проекте

1. Назначение – гостиничный комплекс.

2. Размещение в застройке – отдельно стоящее.

3. Тип – 4‑этажный гостиничный комплекс по ул. Мачуги, 2 центрального теплоснабжения.

4. Конструктивное решение – кирпично-монолитное.

Расчетные условия

5. Расчетная температура внутреннего воздуха – (+20 0 C).

6. Расчетная температура наружного воздуха – (– 19 0 C).

7. Расчетная температура теплого чердака – (+14 0 С).

8. Расчетная температура теплого подвала – (+2 0 С).

9. Продолжительность отопительного периода – 149 сут.

10. Средняя температура наружного воздуха за отопительный период для г. Краснодара – (+2 0 C).

11. Градусосутки отопительного периода – (2682 0 C. сут).

Объемно-планировочные параметры здания

12. Общая площадь наружных ограждающих конструкций здания площадь стен, включающих окна, балконные и входные двери в здание:

Aw+F+ed =Pst . Hh ,

где Pst – длина периметра внутренней поверхности наружных стен этажа,

Hh – высота отапливаемого объема здания.

Aw + F + ed =(18,9+33,3) х14,15=738,63 м2 ;

Площадь наружных стен Aw , м2 , определяется по формуле:

Aw = Aw+F+ed – AF1 – AF2 – Aed ,

где AF – площадь окон определяется как сумма площадей всей оконных проемов.

Для рассматриваемого здания:

– площадь остекленных поверхностей AF1 = 1,9х1,25х27+5,29х2,38х4 = 114,5 м2 ;

– площадь глухой части балконной двери AF2 =0,8х0,8х7= 4,48 м2 ;

– площадь входных дверей Aed = 1,5х2,5х3=11,25 м2 .

Площадь глухой части стен:

AW = 738,63–114,5–4,48–11,25 = 608,40 м2 .

Площадь покрытия и перекрытия над подвалом равны:

Ac =Af =Ast =18,9х33,3 = 629,37 м2 .

Общая площадь наружных ограждающих конструкций:

Ae sum =Aw+F+ed +Ac +Ar = 738,63+629,37×2 = 1997,37 м2 .

13 – 15. Площадь отапливаемых помещений (общая площадь и жилая площадь) определяются по проекту:

Ah =18,9х33,3х4 = 2517,48 м2 ; Ar =738,26 м2 .

16. Отапливаемый объем здания, м3 , вычисляется как произведение площади этажа на высоту (расстояние от пола первого этажа до потолка последнего этажа):

Vh =Ast . Hh =18,9х33,3х14,15=8905,59 м2 ;


17. Коэффициент остекленности фасадов здания:

P=AF 1 /Aw + F + ed =114,15/738,63=0,155;

18. Показатель компактности здания:

Ke des =Ae sum /Vh =1997,37/8905,59 = 0,224.

Теплотехнические показатели

19. Согласно СНиП II‑3–79* приведенное сопротивление теплопередаче наружных ограждений должно приниматься не ниже требуемых значений R0 req , которые устанавливаются по таблице 1 «б» СНиП II‑3–79* в зависимости от градусосуток отопительного периода. Для Dd =26820 С. сут требуемые сопротивления теплопередаче равно для:

- стен Rw req =2.34 м2. 0 С / Вт

- окон и балконных дверей Rf req =0.367 м2. 0 С / Вт

- глухой части балконных дверей RF1 req =0.81 м2. 0 С / Вт

- входных дверей Red req =1.2 м2. 0 С / Вт

- покрытие Rc req =3.54 м2. 0 С / Вт

- перекрытия первого этажа Rf =3.11 м2. 0 С / Вт

По принятым сопротивлениям теплопередаче определим удельный расход тепловой энергии на отопление здания qdes и сравним его с требуемым удельным расходом тепловой энергии qh req , определенным по таблице 3.7 СНКК‑23–302–2000. Если удельный расход тепловой энергии на отопление здания окажется меньше 5% от требуемого, то по принятым сопротивлениям теплопередаче определимся с конструкциями ограждений, характеристиками материалов и толщиной утеплителя.

20. Приведенный трансмиссионный коэффициент теплопередачи здания определяется по формуле:


Km tr =b(Aw /Rw r +AF1 /RF1 + AF2 /RF2 +Aed /Red +n. Aс /Rс r +n. Af . Rf r )/Ae sum ,

Km tr =1.13 (608,4/2,34+114,5/0,367+4,48/0,81+11,25/1,2+0,6×629,37/3,54+0,6×

х629,37/3,11)/1997,37 = 0,461 (Вт/(м2. 0 С)).

21. Воздухопроницаемость стен, покрытия, перекрытия первого этажа Gm w =Gm c =Gm f =0.5 кг/(м2. ч), окон в деревянных переплетах и балконных дверей Gm F =6 кг/(м2. ч). (Таблица 12 СНиП II‑3–79*).

22. Требуемая краткость воздухообмена жилого дома na , 1/ч, согласно СНиП 2.08.01, устанавливается из расчета 3 м3 /ч удаляемого воздуха на 1м2 жилых помещений, определяется по формуле:

na =3. Ar /(bv . Vh )=3. 738,26/(0.85. 8905,59) = 0,293 (1/ч),

где Ar – жилая площадь, м2 ;

bv – коэффициент, учитывающий долю внутренних ограждающих конструкций в отапливаемом объеме здания, принимаемый равным 0.85;

Vh – отапливаемый объем здания, м3 .

23. Приведенный инфильтрационный (условный) коэффициент теплопередачи здания определяется по формуле:

Km inf =0.28. c. na . bV . Vh . ga ht . k/Ae sum ,

Km inf =0,28×1×0,293×0,85х8905,59×1,283×0,8/1997,37 = 0,319 (Вт/(м2. 0 С)).

где с – удельная теплоемкость воздуха, равная 1кДж/(кг. 0 С),

na – средняя кратность воздухообмена здания за отопительный период (для жилых зданий 3м3 /ч, для других зданий согласно СНиП 2.08.01 и СНиП 2.08.02);

bV – коэффициент снижения объема воздуха в здании, учитывающий наличие внутренних ограждающих конструкций, при отсутствии данных принимать равным 0.85;

Vh – отапливаемый объем здания;

ga ht – средняя плотность наружного воздуха за отопительный период, равный 353/(273+2)=1.283

k – коэффициент учета влияния встречного теплового потока в конструкциях, равный 0.7 – для стыков панельных стен, 0.8 – для окон и балконных дверей;

Ae sum – общая площадь наружных ограждающих конструкций, включая покрытие и перекрытие пола первого этажа;

24. Общий коэффициент теплопередачи, Вт/(м2. 0 С), определяемый по формуле:

Km =Km tr +Km inf =0,461+0,319=0,78 (Вт/(м2. 0 С)).

