Главная              Рефераты - Разное

работа на тему Оледенение Арктических островов - реферат

Министерство образования РФ

Дальневосточный государственный университет

Географический факультет

Кафедра физической географии

Курсовая работа на тему

Оледенение Арктических островов

Выполнил:

Студент 922Б группы

Войло Яков Олегович

Проверила:

Воробьёва Татьяна Фёдоровна

Владивосток 2002
СОДЕРЖАНИЕ

Общие сведения о строении, динамике и режиме ледников

3

Движение ледников

9

Ледниковые районы земного шара

12

Острова Виктория, Земли Франца-Иосифа, Ушакова,

Северной Земли и Де-Лонга

14

Вывод

26

Список литературы

27

ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ, ДИНАМИКЕ И РЕЖИМЕ ЛЕДНИКОВ

В природе много различных видов льда. Предмет данной работы — ледники. Что же следует понимать под этим терми­ном? Ледник — это масса природ­ного наземного льда преимущественно атмосферного происхождения, облада­ющая самостоятельным движением в ре­зультате деформаций, вызываемых дей­ствием силы тяжести.

Ледники являются продуктом взаимо­действия рельефа и климата. Они обра­зуются преимущественно из снега, выпа­дающего из атмосферы, но могут ча­стично состоять и из водного льда (на­пример, шельфовые ледники Антаркти­ды). Водный лед может присутствовать и в горных ледниках в результате замер­зания талых и дождевых вод на их по­верхности, в трещинах и пустотах внутри ледника, но главный источник их пита­ния — твердые атмосферные осадки.

Каждый ледник состоит из областей питания и расхода, разделенных грани­цей питания. В первой из этих областей приход массы больше расхода, во второй расход больше прихода. Перемещение льда из области питания в область рас­хода происходит путем движения льда под воздействием силы тяжести.

Скорости движения льда в разных лед­никах, в разных их частях и в разное время года могут колебаться от несколь­ких метров до сотен метров в год при вязко-пластическом течении льда и до сотен метров в сутки при глыбовом скольжении. В конкретных ледниках обычно сочетаются оба типа движения в самых разных пропорциях и самые раз­ные скорости движения льда.

Главной статьей расхода в горных лед­никах является таяние под влиянием сол­нечной радиации и тепла воздуха, а в ледниковых покровах Антарктиды и Гренландии — откол айсбергов.

Форма и размеры ледников могут быть самые разные. Различают две глав­ные группы ледников: горные, форма и движение которых определя­ются главным образом рельефом зани­маемых ими вместилищ и уклоном ложа, и ледниковые покровы и купола, в которых лед настолько толстый, что перекрывает все неровно­сти подледного рельефа, и течение льда

определяется главным образом уклоном поверхности самого ледника (Антаркти­да, Гренландия и другие менее крупные ледниковые покровы и купола). Разуме­ется, существуют и переходные типы от одной из этих групп к другой.

Размеры ледников колеблются в огромных пределах: от десятых и менее долей квадратного километра (каровые ледники Полярного Урала, Кузнецкого Алатау и др.) до многих миллионов ква­дратных километров (ледниковые по­кровы Антарктиды и Гренландии) при толщине от первых десятков метров до нескольких километров.

По температурному состоянию разли­чают две главные группы: теплые (изотермические или умеренные) ледни­ки, в которых глубже уровня сезонных колебаний температура льда постоянно держится близкой к точке таяния льда под давлением, и холодные (по­лярные) ледники, в которых глубже уровня сезонных колебаний температура во всей толще всегда ниже точки плавле­ния льда под давлением. Так как ледники получают тепло не только от солнечной радиации, но и от теплового излучения земной коры, то, как правило, в холод­ных ледниках температура льда с глуби­ной повышается (так, в Антарктиде, в центральных районах ледникового по­крова, температура от — 55°С на глубине 10 м повышается до точки плавления льда под давлением у ложа). Существу­ют и переходные типы ледников — от теплых к холодным (субполярные). Не­которые крупные долинные ледники в высокогорных районах могут в верховь­ях принадлежать к холодным ледникам, а в нижнем течении — к теплым (напри­мер, ледник Батура в Каракоруме).

Ледники, порождаемые климатом в сочетании с местными орографическими условиями, раз возникнув, сами создают благоприятные условия для дальнейшего своего существования и развития. До­стигнув больших размеров, они оказы­вают существенное обратное воздей­ствие на климат. Так, ледниковые покровы Антарктиды и Гренландии являются гигантскими холодильни­ками нашей планеты, оказывая вли­яние на климат и циркуляцию атмосферы в глобальном масштабе.

Ледники очень чувствительны к изме­нениям климата: при увеличении пита­ния твердыми атмосферными осадками или уменьшении их таяния из-за пониже­ния температуры воздуха в теплое время года ледники наступают, увеличиваются их толщина, горизонтальные размеры, скорость движения льда, продвигаются концы ледниковых языков. При ухудше­нии условий питания или усилении та­яния ледники отступают — становятся тоньше, скорость движения льда умень­шается, увеличивается заморененность ледниковых языков, и их концы омертве­вают, а граница активного льда отодви­гается вверх по течению ледников. Но эффект изменения условий питания и расхода сказывается на поведении ледни­ков не сразу, а с тем большим запаздыва­нием, чем крупнее ледник и продолжи­тельнее время оборота массы льда в нем. Продолжительность полного оборота массы в ледниках колеблется от 20 — 70 лет на мелких каровых и висячих ледни­ках до 200 тыс. лет в Антарктическом ледниковом покрове.

Проблема синхронизации колебаний ледников и климата имеет большое научное и практическое значение. Наб­людения за колебаниями многих ледни­ков проводятся уже не одно столетие, но они трудносопоставимы из-за больших местных различий условий оледенения и отражают лишь самую общую тенден­цию колебаний глобального климата. Решение проблемы приближают уже на­чатые во многих ледниковых районах ба­лансовые исследования, а также анализ кернов из глубоких скважин, пробурен­ных в Антарктиде и Гренландии. Боль­шую роль в изучении колебаний ледни­ков играют съемки из космоса.

Кроме колебаний ледников, вызван­ных изменениями климата (вынужден­ные колебания), возможны также релак­сационные колебания ледников, обу­словленные нестационарностью кинема­тических связей в самом леднике. Если по каким-либо причинам в леднике имеет место превышение питания над расходом и лед длительное время на­капливается в верховьях ледника, рост напряжений в ледниковой толще может вызвать резкое увеличение скорости

движения льда и его перемещение в ниж­нюю по течению часть ледника без изме­нения общей массы льда в ледниковой системе. При этом в верховьях поверх­ность ледника понижается, а нижняя часть ледника, наоборот, вспучивается и язык продвигается вниз по долине, ино­гда на несколько километров. В это время поверхность ледника бывает на­столько разбита трещинами, что стано­вится совершенно непроходимой.

Ледники, которым свойственны резко выраженные релаксационные колеба­ния, получили название пульсиру­ющих. Подвижки пульсирующих лед­ников происходят периодически с про­должительностью полного цикла пуль­сации от 10—15 до 100 и более лет. Полный цикл пульсации складывается из сравнительно короткой стадии подвижки (от нескольких месяцев до нескольких лет) и более длительной стадии восстановления, во время которой продвинувшаяся при подвижке часть ледникового языка, ли­шенная подтока льда сверху, интенсивно тает и разрушается, а в верховьях за счет атмосферных осадков и подтока льда из вышележащей области питания посте­пенно увеличиваются толщина льда и скорость его движения и восстанавли­вается состояние ледника, предшеству­ющее очередной подвижке.

