Главная              Рефераты - Разное

по дисциплине: Введение в специальность на тему: «Исполнительные органы автоматических систем» - реферат

Министерство образования и науки РФ

Невинномысский технологический институт

Северо-Кавказский государственный технический университет

Факультет: автоматики и информатики

Кафедра: электропривода и автоматики

Реферат

по дисциплине: Введение в специальность

на тему: «Исполнительные органы автоматических систем»

Выполнил: студент 2 курса, гр. ЭПАЗ-041

Александров Р.Б.

Проверил: Ефанов В.М.

Невинномысск, 2005 г.

СОДЕРЖАНИЕ

1. ИСПОЛНИТЕЛЬНЫЕ ОРГАНЫ АВТОМАТИЧЕСКИХ СИСТЕМ. ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ... 3

1.1. Гидравлические ИМ... 4

1.2. Пневматические ИМ. 4

1.3. Электродвигательные ИМ. 4

1.4. Электромагнитные ИМ. 7

2. РЕГУЛИРУЮЩИЕ ОРГАНЫ... 8

3. АНАЛОГОВЫЕ ЭЛЕКТРОПНЕВМАТИЧЕСКИЕ И ПНЕВМОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ.. 11

4. ЭЛЕКТРОПРИВОДЫ, ПРИМЕНЯЕМЫЕ В СИСТЕМАХ ЧИСЛОВОГО ПРОГРАММНОГО УПРАВЛЕНИЯ И В РОБОТОТЕХНИЧЕСКИХ КОМПЛЕКСАХ.. 14

5. Список используемой литературы... 16

1. ИСПОЛНИТЕЛЬНЫЕ ОРГАНЫ АВТОМАТИЧЕСКИХ СИСТЕМ. ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ

Устройство, преобразующее управляющий сигнал регулятора в перемещение РО, называют исполнительным механизмом. Такое устройство обычно состоит из исполнительного двигателя, пере­даточного или преобразующего узла (например, редуктора), а так­же систем защиты, контроля и сигнализации положения выходно­го элемента, блокировки и отключения. Передаточная функция ИМ входит в ПФ регулятора, и потому ИМ должен обладать дос­таточным быстродействием и точностью, с тем чтобы осуществ­лять перемещение РО с возможно меньшим искажением закона регулирования.

Наиболее характерна классификация ИМ по виду потребляе­мой энергии (табл. 1) на гидравлические, пневматические и электродвигательные или электромагнитные.

Гидравлические ИМ. Они состоят из управляющего и исполни­тельного элементов. Обычный вариант первого элемента — золот­ник, второго — гидроцилиндр. Последний, в свою очередь, реали­зует поступательное (а) или вращательное (б) движение выходного

Табл. 1 Исполнительные механизмы.

вала (табл. 1). В гидравлических ИМ входная величина — переме­щение управляющего устройства или давление жидкости на пор­шень р, а выходная — перемещение (поворот) выходного вала S

Постоянная времени реального гидравлического ИМ при больших скоростях перемещения поршня сильно возрастает, что объясняется резким увеличением сил поршня вязкого трения, но все-таки с достаточной точностью его характеристики совпадают с характеристиками интегрирующего звена, постоянная времени которого прямо пропорциональна площади поршня и обратно пропорциональна , где p1 и p2 — давление нагнетания и слива рабочей жидкости.

1.1. Гидравлические ИМ обладают очень большим быстродействи­ем и выходной мощностью, и потому их применяют в системах автоматизации мобильных сельскохозяйственных машин и агре­гатов.

1.2. Пневматические ИМ . По устройству аналогичны гидравличес­ким. Они получили широкое распространение благодаря высокой надежности, простоте конструкции и возможности получения до­статочно больших усилий.

Крутизна статической характеристики пневматического ИМ находится в прямой зависимости от площади мембраны и в об­ратной — от коэффициента жесткости пружины (несколько возрастает по мере ее сжатия). Соответственно, при малых из­менениях выходного параметра S динамику механизма можно представить характеристиками безынерционного звена, причем коэффициент передачи которого несколько убывает с увеличе­нием S.

