Главная              Рефераты - Разное

«Организация эвм» - реферат

Курсовая работа по дисциплине «Организация ЭВМ».

Внешняя память.

Авторы работы:

Александров Николай, студент группы С-34.

Кузьмин Евгений, студент группы С-34.

Руководитель:

д. т. н. профессор С.Т. Мартирасян.

Введение

У оперативной памяти есть два важных недостатка. Первый — это цена. Второй недостаток связан с тем, что оперативная память полностью очищается при выключении компьютера, то есть ее нельзя использовать для длительного хранения программ и данных. Поэтому для длительного хранения больших объемов информации нужны другие носители. В качестве таких носителей используют магнитные, оптические, магнитооптические и другие. Скорость обращения к данным у них в тысячи раз меньше, чем у оперативной памяти, но зато меньше цена хранения одного мегабайта, сейчас цена 1 мегабайта порядка одного цента. проблем

В основе действия всех внешних накопительных устройств лежит принцип механического перемещения носителя относительно устройства, выполняющего считывание и запись информации. Чем выше скорость движения, тем быстрее работает устройство. Для достижения сверхвысоких скоростей требуется высо­чайшая точность изготовления механических частей и герметичное исполнение прибора, исключающее попадание пыли, дыма, влаги и прочего мусора.

Перфорационная карта, перфорированная карта, перфокарта - носитель информации в виде карточки из бумаги, картона, реже из пластмассы, стандартных формы и размеров, на которую информация наносится пробивкой отверстий (перфораций). Перфорационные карты применяют главным образом для ввода и вывода данных в ЭВМ, а также в качестве основного носителя записи в перфорационных вычислительных комплектах. Существует большое число видов карт, различающихся формой, размерами, объёмом хранимой информации, формой и расположением отверстий. В СССР использовали перфорированные карты в основном с 80 колонками (в устаревших моделях вычислительных устройств встречаются 45-колонные), изготовляемые из плотного картона толщиной 0,18 мм в виде прямоугольника со сторонами 187,4 и 82,5 мм. Для удобства подборки и укладки левый верхний угол карты срезан. Колонки размечают поперёк карты; вдоль карта разбивается на 12 строк (10 основных и 2 дополнительные). На одной перфорированной карте можно записать до 80 знаков (примерно 10—15 слов). Скорость обработки машинных перфокарт достигает 2000 карт в 1 мин. Воспроизведение (считывание) информации осуществляется с помощью электромеханических считывателей или фотоэлементами. За рубежом применяли также перфокарты с 90, 40 и 21 колонкой с 6, 12 и 10 строками соответственно. Разновидность перфокарт — карты с краевой перфорацией, применяемые в информационных системах, и карты для пишущих автоматов.

Карта с краевой перфорацией, носитель информации в виде карты из плотной бумаги, тонкого картона или пластмассового листа стандартной формы и размеров, имеющей по краям один или несколько рядов отверстий (перфораций). Информация размещается на средней части карты, а характеризующие ее признаки кодируются системой прорезей от отверстий к краям карты. Поиск и выборка документа в наборе карт производится механическим установлением тождества признаков искомой и имеющейся информации с помощью спиц, которые пропускают через отверстия, соответствующие заданным признакам. Карточки, у которых спицы попали в прорези, механически отделяются от карточек, не имеющих прорезей, т. е. с отличными от заданных признаками. Карточки с краевой перфорацией применяли в информационных системах как средство малой механизации, значительно ускоряющее и упрощающее процесс информационного поиска.

Магнитная лента

Магнитная лента представляет собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства М. л. характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная М. л. с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (-Fe2 O3 ), двуокиси хрома (CrO2 ) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи. В 1973 фирмой «Филипс» (Нидерланды) разработан высококачественный порошок с очень мелкими игольчатыми частицами железа. В качестве основы М. л. используются полиэтилентелефталатная (лучшая), поливинилхлоридная, ди- и триацетатная плёнки. Рабочий слой наносится на основу в виде магнитного лака, состоящего из магнитного порошка, связующего вещества, растворителя, пластификатора и различных добавок, улучшающих качество М. л. После нанесения магнитного лака и его затвердевания М. л. сматывается в рулоны, а затем разрезается на полосы нужной ширины. Для улучшения качества поверхности рабочего слоя М. л. каландрируют или полируют. М. л. желательно хранить в помещении с кондиционированным и обеспыленным воздухом при температуре 20 ± 5 °С и относительной влажности 60 ± 5%. Для работы в особо тяжёлых климатических условиях применяют металлические или биметаллические М. л.