Пульсирующие ледники известны во многих районах мира. Их быстрые подвижки часто приводят к образованию подпрудных озер, прорывы которых вы­зывают катастрофические паводки и се­ли. В связи с этим очень важно нау­читься предсказывать такие подвижки.

Наиболее изученным и единственным пока пульсирующим ледником, наблю­дения на котором велись в течение всего периода пульсации, является ледник Медвежий на Памире. Выявленные за­кономерности его динамики послужили основой для прогноза очередной по­движки ледника, который полностью оправдался [Долгушин, Осипова. 1972].

В процессе движения ледники произ­водят большую экзарационную, транс­портную и аккумулятивную работу. В результате экзарационной деятельности ледников в сочетании с процессами вы­ветривания горных пород создаются такие формы горно-ледникового рельефа, как кары, карлинги, ледниковые цирки, троги, «бараньи лбы». Действию ледни­ков обязаны своим образованием обшир­ные сглаженные поверхности с леднико­вой штриховкой, узкие и глубокие мор­ские заливы -- фьорды. Обломки гор­ных пород, падающие на ледник со скло­нов, образуют краевые, срединные и другие формы поверхностной морены, которые в концевых частях ледниковых языков нередко сливаются в сплошной плащ. Продукты экзарации ложа (при­донная морена) и поверхностную морену ледник переносит к своему концу, где они сливаются и отлагаются в виде конеч­ных морен. Часть продуктов разруши­тельной деятельности ледников выно­сится талыми ледниковыми водами за их пределы, образуя ниже концов леднико­вых языков плоские галечно-песчаные зандры. Самые мелкие взвешенные ча­стицы уносятся реками на большие рас­стояния. Моренный материал материко­вых покровов, шельфовых и выводных ледников, оканчивающихся в море, уно­сится с айсбергами и по мере их таяния оседает на дне морей и океанов.

Ледники - - это своеобразные водо­хранилища, запасающие воду зимой и расходующие ее летом. Они играют существенную роль в формировании стока рек, особенно в тех ледниковых районах средних и субтропических ши­рот, где высокогорные, покрытые лед­никами хребты соседствуют с засушли-

выми равнинами ^например, Централь­ная и Средняя Азия). Айсберги, откалы­вающиеся от шельфовых и выводных ледников Антарктиды, Гренландии, Арктических и Антарктических остро­вов, оказывают сильное воздействие на гидрологические процессы обширных океанических акваторий. Только Антар­ктида поставляет в океан в виде айсбер­гов ежегодно около 2000 км3 воды, Грен­ландия — 240—300 км3 . Айсберги затруд­няют судоходство в полярных водах.

Ледники, особенно ледниковые покро­вы, достигающие огромных размеров, только своим присутствием вызывают большие изменения высоты земной по­верхности и меняют ее рельеф. Так, средняя высота Антарктиды почти втрое больше средней высоты всех других ма­териков за счет огромной толщины ан­тарктического ледникового покрова, под которым погребен сложный рельеф с горными хребтами, долинами, плато и равнинами. Колебания размеров и мощ­ности ледников вызывают изостатичес-кие колебания земной коры.

Ниже приведены основные условия су­ществования ледников, особенности их строения и движения.

Начнем с понятия снеговой границы, важнейшего показателя условий оледе­нения.

чем расход (таяние, испарение). На уровне снеговой границы (границы пита­ния) приходо-расходный баланс твердых атмосферных осадков равен нулю. Раз­личают несколько разновидностей сне­говой границы [Калесник. 1963; Тронов. 1966; Гляциологический словарь. 1984]. Климатическая, или теоре­тическая, снеговая граница — это граница, на которой нулевой баланс твердых атмосферных осадков опреде­ляется средним состоянием метеороло­гических условий за много лет на гори­зонтальной незатененной поверхности. В реальных условиях наблюдать ее на местности практически невозможно, так как и поверхность в горах обычно не го­ризонтальна, и метеорологические усло­вия от года к году сильно меняются, сле­довательно, реальная снеговая граница не будет соответствовать теоретичес-

кой. Поэтому введено понятие мест­ная, или истинная, снеговая гра­ница, занимающая наивысшее положе­ние в конце сезона таяния на реальной поверхности. Ее положение можно усреднять за ряд лет и определять на целых горных хребтах и системах и на склонах различной экспозиции. На ледниках ис­тинная снеговая граница — это наивыс­шее за год положение границы между снегом и льдом. В большинстве случаев истинная снеговая граница на леднике совпадает с границей питания или бы­вает выше ее в тех случаях, когда между ними располагается зона наложенного льда. Ниже, когда мы говорим о снего­вой границе без дальнейшего уточнения, имеется в виду истинная, или местная, снеговая граница. На ледниках ее часто отождествляют с фирновой ли­нией - границей между фирновым бассейном и областью абляции ледника. Фирновая линия, как и истинная снего­вая граница, либо совпадает с грани­цей питания, либо отделена от нее полосой наложенного льда. В тех случаях, когда различия в положении снеговой границы, границы питания и фирновой линии невелики, эти термины употребляются как синонимы.

К понятию климатической снеговой границы мы прибегаем в тех случаях, когда рассматриваются возможности возникновения и существования оледе­нения в различных широтных климати­ческих поясах Земли для сопоставления оледенения районов с морским и конти­нентальным климатом, и в тех случаях, когда высотное положение ледников не соответствует общеклиматическим усло­виям. Так, например, каровые ледники Урала, Кузнецкого Алатау и еще ряда районов лежат на 1000 м и более ниже климатической снеговой границы и су­ществуют лишь благодаря большой кон­центрации метелевого и лавинного снега в отрицательных формах рельефа. Но в то же время на них есть своя местная сне­говая граница (фирновая линия — граница питания), отделяющая область ак­кумуляции от области абляции.

Высота снеговой границы зависит от многих факторов: от циркуляции атмос­феры, обусловливающей количество осадков в данном районе; от радиацион­ных условий и температуры воздуха, определяющих долю твердых осадков и интенсивность таяния снега и льда; от абсолютной и относительной высоты горных сооружений, расчлененности рельефа и ориентировки горных хребтов относительно направления влагонесущих воздушных потоков.

Морской климат с обильными осад­ками зимой и прохладным летом благо­приятствует оледенению, а сухой конти­нентальный климат, наоборот, для оле­денения неблагоприятен. Благоприятны для оледенения высокоширотные терри­тории, где, несмотря на малое количе­ство осадков, круглый год держатся низ­кие температуры воздуха и таяние снега и льда или мало, или совсем отсутствует. Соответствующие изменения испыты­вает и высота снеговой границы. Самое низкое положение снеговая граница за­нимает в Антарктиде, где она почти на всей периферии ледникового покрова лежит на уровне моря. В Арктике уро­вень снеговой границы измеряется пер­выми сотнями метров. В средних широ­тах в условиях морского климата (напри­мер, на тихоокеанском побережье Се­верной Америки) она колеблется в пре­делах 500—1000 м над ур. м.; в субтропи­ческих и тропических широтах, в сухих континентальных районах Тибета и Анд Южной Америки уровень снеговой гра­ницы достигает огромных высот — 6000—6500 м над ур. м.

Изменение высоты снеговой границы с юга на север хорошо видно на меридио­нальных профилях вдоль Южноамери­канских Анд и Североамериканских Кордильер (а) и вдоль 90—110° в. д. (б).