Теплоэнергетические показатели

25. Общие теплопотери через ограждающую оболочку здания за отопительный период Qh , МДж, определяют по формуле:

Qh =0.0864. Km . Dd . Ae sum ,

Qh =0.0864. 0,78×2682×1997,37=361015,33 (МДж).

26. Удельные бытовые тепловыделения qint , Вт/м2 , следует устанавливать исходя из расчетного удельного электро- и газопотребления здания, но не менее 10Вт/м2 . Принимаем 10Вт/м2 .

27. Бытовые теплопоступления в здание за отопительный период, МДж:

Qint =0.0864. qint . Zht . Al =0.0864. 10. 149. 1393,18 = 179352,69 (МДж).


28. Теплопоступления в здание от солнечной радиации за отопительный период определяется по формуле (3.14).

Определим теплопоступления:

Qs =tF . kF . (AF 1 I1 + AF 2 I2 + AF 3 I3 +AF 4 I4 )=

=0.65. 0.9 (57,25х974+57,25х357) = 44576,85 (МДж).

29. Потребность в тепловой энергии на отопление здания за отопительный период, МДж, определяют по формуле (3.6а) при автоматическом регулировании теплопередачи нагревательных приборов в системе отопления:

Qh y =[Qh – (Qint +Qs ). У]. bh ,

Qh y =[361015,33 – (179352,69+44576,85). 0.8]. 1,11=401877,58 (МДж).

30. Удельный расход тепловой энергии на отопление здания qh des , кДж/(м2. 0 С. сут) определяется по формуле (3.5):

qh des =103. Qh y /Ah . Dd ,

qh des =401877,58 ×103 /(2517,48. 2682)=79,9 (кДж/(м2. 0 С. сут)).

31. Расчетный коэффициент энергетической эффективности системы отопления и централизованного теплоснабжения здания от источника теплоты принимаем h0 des =0.5, так как здание подключено к существующей системе централизованного теплоснабжения.

32. Требуемый удельный расход тепловой энергии системой теплоснабжения на отопление здания принимается по таблице 3.7 – для здания 4–5 этажей равен 95 кДж/(м2. 0 С. сут). Следовательно, полученный нами результат значительно (более 5%) меньше требуемого 79,9<95, поэтому мы имеем возможность уменьшать приведенные сопротивления теплопередачи ограждающих конструкций, определенные по таблице 1 «б» СНиП II‑3–79*, исходя из условий энергосбережения. (Изменения вносим в пункт 19).

19. Для второго этапа расчета примем следующие сопротивления теплопередачи ограждающих конструкций:

- стен Rw req =1,91 м2. 0 С / Вт

- окон и балконных дверей Rf req =0.367 м2. 0 С / Вт – (Без изменения)

- глухой части балконных дверей RF1 req =0.81 м2. 0 С / Вт – (Без измен.)

- наружных входных дверей Red req =0.688 м2. 0 С / Вт – т.е. 0.6 от R0 тр по санитарно-гигиеническим условиям;

- совмещенное покрытие Rc req =1,63м2. 0 С / Вт

- перекрытия первого этажа Rf =2 м2. 0 С / Вт

20. Приведенный трансмиссионный коэффициент теплопередачи здания:

Km tr =1.13 (608,4/1,91+114,5/0,367+4,48/0,81+11,25/0,688+

+0,6×629,37/1,63+0,6×629,37/2)/1997,37 = 0,929 (Вт/(м2. 0 С)).

21. (Без изменения). Воздухопроницаемость стен, покрытия, перекрытия первого этажа Gm w =Gm c =Gm f =0.5 кг/(м2. ч), окон в деревянных переплетах и балконных дверей Gm F =6 кг/(м2. ч). (Таблица 12 СНиП II‑3–79*).

22. (Без изменения). Требуемая краткость воздухообмена жилого дома na , 1/ч, согласно СНиП 2.08.01, устанавливается из расчета 3м3 /ч удаляемого воздуха на 1м2 жилых помещений, определяется по формуле:

na =0,293 (1/ч).

23. (Без изменения). Приведенный инфильтрационный (условный) коэффициент теплопередачи здания:

Km inf =0,319 (Вт/(м2. 0 С)).


24. Общий коэффициент теплопередачи, Вт/(м2. 0 С), определяемый по формуле:

Km =Km tr +Km inf =0,929+0,319=1,25 (Вт/(м2. 0 С)).

Теплоэнергетические показатели

25. Общие теплопотери через ограждающую оболочку здания за отопительный период Qh , МДж:

Qh =0.0864. 1,25. 2682. 1997,37=577624,52 (МДж).

26. (Без изменения). Удельные бытовые тепловыделения qint =10Вт/м2 .

27. (Без изменения). Бытовые теплопоступления в здание за отопительный период, МДж:

Qint =179352,69 (МДж).

28. (Без изменения). Теплопоступления в здание от солнечной радиации за отопительный период:

Qs =44576,85 (МДж).

29. Потребность в тепловой энергии на отопление здания за отопительный период, МДж:

Qh y =[Qh – (Qint +Qs ). У]. bh ,

Qh y =[577624,52 – (179352,69 +44576,85). 0.8]. 1.11= 542313,79 (МДж).

30. Удельный расход тепловой энергии на отопление здания qh des , кДж/(м2. 0 С. сут):

qh des =103. Qh y /Ah . Dd ,

qh des =542313,79 ×103 /(2517,48×2682)=91,28 (кДж/(м2. 0 С. сут)).

При требуемом qh req =95 кДж/(м2. 0 С. сут).

По принятым сопротивлениям теплопередаче определимся конструкциями ограждений и толщиной утеплителя стен, совмещенного покрытия и перекрытия 1‑го этажа.