Ширина и толщина М. л. зависят от её назначения. В звукозаписи используют М. л. шириной 3,81 и 6,25 мм и толщиной 9, 12, 18, 27,37 и 55 мкм (кассетные и катушечные бытовые магнитофоны, студийные магнитофоны). Видеозапись осуществляется на М. л. шириной 50,8 и 25,4 мм и толщиной 37 мкм (студийные видеозаписи), 6,25 и 12,7 мм при толщине 37 мкм (бытовые видеомагнитофоны). В запоминающих устройствах применяют М. л. шириной 12,7 мм и толщиной 37 мкм (в ЭВМ первого «поколения» использовались также М. л. шириной 19,05 и 35 мм при толщине свыше 50 мкм ). В измерительной аппаратуре применяются М. л. шириной 6,25 мм и толщиной 18 мкм, а также 12,7 и 25,4 мм и толщиной 37 мкм. В кино используют перфорированные М. л. шириной 35 мм и толщиной 150 мкм. В СССР тип М. л. обозначается комбинацией из пяти элементов: первый элемент — буква, обозначает назначение (например, А — звукозапись; Т — видеозапись и так далее); второй элемент — цифра (от 0 до 9), указывает на материал основы; третий элемент — цифра (от 0 до 9), обозначает толщину М. л. (например, 2 — 18 мкм; 3 — 27 мкм и т.д.); четвёртый элемент — цифра (от 01 до 99), обозначает технологическую разработку; пятый элемент — ширина М. л. в мм. Иногда ставят шестой дополнительный буквенный индекс: П — для перфорированных М. л.; Р — для М. л. к студийным магнитофонам; Б — для М. л. к бытовым магнитофонам. Например, А-4402-6 обозначает М. л. для звукозаписи на лавсановой основе, толщиной 37 мкм, шириной 6,25 мм (технологическая разработка — 02).

Разрабатываются металлизированные М. л. с тонким рабочим слоем из сплавов Со—Ni, Со—Р, Со—N—Р и Со—W, нанесённым электроосаждением, химическим восстановлением или напылением в вакууме.

Ярким примером магнитной ленты является компакт кассета .

Компа́кт-кассе́та (аудиокассе́та или просто кассе́та) — носитель информации на магнитной ленте, во второй половине 20 века— распространённый медианоситель для звукозаписи.

Появление стандарта

Массовое производство компакт-кассет впервые было организовано в Ганновере в 1964 году. В в 1965 году корпорацией Philips было запущено производство музыкальных кассет, а в сентябре 1966 года музыкальные кассеты были представлены в США.

Первоначальное предложение компании Philips состояло из 49 наименований. Компакт-кассеты того времени были предназначены для диктофонов и для использования в специальной аппаратуре. Они совершенно не подходили для записи музыки. Кроме того, конструкция кассет ранних моделей была ненадёжной.

В 1971 году компания Advent Corporation впервые представила кассету c магнитной лентой на основе оксида хрома . Появление этих кассет кардинально изменило судьбу этого вида носителей аудиоинформации. Качество звука на них было намного выше. Это привело к появлению кассет с записанной на них (в фабричных условиях) музыкой (фонограммой), кроме того, кассеты начали использоваться для самостоятельной записи музыки.

Корпус и механизм

Корпус имеет размеры 100,4 × 63,8 × 12,0 миллиметров и сделан из пластмассы; в дешёвых моделях каждая половинка корпуса представляет собой единую деталь из прозрачного пластика (в кассетах более раннего производства это также непрозрачный чёрный или белый пластик, он немного уступает в привлекательности прозрачному, однако менее подвержен растрескиванию при механических воздействиях), в более дорогих возможны составные конструкции. Внутри кассеты находятся две катушки с лентой диаметром до 52,0 мм при намотке всей ленты на одну катушку (однако при использовании более тонкой пленки 18 мкм для 90-минутных кассет 60-минутная кассета будет иметь диаметр полной катушки около 42 мм); расстояние между осями катушек 42,5 мм. Длина плёнки для 90-минутных кассет составляет 135 метров при толщине 18 мкм. Плёнка помещается на пластмассовую катушку внешним диаметром не менее 20,0 мм (как правило диаметр сердечника составляет 22 мм), содержащую шесть зубцов, захватываемых валами лентопротяжного механизма, и втулку, крепящую конец ленты к катушке. Между катушками и половинками корпуса прокладываются пластины-щёчки из полимерной плёнки, иногда с нанесением антифрикционного материала (графит?) или на бумажной основе, уменьшающие трение. Кассеты могут собираться на пяти саморезах (разборные) или быть неразборными (некоторые кассеты фирмы TDK имеют четыре самореза по краям, а в центре направляющую). Лента, сматываемая с подающей катушки, проходит через пару направляющих роликов (в нижних углах корпуса), задающих положение ленты — строго по оси корпуса.