Колебания уровня снеговой границы во времени свидетельствуют об улучше­нии или ухудшении условий питания лед­ников. В первом случае уровень снего­вой границы понижается, во втором — повышается. Следовательно, по измене­нию уровня снеговой границы можно су­дить об изменении климатических усло­вий в районах оледенения.


ДВИЖЕНИЕ ЛЕДНИКОВ

Движение льда в ледниках — основной процесс переноса массы из области нако­пления в область расхода. Благодаря перемещению льда из первой области во вторую поддерживается относительное равновесие между ними, что и обеспечи­вает само существование ледника как единой ледниковой системы. В горном леднике количество льда, проходящее через любое поперечное сечение, в об­ласти аккумуляции постепенно увеличи­вается от истоков к границе питания, где достигает максимума, а в области абля­ции постепенно уменьшается к концу ледника. Соответственно изменяется и скорость движения льда: от истоков к границе питания она увеличивается, а от границы питания к концу ледника умень­шается. При этом векторы скорости от­носительно поверхности ледника в обла­сти аккумуляции наклонены вниз, а в об-

ласти абляции — вверх. Но такова лишь идеальная схема. В реальных ледниках наблюдается множество отклонений от нее из-за изменений толщины, ширины и уклонов поверхности ледников. В ледни­ковых покровах и куполах, граница пи­тания которых проходит близ их концов, а расход массы осуществляется путем от­кола айсбергов, скорость движения льда увеличивается от нуля в центре леднико­вого покрова до максимума у его края.

Движение льда в ледниках осущест­вляется двумя основными способами: пу­тем вязкопластического течения и путем глыбового скольжения по ложу и внутриледниковым разрывам и сколам. Со­отношение вязкопластического течения и глыбового скольжения в движении ре­альных ледников может быть самым различным. Лед в примерзших к ложу холодных ледниках может двигаться только за счет вязкопластических де­формаций, тогда как ледники с водной пленкой на ложе в определенных усло­виях могут двигаться только путем глы­бового скольжения (пульсирующие лед­ники в период быстрых подвижек). В движении большинства ледников уча­ствуют оба механизма.

При вязкопластическом течении льда скорость движения определяется глав ным образом толщиной льда, его темпе­ратурой и наклоном поверхности ледни­ка. Лед будет течь в направлении на­клона поверхности и в том случае, если на ложе ледника будут встречаться не­ровности с обратным уклоном. Между толщиной льда, наклоном поверхности и скоростью движения льда ледника суще­ствует закономерная связь: лед обычно тонок там, где поверхность наклонена круто и лед движется быстрее, и толст там, где наклон незначителен и движе­ние льда замедлено. Это наблюдается как в разных частях одного ледника, так и на разных ледниках. Мелкие неровно­сти на поверхности ледника, если они меньше его толщины, на скорости тече­ния ледника не отражаются.

На скорость течения льда в ледниках большое влияние оказывает их темпера­турное состояние, так как при более вы­соких температурах лед легче деформи­руется. Теплые ледники движутся быст­рее холодных. Выделяющееся при дви­жении ледника тепло также ускоряет движение.

Скорость движения льда в любом лед­нике складывается из горизонтальной и вертикальной составляющих. Уже гово­рилось, что векторы скорости в области аккумуляции направлены вниз относи­тельно поверхности, а в области абля­ции — вверх, но углы наклона неболь­шие, так как горизонтальная составля­ющая скорости во много раз больше вер­тикальной. Величина вертикальной составляющей связана с величиной акку­муляции и абляции, поэтому в районах с обильными осадками и интенсивным та­янием она больше, чем в районах с хо­лодным сухим климатом. Горизонталь­ная составляющая скорости движения льда в ледниках на порядок, а иногда и на несколько порядков больше вертикаль­ной составляющей. Поэтому, когда речь идет о смещении льда в горизонтальном направлении, обычно говорят просто «скорость движения», а не «горизонталь­ная составляющая скорости движения». Скорость движения льда в ледниках раз­ных размеров и типов колеблется в очень широких пределах. Скорость дви­жения в малых ледниках редко превы­шает несколько метров в год, в горно-до­линных ледниках она колеблется от пер-

вых десятков до сотен метров в год. В выводных и шельфовых ледниках Ан­тарктиды скорость движения льда дости­гает 300 — 1200 м в год. Самые большие скорости измерены в концевых частях выводных ледников Гренландии — до 10 км в год. При подвижках пульсирующих ледников лед может двигаться со скоро­стью сотен метров в сутки, проходя за несколько месяцев 8—10 км.

Скорость движения льда в леднике из­меняется по продольному и поперечному профилям, изменяется она и с глубиной. В идеальном леднике скорость движения от нуля в его истоках к границе питания увеличивается до максимума, а к концу ледника снова сходит на нет. В реальных ледниках картина много сложнее. Там, где уклон поверхности ледника увеличи­вается, увеличивается и скорость движе­ния льда; там, где канал стока расширя­ется, скорость движения льда умень­шается, а там, где он сужается, скорость увеличивается. Линия максимальных скоростей движения льда обычно прохо­дит посередине ледника, а на поворотах смещается к внешней стороне излучины. Поперек ледника от осевой линии к краям поверхностные скорости движе­ния льда постепенно уменьшаются, что связано с трением ледника о ложе и борта долины. Эпюра скоростей может быть то более, то менее крутой, но ее общая форма при глыбовом скольжении близка к трапеции, а при вязкопластическом течении — к параболе. По верти­кали от поверхности до ложа скорости движения льда изменяются в зависимо­сти от соотношения типов движения: при движении вязкопластического типа, обу­словленном деформациями ледяной тол­щи, скорость изменяется от максимума на поверхности до нуля на ложе. При глыбовом скольжении поверхностная и придонная скорости практически одина­ковы.

Скорости движения льда в ледниках изменяются также во времени. Летом скорости движения льда выше, чем зи­мой, днем выше, чем ночью. Это связано главным образом с тем, что в теплое время года и суток в леднике и особенно у его ложа скапливается вода, играющая роль смазки. Эта разница может дости­гать 25% и более. Изменяются скорости движения ледников и от года к году. Так, скорость движения льда на одном и том же поперечном профиле ледника Фер-нагтфернер в Эцтальских Альпах в 1889 г. была 17 м, в 1899 г. — 250 м, в 1901 г. — 50 м в год. Есть много и других примеров. В общем виде можно сказать, что при увеличении массы ледника и осо­бенно его толщины скорости движения льда увеличиваются. Увеличивается ско­рость движения ледника или его части при переходе от вязкопластического те­чения к глыбовому скольжению (по­движки ледников). Скорости движения ледников могут резко возрастать при слиянии разобщенных ранее ледниковых потоков и резко падать, когда от глав­ного ствола ледника отчленяются его притоки. Первое происходит, когда условия оледенения улучшаются, вто­рое — когда оледенение деградирует.

Рассмотрение теорий движения льда в ледниках, в значительной мере спорных, в задачу этой книги не входит. Жела­ющие могут ознакомиться с ними по мо­нографиям П. А. Шумского «Динамичес­кая гляциология» [1969] и У. С. Б. Па­терсона «Физика ледников» [1984].