Стены : принимаем следующую конструкцию стены, теплотехнические характеристики материалов и толщину утеплителя:

1) Цементно-песчаный раствор

λ = 0,76 Вт/мС; ρ = 1600 кг/м3

2) Кирпичная кладка из кирпича

глиняного обыкновенного на

цементно-песчаном растворе

λ = 0,70 Вт/мС; ρ=1800 кг/м3

3) Эффективный утеплитель «ISOVER»

λ = 0,06 Вт/мС; ρ=125 кг/м3

4) Пенобетонный блок

λ = 0,41 Вт/мС; ρ = 1000 кг/м3

Рисунок 4.1. Конструкция наружной стены

R0 = Rв + Rштук + Rкирп + Rутепл + Rблок + Rштук + Rн R

отсюда δут = 0,052 м.


Совмещенное покрытие . Теплотехнические показатели материалов компоновки покрытия:

1. Цементно-песчаная стяжка:

плотность g=1800 кг/м3 ,

коэффициент теплопроводности

lА =0,76Вт/(м. 0 С).

2. Утеплитель – жесткие

минераловатные плиты:

плотность g=200 кг/м3 ,

коэффициент теплопроводности

lА =0,076Вт/(м. 0 С)

3. Железобетонная монолитная плита:

плотность g=2500 кг/м3 , коэффициент теплопроводности lА =1,92Вт/(м. 0 С).

Сопротивление теплопередаче:

R0 =Rв +Rж/б +Rутеп +Rст +Rн =R0 треб ;

1/8,7+0,2/1,92+dутеп /0,076+0,04/0,76+1/23=2,

откуда dутеп =0,1 м = 100 мм.

Перекрытие первого этажа . Теплотехнические характеристики материалов:

1. Дубовый паркет:

плотность g=700 кг/м3 ,

коэффициент теплопроводности

lА =0,35Вт/(м. 0 С).

2. Цементно-песчаная стяжка:

плотность g=1800 кг/м3 ,

коэффициент теплопроводности

lА =0.76Вт/(м. 0 С).

3. Утеплитель – пенополистирол:

плотность g=40 кг/м3 ,

коэффициент теплопроводности lА =0,041Вт/(м. 0 С). первого этажа

4. Железобетонная плита:

плотность g=2500 кг/м3, коэффициент теплопроводности lА=1.92Вт/(м. 0С).

Сопротивление теплопередаче:

R0 =Rв +Rпар. +Rст +Rутеп +Rж/б +Rн =R0 треб ;

1/8,7+0,04/0,76+0,015/0,35+dутеп /0,041+0,2/1,92+1/23=2,197,

откуда dутеп =0,067 м = 70 мм.


4.4 Санитарно-техническое и инженерное оборудование

4.4.1 Теплоснабжение

Теплоснабжение осуществляется от существующих внутриплощадочных тепловых сетей. Теплоноситель – пар температурой 130 о С, давлением 2,8 атм.

4.4.2 Отопление и вентиляция

Отопление принято паровое. Паропровод проходит над отопительными приборами, а конденсатопровод над полом. Трубопроводы прокладываются с уклоном не менее 0,002. Удаление воздуха из конденсатопровода предусматривается из высших точек воздушными кранами. Для отвода конденсата на конденсатопроводе на выходе из здания и на выходе от каждой ветви предусмотрены конденсатоотводчики.

Трубопроводы в местах пересечения перекрытий прокладывать в гильзах, края гильз выполнить на 30 мм выше поверхности чистого пола. В качестве нагревательных приборов принять регистры из гладких труб диаметром 100.

Вентиляция помещений принята приточно-вытяжная с механическим и естественным побуждением воздуха.

В цокольном этаже запроектирована механическая вытяжка и естественный приток через открывающиеся фрамуги окон и двери. Из санузлов и бытовок предусмотрена механическая вытяжка.

4.4.3 Водоснабжение и канализация

В здании запроектированы следующие системы водоснабжения:

хозяйственно-питьевая;

противопожарная;

Источником хозяйственно-питьевого водоснабжения служит городская сеть водопровода диаметром 200 мм, давлением 1–2 ат.

Схема хоз-питьевого водоснабжения здания заключается в следующем: вода из городской сети хозпитьевого водопровода по существующему вводу диаметром 100 мм подается в здание и далее к санитарным приборам и поливочным кранам.

Расход воды на хозяйственно питьевые нужды составляет:

суточный – 3,5 м3 ;

максимально-часовой – 2,5 м3 ;

Подача горячей воды к душам и «бидэ» предусматривается от 2‑х электронагревателей, установленных около душевых кабин.

Внутренние сети хозяйственно-питьевого и горячего водоснабжения прокладываются из стальных водогазопроводных оцинкованных труб по ГОСТ 3262–75.

Схема противопожарного водоснабжения здания заключается в следующем: при возникновении пожара, вода из существующего пожарного водоема, емкостью 150 м3 , забирается насосами, расположенными в существующей реконструируемой насосной станции противопожарного водоснабжения, и подается к пожарным кранам проектируемого здания, для ликвидации мелких очагов пожара.

В проектируемом здании запроектированы следующие системы канализации:

бытовая;

дождевая;

Схема работы бытовой канализации заключается в следующем: сточные от санитарных приборов самотеком направляются в наружную сеть канализации города диаметром 500 мм.

Ввиду того, что борта санитарных приборов, установленных в подвале, ниже уровня люка ближайшего канализационного колодца, проектом предусматривается установка на выпуске канализации из здания задвижки с электроприводом, работа которой автоматизирована от уровня сточных вод в канализационной трубе.

Расход бытовых сточных вод проектируемого здания составляет:

суточный – 3,5 м3 ;

максимально-часовой – 2,5 м3 .

Внутренние сети канализации здания запроектированы из чугунных канализационных труб диаметром 150–50 мм по ГОСТ 6942.3–80.

Сеть внешних водостоков здания запроектирована из стальных электросварных труб по ГОСТ 10704–91 – подвесные трубопроводы из чугунных канализационных труб по ГОСТ 6942.3–80 – стояки и выпуски из здания.

Расход дождевых вод с кровли здания составляет 32,6 л/сек.

Отвод дождевых вод предусматривается в существующую сеть дождевой канализации города.

Монтаж внутренних сетей здания выполнить в соответствии со СНиП 3.05.01–85.

После монтажа и испытания трубопроводы всех систем окрасить масляной краской за два раза.

4.4.4 Электроснабжение и электрооборудование

Электроснабжение компрессорной станции осуществляется от существующей комплектной трансформаторной подстанции. Для этого от КТП до вводно-распределительного щита компрессорной прокладыается кабель марки АВВГ‑1кВ сечением 3х95+1х35 мм2 .