Общие недостатки пневматических и гидравлических ИМ — сложность операций по их наладке и, главное, необходимость специальных компрессорных (насосных) установок для их пита­ния.

1.3. Электродвигательные ИМ . В них используют электродвигате­ли постоянного и переменного тока, в том числе асинхронные двухфазные с полым ротором, с конденсаторами в цепи обмот­ки управления, а также асинхронные трехфазные двигатели. Исполнительные двигатели постоянного тока имеют независи­мое возбуждение или возбуждение от постоянных магнитов. Управляют этими двигателями, изменяя напряжение на якоре или на обмотке возбуждения (якорное или полюсное управле­ние).

В большинстве конструкций электрических ИМ применяют двухфазные и трехфазные асинхронные двигатели.

Асинхронный двухфазный двигатель приближенно можно рас­сматривать как инерционное звено, если выходная величина — уг­ловая скорость ротора, или как два последовательно соединенных звена — интегрирующее и инерционное, если выходная величи­на — угол а поворота ротора (табл. 1).

Значение коэффициента передачи зависит от способа управле­ния двигателем, а постоянная времени — от сигнала управления, возрастая с уменьшением пускового момента двигателя от 0,1 до 0,2 с (для полого ротора с обмоткой типа «беличьей клетки»).

Передаточная функция асинхронного трехфазного двигателя совпадает с ПФ инерционного звена.

Коэффициент преобразования и постоянную времени определя­ют по механической характеристике двигателя и рабочей машины.

Большинство электродвигательных ИМ работает в режиме, когда скорость перемещения не зависит от значения отклонения регулируемого параметра от заданного. Такой ИМ состоит из асинхронного электродвигателя, редуктора, концевых и путевых выключателей, датчиков (преобразователей), тормозного устрой­ства и ручного привода.

Электродвигатель с редуктором служит для преобразования электрической энергии в механическую, достаточную для переме­щения РО.

Концевые выключатели используют для отключения пускателя при достижении РО крайних положений, а путевые выключате­ли — для ограничения диапазона перемещения РО в автоматичес­ком режиме.

Датчики положения формируют сигнал, пропорциональный углу поворота выходного вала ИМ. Этот сигнал используется ин­дикатором положения на пульте оператора, а также, возможно, в качестве сигнала ОС по положению ИМ (для формирования П-закона регулирования, например).

Ручной привод обеспечивает возможность ручной перестанов­ки РО при нарушениях работы электрической части механизма.

Включение-отключение электродвигателя по команде регули­рующего устройства осуществляется через посредство электромаг­нитного или полупроводникового релейного устройства-пускате­ля.

Реверс электродвигателя электромагнитного ИМ с трехфазным электродвигателем обеспечивается изменением схемы подключе­ния двух фаз.

После размыкания силовых контактов (рис. 1, а) и отклю­чения напряжения питания электродвигателя выходной вал ИМ останавливается не сразу, а продолжает в течение некото­рого времени движение по инерции. Так называемый «выбег» может существенно ухудшать качество регулирования. Умень­шают выбег с помощью тормоза, представляющего собой элек­тролитический конденсатор С, подключаемый через размыка­ющие блок-контакты КМ1 и КМ2 к одной из статорных обмо­ток электродвигателя. В результате этого в статорной обмотке появляется ток, наводящий в статоре магнитное поле, кото­рое, взаимодействуя с вращающимся ротором, создает проти­водействующий вращению тормозной момент, уменьшающий выбег ИМ.

Главный недостаток электромагнитного релейного пускового устройства — невысокая надежность. Значительно лучшие харак­теристики имеет полупроводниковое релейное устройство (рис. 4.5, б).

Основу устройства составляют два тиристорных ключа на симисторах VS1 и VS2, которыми управляют с помощью сигналов «Больше» — «Меньше», вырабатываемых регулятором или опера­тором. Каждый из тиристорных ключей включен в цепь питания одной из статорных обмоток электродвигателя.