ЛЕДНИКОВЫЕ РАЙОНЫ ЗЕМНОГО ШАРА

Районированием ледников и снежно-лед­никовых образований занимались мно­гие исследователи (X. Альман, Г. А. Ав-сюк, И. В. Бут, А. Н. Кренке, В. М. Котляков, Г. К. Тушинский, Л. Ллибу-три). X. Альман впервые разделил лед­ники на умеренные (теплые) и полярные (холодные), а последние в свою оче­редь — на высокополярные и субполяр­ные. Ледники разных типов характери­зовали их широтное положение. Более подробно районирование ледников по их температурному режиму было выпол­нено Г. А. Авсюком, который выделил пять типов ледников. Каждый из них ха­рактерен для определенного географи­ческого региона: сухой полярный, где таяние отсутствует (ледники Антаркти­ды, Гренландии и горные ледники на вы­сотах более 6000 м); влажный полярный (по периферии предыдущих ледников); влажный холодный (верхние части лед­ников на арктических островах и в Пата­гонии); морской (ледники Аляски, Альп, Скандинавии, Кавказа, Камчатки, Но­вой Зеландии и др.) и континентальный (ледники гор Средней Азии, Централь­ной Азии, Сибири, Канадского Аркти­ческого архипелага) [Авсюк. 1955, 1956]. Ллибутри [ЬИЪоШгу. 1956] по климати­ческим условиям существования ледни­ков выделил 8 типов и перечислил рай­оны их распространения. В процессе дальнейших исследований

выяснилось, что в одном географичес­ком районе могут встречаться ледники разных типов и, кроме того, существова­ние ледников и особенности их режима в огромной степени зависят от циркуляции атмосферы — от положения того или иного горного района относительно пу­тей движения циклонов, приносящих ат­мосферные осадки, а эти пути в свою очередь определяются барическим по­лем атмосферы Земли.

Первая работа о соответствии между общей циркуляцией атмосферы и со­временным распределением ледников в северном полушарии принадлежит И. В. Буту [1963]. Он разделил все лед­никовые области по источникам питания осадками на три группы: тихоокеан­скую, атлантическую и индийскую. К ти­хоокеанской группе он отнес североаме­риканскую и камчатскую области оледе­нения; к атлантической группе — Ислан­дию, острова Арктики (Шпицберген, Землю Франца-Иосифа, Новую Землю, Северную Землю), Скандинавию, Аль­пы, Кавказ, Памир, Тянь-Шань, Алтай; к индийской группе — южные районы гор Центральной Азии. По источникам питания и средним многолетним харак­теристикам циркуляции атмосферы А. Н. Кренке [1963] выделил в пределах Арктики 4 ледниковые провинции, раз­личающиеся режимом оледенения и на­правленностью их короткопериодных колебаний. Им установлено, что основ­ные районы оледенения Земли нахо­дятся в пределах зон частой повторяемо­сти циклонов, а источниками влаги слу­жит тот или иной океан. В. М. Котляков [1969] произвел ледниковое районирова­ние земного шара, исходя из двух основ­ных факторов, определяющих питание ледников: циркуляции атмосферы и мак­рорельефа земной поверхности.

В данной книге предпочтение отдается региональному принципу. За крупней­шие регионы принимаются материки с прилегающими к ним островами. В пре­делах материков выделяются крупные орографические системы и их части. При этом учитывается как их широтное положение, так и основные источники питания ледников. Отдельно и более де­тально характеризуется оледенение тер­ритории СССР.

ОСТРОВА Виктория, Земли Франца-Иосифа, Ушакова,

Северной Земли и Де-Лонга

Общая площадь оледенения 32 508 км2 . Район арктического континентального климата с питанием осадками с Атланти­ческого океана по Исландско-Карской ветви Арктического фронта, с твердыми осадками менее 500 мм в год, с континен­тальным набором зон льдообразования, включая ледники с полностью ледяным питанием.

О. Виктория расположен на северной окраине Баренцева моря, близ западной границы советской Арктики. Площадь острова 10,8 км2 , из них только 0,1 км2 берегового пляжа свободна ото льда. Остальные 10,7 км2 представляют собой единый простой ледниковый купол, выс­шая точка которого 105 м над ур. м., а края круто спускаются к береговому пляжу или обрываются к морю ледя­ными стенами высотой 30—40 м. Климат суровый арктический. Среднесуточная температура воздуха самого холодного месяца (январь) -24,4°, самого теплого (июль) +0,2°, годовая сумма осадков — около 260 мм. Подавляющая часть ку­пола лежит ниже границы питания, и оледенение деградирует. С 1953 по 1961 г. край ледяного купола, спуска­ющийся к свободному ото льда мысу Оледенение Земли Франца-Иосифа [Атлас Арктики. 1985]

Книповича на севере острова, отступил на 22 м. Вытаивание вех на куполе свиде­тельствует о понижении его поверхности [Гоеоруха. 1962,1964; Каталог ледников. 1965].

Земля Франца-Иосифа — архипелаг многочисленных островов, расположен­ный в западном секторе советской Ар­ктики между 79°46' и 81°52' с.ш. и 44°45' и 65°25' в.д. Он протягивается на 234 км по меридиану и на 375 км по широте. Се­верная точка архипелага (мыс Флигели на о. Рудольфа) отстоит от Северного полюса всего на 900 км. Это самый се­верный участок суши, принадлежащий СССР.

Всего в архипелаге насчитывается 191 остров, их общая площадь 16 134±16 км2 . Ледники есть только на 56 более крупных островах и занимают 85,1% об­щей площади архипелага (13 735 ±14 км2 ).

Британским Каналом и Австрийским

проливом Земля Франца-Иосифа де­лится на три крупные группы остро­вов — Западную, Центральную и Вос­точную; Центральная группа проливом Маркама делится на две части — Север­ную и Южную. Пролив Северо-Восточ­ный отделяет от Восточной группы о-ва Белая Земля. Названные проливы и большинство менее крупных ориентиро­вано в двух взаимно перпендикулярных направлениях — северо-восточном и се­веро-западном, что, по-видимому, пред­определено тектоническими разло­мами.

Острова архипелага сложены в основ­ном осадочными породами мезозойского возраста (известняки, песчаники, глини­стые сланцы и др.), перекрытыми пла­стами базальтов. Базальты, как более стойкие к выветриванию, бронируют нижележащие толщи, обусловливая пла-тообразный характер рельефа остро­вов. Четвертичные отложения представ-

лены маломощным плащом морских и ледниковых осадков.

Высота большинства островов не пре­вышает 500 м над ур. м., и только в цент­ральной части архипелага она больше. Высшая точка коренного рельефа нахо­дится на о. Винер-Нейштадт — 620 м, ледниковой поверхности — на Земле Вильчека — 735 м.

Оледенение Земли Франца-Иосифа относится к покровному типу и лишь на немногих островах приближается к горно-покровному (сетчатому). Различа­ются три основных морфологических типа ледников: ледники плато, ледники долин и малые навеянные ледники. Преобладают первые два, тесно связан­ные между собой. Среди ледников плато могут быть выделены ледниковые щиты и ледниковые купола. К первым отно­сятся наиболее крупные из ледников плато, расположенные на самых боль­ших островах архипелага. Площадь ка­ждого из них измеряется сотнями ква­дратных километров, а мощности дости­гают 300—450 м. Ледниковые купола имеют меньшие площади и мощности, но по численности преобладают. В цент­ральных частях ледниковых щитов и ку­полов поверхность сравнительно плос­кая, но к периферии она приобретает все больший уклон и часто расчленяется по­логими депрессиями и крутыми цирками, переходящими в истоки выводных до­линных ледников. Местами края ледни­ковых плато и концы выводных ледни­ков обрываются в море, и от них отла­мываются айсберги. Общая площадь ледниковых плато и куполов около 8530 км2 , или 62,1% площади оледенения региона.