На вводе компрессорной устанавливается щит ПР 8501, от которого запитываются силовые и осветительные нагрузки, а также щит управления погружным насосом. Пусковая аппаратура компрессоров поступает комплектно с технологическим оборудованием.

Групповые сети силового электрооборудования выполняются проводом марки АПВ в стальных трубах.

Запроектировано рабочее и ремонтное электроосвещение светильниками с лампами накаливания. Сеть освещения выполняется кабелем марки АВВГ.

Предусмотрено заземление металлических каркасов щитов, корпусов электроприемников, которые при нарушении изоляции электросетей могут оказаться под напряжением.

Все электромонтажные работы вести в соответствии с требованиями ПУЭ.

4.5 Противопожарные мероприятия

Внутреннее пожаротушение выполнено от реконструируемой существующей насосной станции, расположенной в здании примыкающего магазина, с использованием существующего резервуара V=150 м3 , расположенного на прилегающей территории.

Автоматическое пожаротушение выполняется отдельным проектом.

Для наружного пожаротушения предусмотрено использование двух существующих резервуаров V=150 и 250 м3 . В качестве третьего источника воды использовать пожарный резервуар V=150 м3 .

Предусмотрено централизованное отключение всех вентиляционных установок во время пожара за исключением системы ПЗ; 3А. Система ПЗ; 3А включается автоматически имеет два вентилятора (рабочий и резервный). В случае остановки рабочего вентилятора автоматически включается резервный.

Система осуществляет подпор воздуха в тамбур шлюзы в случае пожара. Для увеличения предела огнестойкости воздуховоды, проходящие через перекрытия и по коридору цокольного этажа, изолируются перлитовой штукатуркой по металлической сетке. В местах пересечения противопожарной стены на приточных воздуховодах устанавливаются огне задерживающие клапаны.


4.6 Мероприятия по борьбе с шумом

С целью снижения шума и устранения вибраций, возникающих при работе вентиляционных установок, проектом предусматриваются следующие мероприятия:

– размещение вентиляционных установок в изолированных помещениях;

– установка вентиляционных агрегатов на виброизолирующие основания с амортизаторами;

– ограничение окружной скорости колеса вентилятора;

– изоляция вентиляторов от воздуховодов путем установки гибких вставок;

– покрытие звукоизоляционными материалами внутренних стен, полов и потолков вентиляционных камер;

– установка шумоглушителей.


5. Расчётно-конструктивная часть

5.1 Расчёт монолитной плиты перекрытия

Настоящий расчет выполнен с применением автоматизированного программного комплекса «ProFet & Stark_ES 3.0».

Целью расчета является получение данных для конструирования всех основных несущих конструкций здания.

5.1.1 Исходные данные

Местные условия:

район по весу снегового покрова I;

Район по ветровому давлению IV, тип местности – В;

Сейсмичность района строительства 7 баллов;

Сейсмичность площадки строительства 8 баллов;

Категория грунта по сейсмическим свойствам (СНиП II‑7–81) – II.

Здание «П» образное в плане, размером 35.1 м х 21.9 м. Высота первого этажа 4.2 м, второго и последующих 3.6 м, количество этажей 4. Конструктивная схема здания рамно-связевый каркас.

Каркас колонны монолитные ЖБ сечением 40х40 см

Перекрытия – монолитная ригельная ж/б плита толщиной 180 мм. Высота ригеля 560 мм. Геометрическая неизменяемость каркаса в горизонтальной плоскости обеспечивается работой монолитного перекрытия, как неизменяемого жесткого горизонтального диска.

Лестницы – сборные железобетонные ступени по металлическим косоурам.

Стены – поэтажной разрезки состоят из слоя кирпича t=120 мм, слоя утеплителя t=60 мм и блока t=200 мм из ячеистого бетона.

5 .2 Сбор нагрузок на каркас здания

Таблица 5.1 – Сбор нагрузок на покрытие

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м2

γ

Расчетная нагрузка qр , кН/м2

1

Слой гравия на антисептированной битумной мастике

0.03

1.3

0.039

2

4 слоя рубероида с мелкозернистой посыпкой РКМ‑350Б (ГОСТ 10923–76)

0.044

1.3

0.0572

3

Цементно-песчаная стяжка толщ. 30 мм

0.54

1.3

0.702

4

Керамзит h=600 кг/м3 – от 0 до 25 мм

0.15

1.3

0.195

5

Цементно-песчаная стяжка толщ. 30 мм

0.54

1.3

0.702

6

Утеплитель – минераловатные плиты повышенной жесткости (ГОСТ 9573–82) =200 кг/м3, толщ. 230 мм

0.46

1.3

0.598

7

Окраска битумно-кукерсольной мастикой за 2 раза

0.012

1.3

0.0156

1.78

2.31

8

Снеговая нагрузка

0.5

1.6

0.8

0.5

0.8

Таблица 5.2 – Сбор нагрузок на перекрытие (лифтовый холл, зал бара, зал кафе, зал парикмахерской, вестибюли)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м2

γ

Расчетная нагрузка qр , кН/м2

1

Керамическая плитка террацо – 20 мм

0.12

1.2

0.144

2

Выравнивающая стяжка из цем-песч. раствора М150 – 40 мм

0.72

1.3

0.936

3

Древесноволокнистая плита (g= 250 кг/м3) – 16 мм

0.04

1.3

0.052

0.88

1.13

4

Полезная нагрузка

3

1.2

3.6

3

3.6

Таблица 5.3 – Сбор нагрузок на перекрытие (моечная, душевые, сан. узлы)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м2

γ

Расчетная нагрузка qр , кН/м2

1

Плитки керамические ГОСТ 6787–89 t=6 мм

0.04

1.3

0.052

2

Прослойка и заполнение швов цем. песч. раствор М150 t=14 мм

0.27

1.3

0.35

3

Стяжка из цементно-песчаного раствора М 150 t=20 мм

0.36

1.3

0.47

4

Гидроизоляция: 2 слоя гидроизола на битумной мастике

0.022

1.3

0.029

5

Стяжка из цементно-песчаного раствора М 150 по уклону t=20 мм

0.36

1.3

0.47

1.05

1.37

6

Полезная нагрузка

2

1.3

2.6

2

2.6

Таблица 5.4 – Сбор нагрузок на перекрытие (кладовые, бельевые, душевые, сан. узлы)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м2