При отсутствии управляющих сигналов тиристорные ключи разомкнуты и электродвигатель неподвижен.

Включение симистора происходит в результате подачи на уп-

равляющий электрод отрицательного напряжения, вырабатывае­мого соответствующим выпрямительным мостом, питаемым от разделительного трансформатора Т2 (ТЗ) при наличии командно­го сигнала от регулятора или оператора.

Трансформатор 77 разделяет управляющие и силовые цепи. Ре­версирование электродвигателя осуществляется изменением схе­мы подключения обмоток, при этом одна обмотка подключается к сети непосредственно, а вторая — через фазосдвигающий конден­сатор С.

Таким образом, движение ИМ может быть описано системой уравнений, соответствующих движению ИМ в сторону открытия, неподвижному состоянию и движению в сторону закрытия,

Рис. 1. Схемы управления ИМ:

а — с трехфазным асинхронным электрическим двигателем; б — с однофазным конденсатор­ным электрическим двигателем

где Tим — время, равное времени движения ИМ из одного крайнего положения в другое; Д — зона нечувствительности релейного устройства.

Характеристика ИМ — существенно нелинейная, но линейные законы регулирования могут быть реализованы и с этим механиз­мом при использовании регулятора с импульсным выходом.

1.4. Электромагнитные ИМ . Они представляют собой соленоиды и электромагнитные муфты. Соленоидный ИМ — это катушка, втя­гивающее усилие которой при подаче управляющего сигнала U перемещает якорь на расстояние S, преодолевая сопротивление пружины.

Статическая характеристика электромагнитных ИМ, как пра­вило, нелинейная, и их используют в системах позиционного ре­гулирования.

Электромагнитные муфты могут быть фрикционными, порош­ковыми или асинхронными. Фрикционная муфта состоит из двух полумуфт, посаженных на ведущий и ведомый валы. В одной из полумуфт расположена обмотка возбуждения. При подаче на нее напряжения полумуфты сдвигаются и возникающая сила трения приводит их в движение. Такие муфты также применяют в систе­мах позиционного регулирования и защиты оборудования при аварийных нарушениях его работы.

Принцип действия порошковой муфты основан на изменении вязкости ферромагнитной массы, заполняющей муфту. При пода­че на катушку напряжения вязкость ферромагнитной массы воз­растает и передаваемый момент увеличивается.

В муфтах скольжения момент вращения передается посред­ством магнитного поля, создаваемого обмоткой, расположенной на ведущей полумуфте. При ее вращении в ведомой полумуфте, как в роторе асинхронного двигателя, индуцируется ток, от взаи­модействия которого с магнитным полем возникает момент вра­щения, увлекающий ведомую полумуфту за ведущей.

Порошковые и асинхронные электромагнитные муфты могут быть использованы и в системах непрерывного регулирования. В этом случае их характеризует ПФ инерционного звена с постоян­ной времени 0,03...0,25 с (для порошковых) и 0,11...0,45 с (для асинхронных муфт).

2. РЕГУЛИРУЮЩИЕ ОРГАНЫ

Устройство, позволяющее изменять направление или расход потока вещества или энергии в соответствии с требованиями ТП, называют регулирующим органом (РО).

Работоспособность РО определяется его характеристиками: ди­апазоном регулирования и рабочей расходной характеристикой.

Отношение максимального расхода среды Gmax к минимально­му Gmin , соответствующему перемещению РО из одного крайнего положения h min в другое h max , называют диапазоном регулирования

R = Gmax /Gmin

Зависимость расхода среды от положения РО h называют рабо­чей расходной характеристикой

G = f (h).

При разработке, выборе и наладке РО для обеспечения воз­можности эффективного управления ТП в широком диапазоне нагрузок и при разных режимах следует обеспечить достаточный диапазон регулирования и линейную рабочую характеристику в пределах этого диапазона. Используемые в сельскохозяйственном производстве РО можно разделить на три группы.