Ледники долин занимают линейно вы­тянутые депрессии в коренном рельефе островов, которые в большинстве слу­чаев являются продолжением морских заливов и ответвлений проливов. Почти все ледники этого типа являются вывод­ными с ледниковых щитов и куполов, и почти все они достигают моря, оканчи­ваются отвесными обрывами и периоди­чески продуцируют айсберги. Немногие из выводных ледников оканчиваются на прибрежных равнинах, растекаясь в виде широких шлейфов. Мощность концов ледников, спускающихся в море, колеб-

лется от 40 до 120 м, а в бассейнах исте­чения — от 150 до 300 м. Самые крупные ледники долин находятся в юго-восточ­ной части Земли Франца-Иосифа.

Западный район, включающий о-ва Земля Георга, Земля Александры и о. Артур, характеризуется развитием крупных ледниковых щитов и куполов сравнительно простых форм. Широкие и короткие лопасти выводных ледников без явно выраженных каналов истечения дренируют лишь краевые части леднико­вых покровов, и только в юго-западной части Земли Георга с большим расчлене­нием и берегами фьордового типа вы­водные ледники более обособлены от ледяных куполов и спускаются к морю крутыми и высокими ледяными обрыва­ми. Высота вершин ледяных куполов на Земле Георга — 350—400 м, на Земле Александры — 382 м, на о. Артур — 275 м. Примерно 21% линии берега сло­жено льдом. Большая часть ледяных бе­регов продуцирует айсберги.

Центральный район ограничен на за­паде Британским Каналом, на востоке — проливами Ермак, Австрийским и Скотт-Келти. В этом районе 32 острова с ледниками. Оледенение района в целом характеризуется наличием сложных лед­никовых комплексов, состоящих из большого числа ледяных плато и купо­лов с многочисленными выводными лед­никами, расположенных на сложно рас­члененном ложе. Большая протяжен­ность района с юга на север, различная степень расчленения и большие колеба­ния размеров островов и высот корен­ного рельефа вызывают необходимость рассматривать оледенение этого района по частям: южной, средней и северной. К югу от пролива Маркама расположена группа небольших островов с глубоко расчлененным рельефом, с высоко под­нятыми над уровнем моря базальтовыми плато. Здесь преобладают небольшие по площади ледниковые комплексы с ра­зобщенными куполами и выводными ледниками, что приближает оледенение южной части Центрального района к горно-покровному (сетчатому). На о. Гу-кера, занимающем 508 км2 , льдом по­крыто 444 км2 . Высшая точка острова и всей этой группы островов — 445 м. В средней части Центрального района, между проливом Маркама на юге и про­ливом Бака на севере, 12 больших остро­вов покрыто ледниками. Преобладают сложные ледниковые комплексы на сильно расчлененном подледном рель­ефе. Отличительной чертой оледенения этой группы островов является широкое развитие выводных ледников, суммарная площадь которых больше площади дре­нируемых ими ледяных щитов и купо­лов. Из 1000 км длины береговой линии островов 610 км приходится на ледяные берега, в том числе 440 км — на фрон­тальные обрывы выводных ледников.

На севере Центрального района нахо­дятся два больших острова: Карла-Алек­сандра и Рудольфа. Оба они почти пол­ностью покрыты льдом (степень оледе­нения соответственно 87 и 98%). Запад­ные части этих островов сильно расчле­нены, а их восточные части заняты боль­шими куполами правильной формы со слабо расчлененными краями. Вывод­ные ледники короткие, но имеют широ­кие фронты и продуцируют айсберги. Оледенение есть также на двух неболь­ших островах, расположенных между двумя названными. О. Рудольфа — са­мый северный на Земле Франца-Иоси­фа, и он не раз служил базой экспедиций к Северному полюсу.

Восточный район включает крупные острова — Землю Вильчека, Греэм-Белл, Мак-Клинтока, Ронсьер, Ева-Лив, Райнера, Сальм и много менее крупных. Оледенение представлено сравнительно простыми по форме, но большими по площади ледниковыми комплексами и куполами. Выводных ледников немного, но они также большие. Рельеф корен­ного ложа более спокойный, чем в Цент­ральном районе. Рельеф свободной ото льда суши слабохолмистый. В то же время вершины ледниковых покровов островов поднимаются до 500—600 м над ур. м., что связано с большой толщиной льда, достигающей 300—400 м. На Земле Вильчека находится самый крупный вы­водной ледник, Знаменитый, длиной 30 км, площадью 382 км2 . На о. Греэм-Белл — самый большой купол — Ветре­ный — площадью 728 км2 .

Основные количественные характери­стики оледенения Земли Франца-Ио­сифа приведены в Приложении № 2,

табл. 4 и 5, составленных по Каталогу ледников СССР.

Климат Земли Франца-Иосифа морской арктический, со сравнительно мягкой зимой с частыми циклоничес­кими осадками и метелями и с облачным холодным сырым летом. Температура воздуха самого холодного месяца (март) от —21,4° в Бухте Тихая на о. Гукера до —22,9° на о. Рудольфа; самого теплого месяца (июль) +1,2° и +0,7°, а средняя годовая температура воздуха —10,2° и — 11,9° соответственно. Годовая сумма осадков в Бухте Тихая — 235 мм (из них 200 мм — твердые осадки), на о. Ру­дольфа — 195 мм (170 мм — твердые). Обе станции расположены близ уровня моря. В высоких частях островов и на ледниках температурные условия более суровые, осадков выпадает больше, и почти все они выпадают в твердом виде. Годовой радиационный баланс отрица­тельный.

Особенности климата Земли Франца-Иосифа определяются высокоширот­ным положением, большой продолжи­тельностью полярной ночи (120—125 су­ток), низким положением Солнца во время полярного дня (не выше 31—33° над горизонтом), большим альбедо сне­жно-ледяной поверхности (70—90%), а также положением архипелага вблизи от оси Исландско-Карской барической де­прессии — основного пути движения ци­клонов из Северной Атлантики, прино­сящих обильные для этих широт осадки. В совокупности создаются благоприят­ные условия для существования ледни­ков.

На Земле Франца-Иосифа четко раз­личаются периоды аккумуляции и абля­ции. Период аккумуляции длится с сентя­бря по май включительно и характеризу­ется резко выраженным циклоническим режимом погоды со снегопадами и мете­лями, отсутствием очень сильных моро­зов, но с отрицательными температу­рами воздуха на протяжении всего этого периода. Количество твердых осадков составляет около 200 мм. Ветровой ре­жим отличается неустойчивостью: сла­бые ветры сменяются штормами. Сред­няя скорость ветра 8—9 м/с. Преоблада­ющие по направлению и более сильные ветры — восточные и юго-восточные. Они играют большую роль как в распре­делении выпадающих осадков, так и в перераспределении уже отложенных.

Период абляции продолжается с июня по август и характеризуется устойчи­выми положительными температурами воздуха. На уровне моря период абляции длится от 60—65 дней на юге архипелага до 40—45 дней — на севере. Наиболее интенсивное таяние снега и льда проис­ходит во время вторжений теплого воз­духа с южными и юго-западными ветра­ми, когда температура может подняться выше +10° при небольшой относитель­ной влажности воздуха. Но большую часть теплого времени года стоит сырая облачная погода с туманами и периоди­ческими снегопадами, что сильно сни­жает таяние ледников, а иногда оно и совсем прекращается.