γ

Расчетная нагрузка qр , кН/м2

1

Плитки керамические ГОСТ 6787–89 t=6 мм

0.04

1.3

0.052

2

Прослойка и заполнение швов цем. песч. раствор М150 t=14 мм

0.27

1.3

0.35

3

Стяжка из цементно-песчаного раствора М 150 t=30 мм

0.54

1.3

0.47

0.85

1.1

4

Полезная нагрузка

2

1.3

2.6

2

2.6

Таблица 5.5 – Сбор нагрузок на перекрытие (кабинеты, гардеробные)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м2

γ

Расчетная нагрузка qр , кН/м2

1

Линолеум на тепло-звуко-изоляционной основе t=5 мм

0.08

1.3

0.104

2

Прослойка из клеящей мастики t=1 мм

0.012

1.3

0.0156

3

Стяжка из легкого бетона класса В 7.5 ρ=1200 кг t=54 мм

0.648

1.3

0.8424

0.74

0.962

4

Полезная нагрузка

2

1.3

2.6

2

2.6

Таблица 5.6 – Сбор нагрузок на перекрытие (общие комнаты, спальные комнаты, коридоры)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м2

γ

Расчетная нагрузка qр , кН/м2

1

Ковролит t=6 мм

0.02

1.3

0.026

2

Прослойка из клеящей мастики t=1 мм

0.012

1.3

0.016

3

Стяжка из легкого бетона класса В 7.5 ρ=1200 кг t=54 мм

0.648

1.3

0.84

0.68

0.88

4

Полезная нагрузка

1.5

1.3

1.95

1.5

1.95


Таблица 5.7 – Сбор нагрузок на перекрытие (ступени, лестничные площадки)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м2

γ

Расчетная нагрузка qр , кН/м2

1

Мозаичное покрытие t=20 мм

0.36

1.2

0.43

0.36

0.43

2

Полезная нагрузка

3

1.3

3.9

3

3.9

Таблица 5.8 – Сбор нагрузок на перекрытие (балконы, лоджии, террасы)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м2

γ

Расчетная нагрузка qр , кН/м2

1

Плитки керамические

ГОСТ 6787–80 t=10 мм

0.04

1.3

0.052

2

Цементно-песчаный раствор

t=15 мм

0.27

1.3

0.35

3

Гидроизоляция – «Крунам» t=10 мм

0.013

1.3

0.017

4

Стяжка из ц/п раствора t=20 мм

0.36

1.3

0.47

0.68

0.89

5

Полезная нагрузка

2

1.3

2.6

2

2.6

Таблица 5.9 – Сбор нагрузок на перекрытие (бильярдная)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м2

γ

Расчетная нагрузка qр , кН/м2

1

Паркет штучный ГОСТ 1862.1–85 t=15 мм

0.04

1.3

0.05

2

Прослойка из холодной мастики на водостойких вяжущих

0.03

1.3

0.04

3

ДВП 2 слоя t=10 мм

0.06

1.2

0.07

4

Стяжка из ц/п раствора t=20 мм

0.36

1.3

0.47

5

Пергамин ГОСТ2697–83

0.013

1.3

0.017

0.5

0.65

6

Полезная нагрузка

3

1.3

3.9

3

3.9

Таблица 5.10 – Сбор нагрузок на перекрытие (наружная стена)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м

γ

Расчетная нагрузка qр , кН/м

1

Кирпич керамический ρ=1800 кг/м3, t=120 мм, H=3600 мм

7.78

1.2

9.34

2

Жесткие минераловатные плиты ρ=200 кг/м3, t=60 мм, H=3600 мм

0.432

1.3

0.562

3

Блоки из ячеистого бетона кл.B2,5 по ГОСТ 21520–89 ρ=500 кг/м3, t=200 мм, H=3600 мм

3.6

1.2

4.32

11.81

14.2176

Таблица 5.11 – Сбор нагрузок на перекрытие (наружная стена)

№ п/п

Вид нагрузки

Нормативная нагрузка qн , кН/м

γ

Расчетная нагрузка qр , кН/м

1

Кирпич керамический ρ=1800 кг/м3, t=120 мм, H=4200 мм

9.07

1.2

10.88

2

Жесткие минераловатные плиты ρ=200 кг/м3, t=60 мм, H=4200 мм

0.504

1.3

0.66

3

Блоки из ячеистого бетона кл.B2,5 по ГОСТ 21520–89 ρ=500 кг/м3, t=200 мм, H=4200 мм

4.2

1.2

5.04

13.77

16.58


Таблица 5.12 – Сбор нагрузок на перекрытие (кирпичные перегородки)

№ п/п

Вид нагрузки

Нормативная нагрузка qн, кН/м

γ

Расчетная нагрузка qр, кН/м

1

Кирпич керамический ρ=1800 кг/м3, t=120 мм, H=3600 мм

7.78

1.2

9.33

7.78

9.33

Таблица 5.13 – Сбор нагрузок на перекрытие (кирпичные перегородки)

№ п/п

Вид нагрузки

Нормативная нагрузка qн, кН/м

γ

Расчетная нагрузка qр, кН/м

1

Кирпич керамический ρ=1800 кг/м3, t=120 мм, H=4200 мм

9.07

1.2

10.88

9.07

10.88

5.3 Расчет каркаса здания

Расчетная модель плиты подготовлена в программе «ProFEt» и преобразована в конечно-элементную модель

Порядок системы:

количество элементов 5885;

количество узлов 4710;

количество уравнений 23394;

жесткости 2574492


Рисунок 5.1 – Расчетная схема здания в Stark-ES

5.4 Результаты расчета плиты перекрытия

5.4.1 Деформация системы

Рисунок 5.2 – Эпюра деформаций плиты перекрытия

Максимальные и минимальные деформации плиты перекрытия.

Max: Узел=2294, Ux=0.000253907 Min: Узел=2434, Ux=9.9447e‑005

Max: Узел=1631, Uz=-0.000495431 Min: Узел=1916, Uz=-0.00405324

Max: Узел=2403, Uy=4.55363e‑005 Min: Узел=2203, Uy=-7.06721e‑005

5.4.2 Армирование плиты перекрытия

Расчет арматуры проводился по прочности и трещиностойкости

Расчет арматуры проводился по расчетным сочетаниям усилий в соответствии со СHиП 2.01.07–85 «Hагрузки и воздействия» и СHиП II‑7–81 «Строительство в сейсмических районах»

Обозначения:

Ось «s» – совпадает с направлением оси «у».