Регулирующие органы объемного типа (рис. 4.6, а). Они изменя­ют расход среды за счет изменения ее объема (например, ленточные питатели-дозаторы компонентов

Рис. 2. Регулирующие органы:

а — ленточный питатель (объемный); б — вибрационный питатель; в — ленточный питатель

(скоростной); г — тарельчатый питатель; д — шнековый питатель; е — секторный питатель-

ж — тарельчатый клапан; з — золотниковый клапан; и — поворотная заслонка

кормовых смесей). Матери­ал на ленту поступает непосредственно из бункера через воронку в его нижней части. На фронтальной грани воронки в вертикальных направляющих перемещается заслонка, посредством которой осу­ществляется регулирование производительности питателя.

Для исключения заклинивания ленты высота щели h между заслонкой и лентой должна быть не менее (2,5...3)г/тах, где dmax — максимально возможный размер частиц материала.

Регулирующие органы скоростного типа. Они изменяют произ­водительность РО за счет изменения его частоты вращения. К РО этого типа относят устройства для регулирования частоты враще­ния вытяжных вентиляторов систем вентиляции животноводчес­ких помещений, шнековых питателей-дозаторов и т. д.

В связи с большим разнообразием физико-химических свойств дозируемых компонентов кормов, других сыпучих материалов и условий, в которых работают эти РО, известно большое число конструкций их рабочих органов. Эти органы, как правило, состо­ят из активных элементов, обеспечивающих перемещение дозиру­емого материала, ограничивающих элементов, формирующих по­ток, и вспомогательных элементов.

Рациональный выбор рабочего органа и его конструктивное оформление в значительной степени обеспечивают надежность устройства и точность дозирования.

Вибрационные питатели (рис. 2, б) предназначены для подачи из бункера, не имеющего дна, мелко- и крупнокусковых материа­лов. Подачу материала регулируют изменением амплитуды вып­рямленного напряжения, подводимого к электромагнитам питате­ля. Электромагниты, жестко связанные с корпусом лотка, застав­ляют его вибрировать с определенной частотой. Материал вслед­ствие небольшого наклона лотка перемещается к его концу со скоростью, зависящей от амплитуды питающего напряжения. До­стоинства вибрационных питателей — отсутствие вращающихся частей, плавное и практически безынерционное регулирование производительности.

Ленточные питатели (рис. 2, в) предназначены для выдачи сыпучих материалов с различными размерами фракций. Произво­дительность питателя зависит от размеров фракций материала и скорости перемещения ленты v. Последнюю можно изменять с помощью частоты вращения электропривода или бесступенчатого вариатора, управляемого ИМ.

Тарельчатые питатели (рис. 2, г) предназначены для подачи из бункеров преимущественно мелкозернистых и мелкокусковых материалов. Тарельчатый питатель представляет собой круглый плоский диск (тарель), устанавливаемый под бункером и вращае­мый специальным приводом желательно с возможностью регули­рования частоты вращения п.

Между бункером и тарелью устанавливают манжеты и нож, с помощью которых осуществляется регулирование сечения потока материала. Более точное регулирование осуществляют поворотом ножа или изменением частоты вращения тарели. Производитель­ность питателя зависит от изменения физических свойств матери­ала, высыпающегося на тарель.

Шнековые питатели (рис. 2, д) более всего пригодны для вы­дачи мелкозернистых и мелкодисперсных материалов.

Производительность шнекового питателя пропорциональна квадрату диаметра рабочего винта D, шагу S и частоте его враще­ния п.

Секторные питатели (рис. 2, е) предназначены для выдачи мелкозернистых материалов. Основа конструкции секторного пи­тателя — вращающийся барабан, разделенный радиальными пере­городками на несколько секторов.

В частном случае (барабанный питатель) сектор может быть и один. Секторный питатель устанавливают под бункером. Матери­ал выдается за счет поочередного заполнения и опорожнения сек­торов в процессе вращения ротора. Производительность регулируют, изменяя частоту n вращения рабочего органа.

Недостатком питателя является зависимость степени заполне­ния секторов от числа оборотов п вращения ротора.