При поднятии над уровнем моря по склонам ледниковых куполов темпера­тура воздуха понижается примерно на 0,6° на каждые 100 м высоты. В резуль­тате на высоких ледниковых куполах ни один из месяцев года не имеет средней температуры воздуха выше 0°, хотя от­дельные теплые дни могут быть и там. Вертикальный градиент осадков равен 50 мм на 100 м. Следовательно, на самых высоких куполах архипелага годовая сумма осадков составит 440—450 мм. В период аккумуляции все осадки выпа­дают в твердом виде, в период абляции на их долю приходится примерно поло­вина. В распределении осадков по терри­тории архипелага наблюдается опреде­ленная асимметрия: на юге и юго-вос­токе осадков выпадает примерно в пол­тора раза больше, чем на северо-западе, что связано с различной удаленностью от источника питания — основной трассы влагонесущих циклонов, распо­ложенной к юго-востоку от архипелага. Тепловой баланс ледников региона ха­рактеризуется приходом тепла главным образом за счет турбулентного теплооб­мена с атмосферой и расходом за счет радиационных условий. Вследствие вы­сокого альбедо поверхности радиацион­ный баланс большую часть года отрица­тельный, и только в течение 3 летних ме­сяцев приход радиационного тепла преобладает над расходом, тогда как по­ступление тепла из атмосферы, приноси-

мого относительно теплыми циклонами, происходит в течение 9—10 месяцев в го­ду. Лишь в короткий период абляции ра­диационный теплоприход к поверхности является преобладающим, и таяние снега и льда на 75% идет за счет радиа­ционного тепла и на 25% — за счет тур­булентного теплообмена с воздухом.

В верхних частях ледниковых покро­вов, сложенных с поверхности снегом и фирном, таяние имеет место, но стока талых вод не происходит — они просачи­ваются в фирн и снова замерзают, а вы­деляемое при этом тепло идет на прогре­вание ледниковой толщи. Вниз по скло­нам ледяных куполов и выводных ледни­ков абляция постепенно увеличивается. Средняя многолетняя величина поверх­ностной абляции на архипелаге состав­ляет от 30—35 до 45—50 г/см2 в год. Мак­симальная наблюденная величина сум­марной годовой абляции равна 250 г/см2 . Однако основную статью расхода ледни­ков Земли Франца-Иосифа составляет откол айсбергов и морская абразия спус­кающихся к морю ледяных берегов, сум­марная протяженность которых дости­гает 2655 км. По приблизительному рас­чету, с 1 км фронта выводных ледников на о. Гукера расходуется до 2 млн т льда в год, а с малоподвижных краев леднико­вых покровов — до 0,2 млн т льда в год. По самому приблизительному подсчету суммарный годовой расход льда за счет откола айсбергов и морской абразии на Земле Франца-Иосифа составляет 2,5 млрд м3 , или 2,3 млрд т.

На ледниках Земли Франца-Иосифа гляциологи выделяют следующие зо­ны льдообразования: снежно-ледяную (предположительно), холодную фирно­вую, ледяного питания и абляции. Наи­более распространена холодная фирно­вая зона, занимающая 70% общей пло­щади области питания ледников архипе­лага. В этой зоне превращение снега в фирн и лед происходит в течение не­скольких лет и завершается на глубине 15—20 м. Расположенная ниже ледяная зона занимает интервал между холодной фирновой зоной и верхней границей об­ласти абляции. Таким образом, верхняя граница ледяной зоны совпадает с фир­новой линией, а нижняя — с границей пи­тания. Этой зоной занято около одной трети площади области питания архипе­лага. В целом же вся область питания на Земле Франца-Иосифа составляет 44% от общей площади оледенения, а 56% приходится на область абляции.

Верхние горизонты ледниковой толщи в пределах холодной фирновой зоны ис­пытывают частичное прогревание за счет повторного замерзания талых вод, и поэтому температура здесь выше, чем в расположенной гипсометрически ниже зоне ледяного питания. Так, по наблюде­ниям на куполе Чюрлениса (о. Гукера) в пределах холодной фирновой зоны тем­пература льда на глубине 9 м и более устойчиво держалась —3°, а в зоне ледя­ного питания на тех же уровнях была -10°.

Немногочисленные сведения о скоро­стях движения льда ледников Земли Франца-Иосифа свидетельствуют о том, что в ледниковых куполах лед движется со скоростями, меньшими примерно на порядок, чем в выводных ледниках. По измерениям на о. Гукера скорость дви­жения льда в пределах ледникового ку­пола Чюрлениса не превышала несколь­ких метров в год, а на выводных ледни­ках Седова и Юрия достигала 50—60 м в год. Почти все выводные ледники Земли Франца-Иосифа оканчиваются в море, и поэтому скорости движения льда в этих ледниках, как и в выводных ледниках Антарктиды и Гренландии, увеличива­ются от истоков вплоть до фронтального

обрыва ледниковых языков. В этом от­ношении они коренным образом отлича­ются от горных ледников, оканчива­ющихся на суше, для которых харак­терно убывание скоростей движения льда от границы питания к концам лед­никовых языков. Как и в других ледни­ковых районах, наблюдается увеличение скоростей движения льда летом и умень­шение зимой. Отмечены также коротко-периодические колебания часовых и су­точных скоростей движения льда.

Наблюдения за балансом массы льда и соответствующие расчеты свидетель­ствуют о том, что за 30 лет (с 1930 по 1959 г.) ледниковые покровы Земли Франца-Иосифа ежегодно теряли более 3 млрд т, или 23—24 г/см2 . За 30 лет это соответствует 8-метровому слою льда. Приведенные данные согласуются с эво­люцией климатических условий в преде­лах атлантико-европейской климатичес­кой области Арктики [Каталог ледни­ков. 1965; Гросвалъд и др. 1973].

О. Ушакова находится в Северном Ле­довитом океане между Землей Франца-Иосифа и Северной Землей. Он целиком покрыт льдом — коренные породы ни­где не выходят на поверхность. По дан­ным сейсмозондирования, ледниковый покров острова лежит на низменном цо­коле из коренных пород, самые высокие части которого поднимаются немногим более 50 м над ур. м., а в ряде мест ложе ледника расположено ниже уровня моря.

Ледниковый покров острова представ­ляет собой единый купол площадью 325,5 км2 . В центре, где толщина льда до­стигает 250 м, он поднимается почти до 300 м над ур. м. К периферии купола, имеющего в плане слегка овальные очертания, толщина льда постепенно уменьшается. К морю края купола обры­ваются ледяными стенами высотой от нескольких до 20—30 м. На севере острова незначительно выдвинулся в море конец небольшого выводного лед­ника.

Остров отличается суровым клима­том. Средняя годовая температура воз­духа равна -14,5°, а самого теплого ме­сяца (июля) -0,3°. В году не более 20— 30 дней с положительной температурой

воздуха. Характерны высокая относи­тельная влажность, частые туманы, па­смурная погода. В верхних частях купола выпадает 350—^ЮО мм, на высоте 50 м — около 200 мм осадков в год. Выпадают они преимущественно в твердом виде в осенне-зимние месяцы, когда преобла­дают юго-восточные ветры. Летнее та­яние хотя и кратковременно, но происхо­дит достаточно интенсивно и охватывает всю площадь купола. Поверхность ку­пола выше 150 м занята холодной фир-ново-ледяной зоной, где ежегодно обра­зуется горизонт фирна с небольшими прослоями инфильтрационного льда. Ниже по склону текут многочисленные мелкие ручьи, талые воды заполняют поры снежного остатка, и при замерза-

нии в этой зоне образуется сплошной слой льда. С краевого обрыва леднико­вого купола и выводного ледника в море время от времени обрушиваются глыбы льда, образуя небольшие айсберги.