Ось «r» – совпадает с направлением оси «x».

Asro – площадь армирования верхней зоны в направлении оси «х».

Asso – площадь армирования верхней зоны в направлении оси «у».

Asru – площадь армирования нижней зоны в направлении оси «х».

Assu – площадь армирования верхней зоны в направлении оси «у».

Характеристики материала:

Тип бетона – тяжелый

Класс бетона – B25

Класс арматуры – AIII

Коэф. условий работы бетона Gb = 0.90 Mkrb = 1.00

Коэф. условий работы арматуры Gs = 1.00 Mkrs = 1.00

Толщина защитного слоя (см):

сверху (по оси r) = 3.0 сверху (по оси s) = 2.0

снизу (по оси r) = 3.0 снизу (по оси s) = 2.0

Основная арматура:

Asro = 3,93 см2 /м, Asso = 3,93 см2 /м,

Asru = 5,65 см2 /м, Assu = 5,65 см2

Параметры для расчета по второму предельному состоянию:

Категория трещиностойкости – 3

Условия эксплуатации конструкции:

в закрытом помещении.

Максимальные диаметры арматуры

по оси r(x): для верхней – 16, для нижней – 16;

по оси s(y): для верхней – 16, для нижней – 16;

для поперечной: 8.


Рисунок 5.3 – Армирование нижней зоны в направлении оси Х

Min Asru = 0 cm2/m, Max Asru = 2.27301 cm2/m

Рисунок 5.4 – Армирование нижней зоны в направлении оси У

Min Assu = 0 cm2/m, Max Assu = 3.81487 cm2/m


Рисунок 5.5 – Армирование верхней зоны в направлении оси Х

Min Asro = 0 cm2/m, Max Asro = 3.53182 cm2/m

Рисунок 5.6 – Армирование верхней зоны в направлении оси У

Min Asso = 0 cm2/m, Max Asso = 3.8188 cm2/m

По результатам расчета была подобрана и законструирована арматура верхнего и нижнего слоя плиты перекрытия.


5.5 Результаты расчета ригеля перекрытия

Рисунок 5.7 – Обозначение элементов ригеля перекрытия по оси 8

Расчет железобетонных сечений подбалок по СНиП 2.03.01–84

Тип сечения – тавр

ширина b = 40 см

высота h = 56 см

ширина верхней полки bf1 = 50 см

высота верхней полки hf1 = 18 см

Расстояние от верхней арматуры

до верхней грани сечения hв = 4 см

Расстояние от нижней арматуры

до нижней грани сечения hн = 4 см

Расстояние от арматуры

до боковой грани сечения hб = 4 см

Схема армирования – 2

Вид бетона – тяжелый

Класс бетона B25

Коэффициент условий работы бетона Gb2 = 0.9

Арматура класса A III

Коэффициент условий работы стали Gs2 = 1

Признак подбора арматуры 4

(0, 3 – выбирается максимальное значение;

1, 2, 4 – оптимизация для всех РСУ)

Элемент №5064 (ригель)

Сечения №1 – 3

Таблица 5.1 – Теоретическая площадь арматуры элемента 5064

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.22

0.22

0.09

0.09

0.61

0.03

Элемент №5065 (ригель)

Сечения №1 – 3

Таблица 5.2 – Теоретическая площадь арматуры элемента 5065

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.41

0.41

0.04

0.04

0.90

0.04

Элемент №5066 (ригель)

Сечения №1 – 3

Таблица 5.3 – Теоретическая площадь арматуры элемента 5066

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

1.27

1.27

0.15

0.15

2.85

0.12

Элемент №5067 (ригель)

Сечения №1 – 3


Таблица 5.4 – Теоретическая площадь арматуры элемента 5067

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

1.59

1.59

1.34

1.34

5.86

0.24

Элемент №5068 (ригель)

Сечения №1 – 3

Таблица 5.5 – Теоретическая площадь арматуры элемента 5068

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.84

0.84

2.68

2.68

7.04

0.29

Элемент №5069 (ригель)

Сечения №1 – 3

Таблица 5.6 – Теоретическая площадь арматуры элемента 5069

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.88

0.88

2.92

2.92

7.61

0.31

Элемент №5070 (ригель)

Сечения №1 – 3

Таблица 5.7 – Теоретическая площадь арматуры элемента 5070

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.90

0.90

2.91

2.91

7.61

0.31

Элемент №5071 (ригель)

Сечения №1 – 3


Таблица 5.8 – Теоретическая площадь арматуры элемента 5071

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

1.47

1.47

2.04

2.04

7.02

0.29

Элемент №5072 (ригель)

Сечения №1 – 3

Таблица 5.9 – Теоретическая площадь арматуры элемента 5072

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

1.32

1.32

0.50

0.50

3.64

0.15

Элемент №5073 (ригель)

Сечения №1 – 3

Таблица 5.10 – Теоретическая площадь арматуры элемента 5073

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

10.22

10.22

1.92

1.92

24.29

1.00

Элемент №5074 (ригель)

Сечения №1 – 3

Таблица 5.11 – Теоретическая площадь арматуры элемента 5074

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.60

0.60

1.23

1.23

3.66

0.15

Элемент №5075 (ригель)

Сечения №1 – 3


Таблица 5.12 – Теоретическая площадь арматуры элемента 5075

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.44

0.44

1.72

1.72

4.32

0.18

Элемент №5076 (ригель)

Сечения №1 – 3

Таблица 5.13 – Теоретическая площадь арматуры элемента 5076

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.52

0.52

1.80

1.80

4.63

0.19

Элемент №5077 (ригель)

Сечения №1 – 3

Таблица 5.14 – Теоретическая площадь арматуры элемента 5077

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.93

0.93

1.58

1.58

5.03

0.21

Элемент №5078 (ригель)

Сечения №1 – 3

Таблица 5.15 – Теоретическая площадь арматуры элемента 5078

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

1.61

1.61

0.12

0.12

3.46

0.14

Элемент №5079 (ригель)

Сечения №1 – 3


Таблица 5.16 – Теоретическая площадь арматуры элемента 5079

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.29

0.29

0.10

0.10

0.78

0.03

Элемент №5080 (ригель)

Сечения №1 – 3

Таблица 5.17 – Теоретическая площадь арматуры элемента 5080

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.28

0.28

0.08

0.08

0.73

0.03

Элемент №5081 (ригель)