Регулирующие органы дроссельного типа. Они изменяют расход вещества за счет изменения скорости и площади сечения потока жидкости или газа при прохождении его через дросселирующее устройство, гидравлическое сопротивление которого — перемен­ная величина. Регулирующие клапаны (рис. 2, ж и з) отличаются формами плунжера 1 и седла 2.

Каждая конструкция характеризуется прежде всего зависимос­тью площади проходного сечения F клапана от положения плун­жера.

Для тарельчатого клапана, показанного на рисунке 4.6, ж, эту характеристику называют конструктивной и рассчитывают по формуле (h max = 0,25D )

где D — диаметр отверстия, м.

Для золотникового клапана (рис. 4.6, з) с прямоугольным сече­нием окон

где n — число окон; b и h — ширина и высота окна, м.

Поворотные заслонки (рис. 4.6, и) круглой или прямоугольной формы предназначены в основном для регулирования расхода газообразных сред при малых перепадах давления на регулирующем органе.

Зависимость площади проходного сечения от угла поворота заслонки имеет вид

где Dy — диаметр условного прохода круглой или равной ей по площади прямо­угольной заслонки, численно равный внутреннему диаметру круглой заслонки, м; φ — угол поворота заслонки, изменяющийся от 0 до φmax .

Работоспособность системы автоматического управления в значительной мере зависит от правильности выбора регулирую­щего органа. Выбирают конкретный РО по данным справочников или каталогов в соответствии с наибольшим значением пропуск­ной способности.

3. АНАЛОГОВЫЕ ЭЛЕКТРОПНЕВМАТИЧЕСКИЕ И ПНЕВМОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ

Электропневматический преобразователь типаЭПП-63.

Преобразователь ЭПП-63 предназначен для преобразова­ния сигнала постоянного тока 0—5 мА в пропорциональ­ный унифицированный пневматический сигнал 0,2— 1 кгс/см2. Принципиальная схема прибора приведена на рис. 3

При установившемся режиме постоянный ток, про­ходя по катушке 1, укрепленной на основном рычаге 5, создает усилие втягивания катушки в зазор постоянного магнита 2, которое уравновешивается на рычажной системе при определенном давлении в сильфоие обратной связи 6.

При изменении тока нарушается равновесие рычажной системы и рычаги 5 и 7, соединенные гибкой тягой 8, поворачиваются вокруг шарниров, изменяя зазор между соплом 3 и укрепленной на основном рычаге заслонкой 4. Это вызывает изменение давления в междроссельной

камере А, вследствие чего нарушается равновесие диффе­ренциальной мембраны 9, и шток, жестко связанный с мембраной, изменяет степень открытия клапана 11. При этом начинает изменяться давление в камере выхода Б и в сильфоне обратной связи. Равновесие рычажной системы восстановится при определенном соотношении между выходным давлением и входным током при новом соотношении давлений в выходной и междроссельной камерах, что соответствует новым значениям перепадов давлений на постоянных дросселях 10 и 12.

Рис. 3. Принципиальная схема электропневматиче­ского преобразователя ЭПП-63

Основная допустимая погрешность выходного сигнала не превышает ±1% от диапазона его изменения. Пневма­тическая часть прибора питается сухим и чистым воздухом давлением 1,4 кгс/см2 , длина трассы передачи пневмати­ческих импульсов до 300 м, расход воздуха 2 л/мин. Габаритные размеры прибора 194 X 166 X 375 мм. Изготовитель: Опытный завод «Энергоприбор», Москва.

Кодовый электропневмамческий преобразователь КЭПП-2М. Прибор предназначен для преобразования электрического параллельного восьмиразрядного двоич­ного кода в пневматический аналоговый сигнал 0,2— 1 кгс/см2. Управление преобразователем осуществляется от вычислительной машины. Принцип действия прибора основан на суммировании расходов воздуха, проходящего через параллельно включенные дроссели с различными условными проходными сечениями при постоянном пере­паде давления на них, при этом предусматривается авто­матический сдвиг начальной точки диапазона преобра­зования. Преобразователь состоит из семи регулируемых разрядных дросселей, настроенных так, что их условные проходные сечения относятся, как 1 : 2 : 4 : 8 : 16 : 32 : : 64, электропневмопреобразователей, отключающих или подключающих разрядные дроссели, следящей системы нулевого опорного давления и схемы автоматического сдвига начала преобразования. Пневматическая схема задатчика выполнена на базе универсальной системы элементов промышленной пневмоавтоматики.