В настоящее время ледниковый по­кров о. Ушакова не имеет признаков от­ступания. Прошлая эволюция леднико­вого покрова неизвестна [Каталог ледни­ков. 1980].

Северная Земля — самый северный архипелаг Азии — расположена между морями Карским и Лаптевых, на юге от­делена от п-ова Таймыр проливом Виль-кицкого. Архипелаг состоит из 4 круп­ных островов (Октябрьской Революции, Большевик, Комсомолец и Пионер) и ряда мелких. Северная Земля была отк­рыта в 1913 г. русской гидрографической экспедицией на кораблях «Таймыр» и «Вайгач», впервые исследована и нане­сена на карту экспедицией Всесоюзного арктического института в 1930 — 1933 гг. [Урванцев. 1935; Ушаков. 1951].

Острова сложены интенсивно дисло­цированными породами различного со­става и возраста — от протерозоя до кай­нозоя (песчаниками, сланцами, известня­ками, доломитами, диабазами, гранита­ми). Тектонические разломы делят архи­пелаг на отдельные островные блоки, в частности ими предопределены узкие и глубокие проливы Шокальского и Крас­ной Армии.

Рельеф островов преимущественно платообразный, переходящий на отдель­ных островах в пологохолмистый и рав­нинный с останцовыми возвышенностя­ми. Наиболее возвышенные участки островов покрыты ледниками. Вершины ледяных куполов поднимаются до 900 — 950 м на о-вах Большевик и Октябрь­ской Революции и до 780 м на о. Комсо­молец.

Северная Земля по площади оледене­ния и запасам воды, законсервированной в ледниках, стоит на втором месте в со­ветской Арктике после Новой Земли: ледники занимают примерно половину всей площади островов (Прилож. № 2, табл. 6). Подавляющее большинство их относится к покровному типу и представ­лено сложными ледниковыми щитами и ледниковыми куполами с выводными ледниками по периферии. Кроме того,

довольно много небольших ледников горного типа: долинных, каровых, присклоновых, висячих и др., но на их долю приходится лишь немногим более 1,2% общей площади оледенения.

В Каталоге ледников СССР на Север­ной Земле выделено 17 ледниковых ком­плексов, включающих 225 ледников об­щей площадью 17 180 км2 , в том числе: 51 купол — 13 781 км2 , 99 выводных лед­ников — 2985 км2 , 3 шельфовых ледни­ка — 258 км2 и 72 ледника других ти­пов — 157 км2 . Кроме ледниковых комп­лексов на Северной Земле есть еще 62 ледника площадью 1145 км2 , в том числе 16 простых куполов — 1076 км2 и 46 лед­ников горного типа — 69 км2 . Всего же на Северной Земле насчитывается 287 ледников общей площадью 18 325 км2 (Прилож. № 2, табл. 7).

Ледниковые щиты и купола в их вну­тренних частях характеризуются плато-образной или слабовыпуклой поверхно­стью, и лишь у краев склоны становятся круче, местами появляются выводные ледники. Сложный подледный рельеф часто не находит отражения в рельефе ледниковой поверхности, что является следствием больших мощностей льда (до 500 — 600 м). Трещины во внутренних частях ледниковых щитов и куполов встречаются редко, в краевых же частях, особенно на языках выводных ледников, трещин много, и они служат препят­ствием для транспорта. Ряд выводных ледников спускается к морю ледяными обрывами и продуцирует айсберги. Из 500 км общей протяженности ледяных берегов на Северной Земле около 190 км приходится на долю активных фронталь­ных обрывов ледников. Часть выводных ледников оканчивается на суше. Их концы окаймлены моренными грядами. На о-вах Комсомолец и Октябрьской Ре­волюции есть один довольно большой и два небольших шельфовых ледника, по­лучающих питание с ледниковых щитов. Морфология и размеры ледников гор­ных типов почти целиком зависят от орографических условий.

Климат Северной Земли опреде­ляется ее высокоширотным положением и влиянием основных барических цент­ров — арктического и сибирского анти­циклонов, с одной стороны, и Баренцево-Карской ложбины Исландской де­прессии — с другой. Циклоны прони­кают на архипелаг со стороны Карского моря в осенне-зимнее время. Антицикло-нальный режим погоды устанавливается обычно в марте — апреле. Циклоны, идущие со стороны Атлантики, приносят пасмурную погоду и осадки, а антици­клоны — морозы. На побережье средняя температура самого холодного месяца (февраль) -33°, самого теплого (август) . +1,6°. На вершинах щитов и куполов температура воздуха в течение всего года не поднимается выше 0°. Бесснеж­ный период ни прибрежных равнинах продолжается 2—2,5 месяца. Осадков здесь выпадает от 100 до 230 мм в год, в том числе до 90 мм в виде снега. На ледяных щитах и куполах до высо­ты 400 м количество твердых осадков равно примерно 150 мм, а на высотах 750 — 950 м над ур. м. — 450 — 500 мм в год.

Климатические условия определяют высоту границы питания и фирновой ли­нии. Наиболее низкое положение (300 — 370 м) граница питания занимает на о. Шмидта и на щите Академии Наук (о. Комсомолец). В юго-восточном на­правлении уровень границы питания постепенно повышается до 600 м на южном склоне ледника Ленинградского (о. Большевик). Фирновая линия ле­жит всюду выше границы питания на 150 —350 м. Этот интервал занят зоной ледяного питания ледников.

Питание ледников снегом обеспечи­вается в основном циклонами, которые приходят с запада. На вершине щита Академии Наук аккумуляция составляет 40 — 45 г/см2 в год, по мере движения на юго-восток она уменьшается до 15 — 20 г/см2 в год на вершине щита Ленинг­радского. Аккумуляция на вершинах ледниковых щитов и куполов суще­ственно снижается ветрами, сдува­ющими снег в депрессии рельефа и в зону абляции. Малая мощность фирна (льдообразование завершается в 2 — 3 года) на ледниках Северной Земли при­водит к сильному выхолаживанию лед­никовой толщи, и на глубине затухания сезонных колебаний и ниже всегда дер­жится отрицательная температура (в среднем -11,8°), близкая к средней годо-

вой температуре воздуха в данном рай­оне.

В теплое время года таяние захваты­вает практически всю поверхность лед­ников Северной Земли, хотя в привер­шинных частях ледниковых щитов и ку­полов оно незначительно. По наблюде­ниям на куполе Дежнева (о. Октябрьской Революции), в 1965 г. период таяния про­должался 70 дней (июнь — август). За это время на куполе на высоте 405 м над ур. м. абляция составила 133,4 г/см2 , а у края ледникового купола — 250 — 300 г/см2 .

По наблюдениям за 1974 — 1980 гг., на всей площади купола Вавилова (о. Октябрьской Революции) средняя ак­кумуляция составила 31 г/см2 , а средняя абляция -38 г/см2 , баланс был равен —7 г/см2 в год. За семилетний период 4 года были с отрицательным балансом и 3 года — с положительным, причем от­клонения от средних значений были очень большими (в полтора-два раза). В целом же, хотя и незначительно, убыль льда преобладает над накоплением, и ледники Северной Земли отступают. Средние годовые потери льда состав­ляют около 3 — 4 км3 . Отмечено отсту­пание концов ряда ледников на не­сколько десятков метров, несколько мелких ледников за последние 30 лет ис­чезли полностью, а ледник Кропоткина на о. Большевик местами отступил на расстояние до 1 км.