Сечения №1 – 3

Таблица 5.18 – Теоретическая площадь арматуры элемента 5081

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.37

0.37

0.12

0.12

0.99

0.04

Элемент №5082 (ригель)

Сечения №1 – 3

Таблица 5.19 – Теоретическая площадь арматуры элемента 5082

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.63

0.63

0.11

0.11

1.48

0.06

Элемент №5083 (ригель)

Сечения №1 – 3


Таблица 5.20 – Теоретическая площадь арматуры элемента 5083

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.36

0.36

0.06

0.06

0.84

0.03

Элемент №5084 (ригель)

Сечения №1 – 3

Таблица 5.21 – Теоретическая площадь арматуры элемента 5084

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.08

0.08

0.16

0.16

0.47

0.02

Элемент №5085 (ригель)

Сечения №1 – 3

Таблица 5.22 – Теоретическая площадь арматуры элемента 5085

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.14

0.14

0.07

0.07

0.43

0.02

Элемент №5086 (ригель)

Сечения №1 – 3

Таблица 5.23 – Теоретическая площадь арматуры элемента 5086

As1

As2

As3

As4

As

mu(%)

(см2)

(см2)

(см2)

(см2)

(см2)

0.23

0.23

0.05

0.05

0.54

0.02

По результатам расчета была подобрана и законструирована арматура верхнего и нижнего слоя ригеля перекрытия.


5.6 Основания и фундаменты

5.6.1 Исходные данные для проектирования и анализ инженерно-геологических изысканий

Расчет производится по СНиП 2.02.01–89 «Проектирование оснований и фундаментов».

Снеговая нагрузка для первого снегового района Ро =0,5 кН/м2 .

Глубина промерзания грунтов 0,8 м.

Уровень грунтовых вод 7.3 м

Сейсмичность 8 баллов.

Площадка ровная. Геологическое строение производилось по данным буровых и опытных работ до глубины 18 м.

Таблица 5.24 – Характеристики физико-механических свойств грунтов

Литологическое описание грунта

Глубина слоя, м

Удельный вес грунта природной влажности, кН/м3

Показатель текучести, IL

Модуль деформации Eo , МПа

Удельное сцепление С, кПа

Угол внутреннего трения j , град

Насыпные грунты

0 – 0,8

19,3

¾

¾

¾

¾

почва суглинистая, тяжелая, пылеватая, твердая, просадочная

0,8 – 2,0

17,5

0,1

суглинок легкий пылеватый, твердый, просадочный

2,0 – 4,4

18,1

0,06

16

28

23

суглинок тяжелый пылеватый, полутвердый, непросадочный

4,4 – 6,0

19,4

0,15

17

40

22

супесь песчанистая, пластичная

6,0 – 7,0

20,4

0,75

21

25

28

песок мелкий, средней плотности, водонасыщенный

7,0 – 13,5

20,4

¾

29

0

34

глина легкая пылеватая, полутвердая

13,5 – 19,6

19,7

0,0

27

43

17

5.7 Расчет фундаментной плиты

Расчет проводился в программном комплексе Stark-ES.

Фундамент принимается, как монолитная железобетонная плита.

Основанием для трехмерной модели принимаем упругое основание с коэффициентами упругого основания С1 и С2, которые вычисляем с помощью прикладной программы.

При заданных грунтах принимаем залегание фундаментной плиты на абсолютной отметке -29.000.

При действии на условный фундамент нагрузки равной -1034 кН, значение коэффициентов упругого основания составляет:

Рисунок 5.7 – Характеристики упругого основания

При действии на условный фундамент нагрузки равной -1964 кН, значение коэффициентов упругого основания составляет:


Рисунок 5.8 – Характеристики упругого основания

При действии на условный фундамент нагрузки равной -485 кН, значение коэффициентов упругого основания составляет:

Рисунок 5.9 – Характеристики упругого основания

Полученные значения упругого основания заносим в расчетную схему здания. Проведя расчет получаем значения необходимого армирования фундаментной плиты.

5.8 Результаты расчета фундаментной плиты

5.8.1 Деформация системы

Рисунок 5.10 – Эпюра деформаций фундаментной плиты

Максимальные и минимальные деформации плиты перекрытия.

Max: Узел=3958, Ux=3.67671e‑006 Min: Узел=4029, Ux=-3.4787e‑006

Max: Узел=3266, Uz=2.36485e‑005 Min: Узел=3695, Uz=-0.000190548

Max: Узел=3805, Uy=2.78799e‑006 Min: Узел=3612, Uy=-3.12154e‑006

5.8.2 Армирование фундаментной плиты

Расчет арматуры проводился по прочности и трещиностойкости

Расчет арматуры проводился по расчетным сочетаниям усилий в соответствии со СHиП 2.01.07–85 «Hагрузки и воздействия» и СHиП II‑7–81 «Строительство в сейсмических районах»

Обозначения:

Ось «s» – совпадает с направлением оси «у».

Ось «r» – совпадает с направлением оси «x».

Asro – площадь армирования верхней зоны в направлении оси «х».

Asso – площадь армирования верхней зоны в направлении оси «у».

Asru – площадь армирования нижней зоны в направлении оси «х».

Assu – площадь армирования верхней зоны в направлении оси «у».

Характеристики материала:

Тип бетона – тяжелый

Класс бетона – B25

Класс арматуры – AIII

Коэф. условий работы бетона Gb = 0.90 Mkrb = 1.00

Коэф. условий работы арматуры Gs = 1.00 Mkrs = 1.00

Толщина защитного слоя (см):

сверху (по оси r) = 7.5 сверху (по оси s) = 5.5

снизу (по оси r) = 9.0 снизу (по оси s) = 7.0

Основная арматура:

Asro = 10,05 см2 /м, Asso = 10,05 см2 /м,

Asru = 10,05 см2 /м, Assu = 10,05 см2

Параметры для расчета по второму предельному состоянию:

Категория трещиностойкости – 3

Условия эксплуатации конструкции:

на открытом воздухе, а также в грунте выше или ниже уровня грунтовых вод.

Максимальные диаметры арматуры

по оси r(x): для верхней – 22, для нижней – 22;

по оси s(y): для верхней – 22, для нижней – 22;

для поперечной: 10.