Напряжение питания 27 В постоянного тока, номи­нальный ток управления не более 150 мА. Давление пита­ния 1,4 кгс/см2, объемный расход воздуха не более 8 л/мин. Основная погрешность —1,5%.

Изготовитель: Завод приборов, Усть-Каменогорск.

В качестве электропневматического аналогового пре­образователя может быть использован также преобразо­ватель ферродинамический функциональный ПФФ, работающий с выходным пневматическим преоб­разователем ПП.

Пнэвмоэлектрический преобразователь типа ПЭ-55М.

Прибор предназначен для преобразования унифицирован­ного пневматического сигнала (0,2—1 кгс/см2 ) в унифи­цированный электрический сигнал постоянного тока (0—5 мА).

Измерительным элементом преобразователя является манометрическая трубчатая одновитковая пружина 1 (рис. 4). Преобразование перемещения ее конца в усилие осуществляется с помощью спиральной пру­жины 2, которая укреплена на рычаге 3, вращающемся вокруг оси 4. На рычаге 3 укреплен также медный диск 7, который находится в высокочастотном поле плоской катушки 6, входящей в базовый контур генератора 9. Генератор выполнен двухконтурным по схеме с общим коллектором. При перемещении коромысла изменяются параметры базового контура, что приводит к изменению режима генератора. Изменение режима генератора вызы­вает изменение постоянной составляющей коллекторного тока и тока базы, а следовательно, и выходного тока. В цепь коллектора включена катушка обратной связи 5, укрепленная на рычаге 3 в поле постоянного магнита 8. Выходной ток, обтекая катушку 5, создает момент обрат­ной связи, противоположный моменту, создаваемому пружиной 2, вследствие чего коромысло будет переме­щаться до наступления нового состояния равновесия.

В блоке / собраны электрические элементы, обеспе­чивающие питание генератора, фильтрацию выходного тока и стабилитроны для смещения нуля. На соединитель­ной колодке 11 роме зажимов для подключения питания и нагрузки, имеются клеммы, предназначенные для про­верки исправности преобразователя.

Класс точности преобразователя 1. Пневматическая часть прибора питается сухим и чистым воздухом давле­нием 1,4 кгс/см3 , электрическая часть — переменным током напряжением 220 В, потребляемая мощность 5 В-А. Суммарное сопротивление проводов и нагрузки не должно превышать 2,5 кОм. Преобразователь выпускается в пыле-защищенном и брызгонепроницаемом исполнении. Габа­ритные размеры 314 X 220 X 132 мм. Изготовитель: Чебоксарский завод электрических исполнительных механизмов.

Рис. 4 Принципиальная схема пневмаэлектрнческого преобразователя ПЭ-55М

4. ЭЛЕКТРОПРИВОДЫ, ПРИМЕНЯЕМЫЕ В СИСТЕМАХ ЧИСЛОВОГО ПРОГРАММНОГО УПРАВЛЕНИЯ И В РОБОТОТЕХНИЧЕСКИХ КОМПЛЕКСАХ

Управление исполнительными механизмами осуществляется с помощью систем привода, преобразующих сигналы управления в соответствующее сос­тояние механизма. Робототехнические комплексы и оборудование с ЧПУ пред­ставляют собой сложные устройства, содержащие большое количество меха­низмов с различными типами двигателей, работа которых организуется в соот­ветствии с общей программой с целью получения требуемого результата наи­более эффективным путем. Отдельные механизмы снабжаются электричес­ким, гидравлическим или пневматическим приводом. Наиболее распростра­ненным типом привода является электропривод.