Сведения о движении ледников Север­ной Земли отрывочны и малочисленны. Скорости движения льда в ледниковых куполах и щитах, по-видимому, не пре­вышают первых десятков метров в год, и только отдельные выводные ледники в краевых частях щита Русанова и купола Вавилова движутся со скоростями 100 — 150 м в год [Говоруха. 1985; Каталог ледников. 1980].

Острова Де-Лонга составляют самую северную группу в архипелаге Новоси­бирских о-вов. Они лежат далеко от ма­терика и друг от друга и почти круглый год окружены плавучими морскими льдами. Три из них — Беннетта, Генри­етты и Жаннетты — представляют собой плато, поднимающиеся на 300 — 400 м над ур. м., и на них есть ледники. На низ­менных о-вах Жохова и Вилькицкого оледенение отсутствует. Общая площадь оледенения о-вов Де-Лонга — 80,6 км2 . Оно относится к покровному типу и представлено ледниковыми куполами и выводными ледниками.

На о. Беннетта три независимых ледниковых купола общей площадью 72,0 км2 . Самый большой из них в центре острова — купол Толля (пл. 54,2 км2 ) поднимается над прибрежной равниной на 384 м. С него спускаются 3 выводных ледника, два из них достигают уровня моря и продуцируют небольшие айсбер­ги. Площадь купола Де-Лонга 13,9 км2 , он лежит в западной, наиболее высокой части острова и имеет обрывистые края. До моря он не доходит. Небольшой ку­пол (пл. 3,9 км2 ) расположен на северо-востоке острова, его высшая точка 210 м над ур. м., высота края 100 м [Карту-шип. 1963].

На о. Генриетты площадь оледенения

8.2 км2 . Ледниковый купол площадью

6.3 км2 занимает юго-восточную поло­вину острова. Его высота 310 м над ур. м. Южные и восточные склоны круты и на­висают ледяными обрывами над берего­выми скалами, высота которых около 200 м. Противоположные склоны полого спускаются к прибрежной равнине. На острове есть еще несколько присклоно-вых ледников общей площадью 1,9 км2 .

О. Жаннетты — это скала, поднима­ющаяся на 350 м над ур. м. На ее вер­шине лежит маленький ледниковый ку­пол с обрывистыми склонами площадью 0,4 км2 .

Климат о-вов Де-Лонга суровый арктический. Температура самого хо­лодного месяца (февраль) —27,7°, самых теплых месяцев (июль, август) +0,2°. Количество осадков на побережье около 100 мм в год и от 200 до 400 мм в год в центральных частях ледниковых купо­лов. Постоянно дуют сильные ветры, зи­мой южные, летом северные.

По наблюдениям на куполе Толля, к началу таяния накапливается 50 —55 см снега при средней плотности 0,33 г/см3 , часть снега с купола сдувается ветрами. Таяние, прерываемое заморозками и снегопадами, продолжается с начала июля до конца августа и охватывает по­верхность купола полностью. По скло­нам купола стекают многочисленные

ручьи. Граница питания расположена примерно на высоте 200 м. Питание фир-ново-ледяное и ледяное. В настоящее время ледники находятся в неустойчивом равновесии [Шумский. 1949; Каталог ледников. 1981].

Остров Врангеля

О. Врангеля лежит на границе Вос­точно-Сибирского и Чукотского морей в 130 км от материка. Большая его часть занята горами со сглаженными вершин­ными поверхностями высотой от 650 до 1000 м над ур. м. Высшая точка остро­ва — г. Советская (1097 м). Горы глу­боко расчленены многочисленными до­линами и оврагами. Климат острова ти­пичный арктический. На побережье средняя годовая температура воздуха — 11,4°, средняя летняя +1,5°. Общее ко­личество осадков 210 — 250 мм в год, из них более 70% выпадает в твердом виде. Средние годовые скорости ветра 5,7 м/с, но около 70 дней в году дуют сильные ве­тры (15 м/с и более), вызывающие мете­ли. До 85% метелей связано с ветрами с северной составляющей, что вызывает накопление сугробов главным образом на подветренных южных склонах, но бо­лее устойчивыми являются скопления снега и льда на северных и северо-запад­ных склонах, где радиационные условия менее благоприятны для их таяния.

Снежники и мелкие ледники на о. Врангеля распространены широко. Большинство из них — это многолетние снежники с ядрами инфильтрационного льда, не имеющие четкого разграниче­ния областей питания и абляции, — в от­дельные годы на всей их площади проис­ходит накопление снега, а в малосне­жные годы они могут резко сократиться в размерах или полностью исчезнуть. В Каталоге ледников приводятся сведения о 101 снежно-ледовом образовании на о. Врангеля, общая площадь которых 3,5 км2 [Каталог ледников. 1981].


ВЫВОД

Ледниковый покров Антарктиды достигает мощности более 4300 м (средняя — 1720 м). Правда, на значительной части Антарктиды нет настоящего горного рельефа с его глубоким расчленени­ем, на огромных пространствах рас­стилается идеальная, высокоподня­тая ледяная равнина. Но дело не только в том, что отдельные участки этой равнины на географических кар­тах носят название «плато» (Поляр­ное плато, плато Советское и ряд дру­гих). В соответствии с предложенным нами критерием отделения горных ландшафтов от равнинных*[см. с. 52] нивально-гляциальные ландшафты Антарктиды нельзя отнести к классу равнинных: здесь не наблюдается широтно-зональной смены типов ландшафтов, которая была бы при меньших абсолютных высотах, и она действительно есть на антарктичес­ком побережье, где на свободных ото льда участках расположены «оази­сы» с внеледниковыми ландшафтами полярных (антарктических) пустынь, а не с нивально-гляциальным ланд­шафтом. Е. С. Короткевич особенно подчеркивает нарушенность широт­ной зональности Антарктиды высот­ной поясностью (зональностью), про­являющейся здесь особенно ярко, и

рассматривает этот материк в каче­стве «ледникового массива с единой вертикальной поясностью.

Там, где лед перекрывает горные хребты с острыми вершинами или плоскогорья с возвышающимися над основной платообразной поверхно­стью останцами, местами, главным образом по окраинам ледникового щита, из-подо льда выступают на дне­вную поверхность одинокие скалы, называемые нунатаками. По пониже­ниям подледной поверхности в сто­роны морей и океанов стекают части ледникового покрова, выделяемые под названием выводных ледников. В большинстве своем они получили соб­ственные географические названия. Они достигают побережий, там обла­мываются и дают начало плавающим ледяным островам — айсбергам. В Гренландии и на Новой Земле отдель­ные ледниковые потоки спускаются от ледниковых щитов в глубокие фьорды и образуют фьордовые ледни­ки. I

Покровные ледники в прежних классификациях ледников выделя­лись под названием материковых лед­никовых покровов или оледенения гренландского типа [Калесник, 1939]. Вообще мы против применения в классификациях географических явлений по их свойствам (типологи­ческих классификациях) собствен­ных географических названий для обозначения типов. Но поскольку подобные названия в ряде случаев крепко укоренились в литературе (или соответствующие типы действи­тельно имеют местную специфику), в отдельных случаях ими придется пользоваться.

' Ледники, подобные антарктичес­кому, гренландскому, новоземель-ским и т. д., сейчас выделяют под наз­ванием ледниковых щитов, отделяя от них (в горных территориях), ледниковые покровы, когда продленный рельеф в смягчённом виде отражается в поверхности ледника.