Рисунок 5.11 – Армирование нижней зоны в направлении оси Х

Min Asro = 0 cm2/m, Max Asro = 8.57541 cm2/m

Рисунок 5.12 – Армирование нижней зоны в направлении оси У

Min Asso = 0 cm2/m, Max Asso = 8.16541 cm2/m

Рисунок 5.13 – Армирование верхней зоны в направлении оси Х


Min Asru = 0 cm2/m, Max Asru = 8.16541 cm2/m

Рисунок 5.14 – Армирование верхней зоны в направлении оси У

Min Assu = 0 cm2/m, Max Assu = 8.57541 cm2/m

По результатам расчета была подобрана и законструирована арматура верхнего и нижнего слоя фундаментной плиты.

6. Технология строительного производства

6.1 Выбор кранов для монтажа каркаса

Выбор крана для устройства элементов каркаса здания производится с учётом требуемой высоты подъёма элементов конструкций, веса монтажного элемента и стропующих устройств, необходимого вылета стрелы монтажного крана, технических и технико-экономических показателей их работы.

Высота подъема крюка башенного крана определяется по формуле

Hкр =h+hз +hэ +hс ,

где Hкр – расстояние от уровня стоянки крана до геометрического центра звена крюка, м;

h – разность между отметками уровня верха конструкций, над которым перемещается груз (бункер с бетонной смесью, арматура, опалубка), подвешенный к крюку крана, и уровня верха земли.

hз – запас высоты под нижней поверхностью поднимаемого груза над самым высоким препятствием, например ограждением места работы (согласно СНиП 12 – 04 – 2002, величина его должна быть не менее 0,5 м по высоте);

hэ – наибольшая высота поднимаемого элемента, м;

hс – расчетная высота стропов, м.

Hкр = 17.5+0,5+2,8+5,5=26.3 м

Вылет стрелы lстр определяется по формуле

lстр = l1 +l2

где l1 – ширина возводимого здания, равна 19 м;

l2 – расстояние от оси вращения крана до здания (или до выступающих в сторону крана частей здания – крыльца или лесов для поддержания опалубки), м.

l2 = 3,0 м

lстр=19+3=22 м

Грузоподъёмность крана определяем по формуле для тяжёлых элементов каждой группы конструкций:

где: – масса монтируемого элемента, т

– масса такелажного приспособления, т

– масса конструкций усиления, т

– масса монтажных приспособлений, устанавливаемых на монтируемых элементах до подъёма, т

– учитывает отклонение фактической массы элементов проектной(расчётной).

Принимаем кран СКГ‑30–7,5. Вылет стрелы lстр =26 м.

Расчет грузоподъемности по другим элементов не произведен из-за незначительности грузов, масса которых не превышает 2,8 т.


Рисунок 6.1 – Кран СКГ 30/7.5

6.2 Работы подготовительного периода

До начала производства основных строительно-монтажных и специальных работ должны быть выполнены следующие подготовительные работы:

освобождение строительной площадки для производства строительно-монтажных работ (расчистка территории, снос строений и др.);

срезка растительного грунта и складирование его на свободной территории;

создание и закрепление геодезической основы на строительной площадке путем забивки металлических штырей с закрашенной головкой или нанесения на стены существующих капитальных зданий выносок краской;

выполнение земляных и планировочных работ с первоочередными работами по отводу с площадки поверхностных вод производится бульдозером Д3–110 или Д3–575;

прокладка проектируемых инженерных сетей;

устройство постоянных и временных дорог;

устройство постоянных и временных зданий (сооружений), ограждение строительной площадки, устройство временного электроснабжения, водоснабжения с установкой противопожарного гидранта.

6.3 Работы основного периода строительства

Разработка грунта в траншеях для прокладки различного рода трубопроводов производиться экскаватором с емкостью ковша 0.3–0.5 м3 . Грунт в котловане выбирается не доходя до проектной отметки на 20 см. Доработка выполняется непосредственно перед началом работ по устройству фундаментов.

Лишний грунт вывозиться самосвалами в отведенное заказчиком место. Грунт для обратной засыпки пазух траншей и котлованов производиться с мест складирования.

До начала установки опалубки должны быть выполнены следующие работы: организован отвод поверхностных и грунтовых вод; закончены земляные работы и установлены стремянки для спуска людей в котлован; произведена разбивка осей фундаментов в плане и натянута проволока по осям над местом установки этих фундаментов; закончена подготовка и составлен акт приемки оснований фундаментов; устроены подъезды к рабочим местам и завезены щиты опалубки и элементы их крепления в количестве, обеспечивающем бесперебойную работу плотников в течение не менее двух смен; подведена электроэнергия и обеспечено освещение рабочих мест.

Устройство фундаментной плиты начинается с устройства бетонной подготовки толщиной 0,15 м.

Работы по устройству ростверка начинают с установки опалубки и арматурных каркасов. Бетонирование выполняется при помощи поворотных бадей V=1.0м3 , подаваемых краном после сдачи скрытых работ по акту. Снятие опалубки производится после достижения бетоном прочности, обеспечивающей сохранность поверхности кромок углов конструкций при t=10о через 7 суток.

Работы по устройству ростверков и монтажу сборных фундаментов производить с инвентарных столов-подмостей, устанавливаемых с внутренней стороны здания.

Монтаж конструкций зданий и сооружений производить монтажным краном согласно стройгенплану с соблюдением следующих требований:

– монтаж ведется по принципу «на себя», при котором ранее устанавливаются наиболее удаленные от крана конструкции, затем последовательно все остальные, с тем, чтобы не допускать толчков и ударов по ранее установленным элементам;

– последовательность монтажа должна обеспечивать устойчивость и геометрическую неизменяемость смонтированных частей зданий (сооружений) на всех стадиях монтажа;

– перед началом монтажа конструкций следующего этажа необходимо полностью закончить установку элементов нижележащего этажа с устройством постоянных креплений и сдать исполнительную схему по акту;

– подача элементов в зону монтажа краном должна обеспечивать их положение соответствующее проектному. Освобождать конструкции от строповки можно только после их закрепления; заделку стыков и швов сборных элементов выполнять в процессе монтажных работ после проверки правильности установки конструкций и их приемки по акту.

Устройство монолитных железобетонных ростверков (фундаментов) производится с применением инвентарной опалубки фирмы «PERI».

Армирование монолитных железобетонных конструкций выполняется отдельными арматурными стержнями согласно проекта. Укладка монолитного бетона выполняется горизонтальными слоями одинаковой толщины без разрывов, с последовательным направлением укладки в одну сторону и тщательным уплотнением вибратором каждого укладываемого слоя.