Существующие системы ЭП классифицируются по различным признакам. Самым существенным из них является тип используемого электродвигателя, в соответствии с которым различают следующие классы электроприводов: 1) ЭП с двигателем постоянного тока; 2) ЭП с двигателем переменного тока; 3) ЭП с шаговым двигателем. Каждый из названных классов может быть под­разделен на более мелкие группы в зависимости от конкретных типов электродвигателей и других признаков. С учетом основных функций механиз­ма и режимов его работы различают ЭП зажимных устройств и устройств натя­жения, ЭП систем стабилизации скорости, позиционный ЭП, следящий ЭП и др.

ЭП с двигателями постоянного и переменного тока используются в систе­мах непрерывного и релейного управления для получения заданного закона движения. ЭП с шаговыми двигателями реализуют заданное движение как результат суммирования отдельных шаговых перемещений.

Шаговые двигатели имеют специфическую конструкцию, позволяющую фиксировать каждый шаг перемещения. По принципу действия ШД можно рас­сматривать как синхронный двигатель, позволяющий осуществлять синхрон­ность движения при пуске и торможении, а также допускающий длительную фиксированную остановку с протеканием постоянного тока в обмотках рото­ра. В то же время ШД является аналогом обращенной машины постоянного тока с поворотом щеток коллектора, имитируемым коммутатором ШД.

ШД различаются по числу фаз, по типу магнитной системы и способу воз­буждения. Наиболее распространенными являются многофазные ШД с числом фаз m , равным 3, 4 и 5.

По способу возбуждения ШД делят на следующие виды:

1) ШД с активным ротором (с электромагнитным возбуждением или магнитоэлектрические, т.е. с возбуждением постоянными магнитами);

2) индукторные ШД, имеющие зубчатый пассивный ротор с числом зубцов Z и гребенчатые зубчатые зоны статора. Каждая гребенчатая зубчатая зона

представляет собой выступающий полюс статора. В симметричной магнитной системе обмотки противоположных полюсов объединяются в фазы, так что число пар полюсов р статора равно числу фаз т . Число зубцов ротора Zn вы­бирается так: если ось какого-либо полюса статора совпадает с осью зубца ротора, то ось соседнего полюса статора оказывается сдвинутой относительно оси ближайшего зубца ротора на угол 2π/(mZp ). При симметричной коммута­ции каждому переключению фаз соответствует угол поворота вектора намаг­ничивающих сил а = 2π/m (электрических радиан) или аг = 2 π /2р (геометри­ческих радиан). В результате переключения ротор займет новое положение, т.е. повернется на угол ам = 2π/mZ . Таким образом, механический шаг а ока­зывается меньше геометрического шага поля аг . Отношение aг /aм = mZp /2p называется электромагнитной редукцией (ЭР), а двигатель с ЭР, большей или равной 1, — редукторным.

Классификационным признаком индукторного ШД является постоянство потокосцепления контура возбуждения, который реализуется за счет постоян­ной составляющей тока обмоток фаз (самовозбуждение) или специальной об­мотки возбуждения (независимое возбуждение);

3) индукторно-реактивные ШД, не имеющие отдельного контура возбуж­дения. При разнополярном управлении такие ШД развивают только реактив­ный момент, пропорциональный квадрату переменной составляющей тока фа­зы. При однополярной коммутации возникают одновременно реактивный и активный, или индукторный, момент, пропорциональный постоянной состав­ляющей тока в фазе;

4) реактивные ШД, электромагнитный момент которых является реактив­ным независимо от наличия или отсутствия постоянных составляющих тока в фазах.

5. Список используемой литературы

1. «Автоматизация технологических процессов». Бородин И.Ф., Скудник Ю.А. 2004г.

2. Справочное пособие «Автоматические приборы, регуляторы и вычислительные системы»

3. «Системы программного управления производственными установками». Ильин О.П.

4. «Теория автоматического управления». Под ред. Воронова А.А.

5. «Основы теории автоматического управления». Воронов А. А.