Снизу корпус кассеты имеет пять окон (общая ширина, включая перегородки, 67,0 мм), через которые осуществляется доступ к ленте:

- Для стирающей головки (в прямом направлении) или прижимного ролика (в обратном)

- Для концевого выключателя «жёсткого» автостопа (в обратном направлении)

- Для головок записи и воспроизведения (или универсальной головки в двухголовочных аппаратах)

- Для концевого выключателя «жёсткого» автостопа (в прямом направлении)

- Для прижимного ролика (в прямом направлении) или стирающей головки (в обратном направлении)

Принципиальный недостаток компакт-кассеты — невозможность «вытянуть» плёнку из корпуса — так, как это делает, например, лентопротяжный механизм видеомагнитофона; если бы не вышеупомянутые окна и перегородки между ними, качество звучания можно было бы обеспечить меньшей ценой — но при этом сама кассета не была бы такой живучей в «полевых», уличных условиях. В 1976 году Sony предложила рынку формат Elcaset, в котором этот недостаток был ликвидирован, но рынок не принял его.

В центральном окне позади ленты расположена пружина с прижимной фетровой подушечкой, к которой магнитная головка прижимает ленту. В магнитофонах с «закрытым» двухвальным механизмом эта пружина не нужна (прижим обеспечивает калиброванное натяжение ленты) и даже вредна (лишняя деталь — лишний источник вибрации). Поэтому в совершенных лентопротяжных механизмах (Nakamichi, TEAC) предусмотрены специальные рычаги, отодвигающие подушку и пружину от ленты. Ещё дальше, между пружиной и катушками, расположен магнитный экран, препятствующий наводкам с вращающихся катушек на головку воспроизведения.

Сверху корпус кассеты имеет два прямоугольных кармана[ (выемки) размером 6,0 × 5,0 мм, прикрытых пластмассовыми упорами. Для защиты ценной записи от непреднамеренного стирания (перезаписи) следует выломать упор со стороны принимающей катушки. При попытке записать что-либо на кассету с выломанным упором рычаг лентопротяжного механизма, проваливающийся в карман, физически блокирует включение режима записи. Существовали, но не закрепились на рынке кассеты с многоразовым сдвижным упором.

Также на верхнем ребре кассеты предусмотрены четыре кармана (выемки) для датчиков автоматического распознавания типа ленты (два для каждого направления движения ленты; см. таблицу ниже); комбинация открытых и закрытых карманов, нащупываемых концевыми выключателями магнитофона, и определяет тип ленты.

Магнитная лента — это прозрачная полимерная основа, покрытая ферромагнитным рабочим слоем из порошка магнитных металлов или их оксидов. Ширина ленты компакт-кассеты равна 3,81 мм, при этом максимальная ширина каждой из четырёх магнитных дорожек не более 0,66 мм; левому каналу соответствуют крайние дорожки, правому - средние. Первоначально в аудиокассете, разработанной Philips, использовался порошок гамма-оксида железа (Fe2 O3 ); впоследствии стандартом IEC таким лентам было присвеоено обозначение Тип I, лентам на основе диоксида хрома — Тип II, на основе металлических порошков — Тип IV. Ленты Тип IV («Metal») обеспечивают наибольший динамический диапазон, но для того чтобы им воспользоваться, канал записи-воспроизведения должен выдерживать уровни сигнала на порядок большие, чем для обычных лент. В настоящее время продолжается выпуск кассет Type I и Type II; выпуск кассет Type IV прекращён в 1997 году.

Любая кассета имеет в начале и конце чистую (белую или прозрачную) плёнку — ракорд. Эта плёнка плотная, она не содержит магнитных элементов и скреплена с основной плёнкой полоской липкой ленты либо специальным клеем. На ней обязательно присутствуют два непрозрачных (тёмно-красных) маркера, необходимые для работы «мягкого» автостопа. Ракорд не является чистящей лентой: использовать любые чистящие средства следует строго по назначению, регулярный контакт головки с чистящей плёнкой привёл бы к ненужному загрязнению плёнки и преждевременному износу головок. Однако в кассетах, изготавливаемых на студиях звукозаписи и некоторых фабричных, может применяться ракорд с мягкими чистящими свойствами. Существуют специальные чистящие кассеты с одноразовой ворсистой плёнкой, которая чистит головки от возможных постепенных загрязнений. Продолжительность протяжки чистящей плёнки не должна превышать двух минут; ещё лучших результатов можно достичь, применяя дедовский способ — спирт и ватная палочка.

Продолжительность кассеты указывается на коробке (в минутах). Помимо стандартных лент на 60 и 90 минут (толщина 27 и 18 мкм), в разное время в продажу выпускались ленты на 46, 74, 100, 120, 150. Сверхтонкие плёнки кассет на 150 и 180 минут оказались непрочными и были изъяты из продажи. Как правило, длительность свыше 90 минут — редко встречающиеся кассеты. Качественная лента в этом классе — TDK MA-110 (Type IV), производившаяся короткой серией в конце 1980-х годов. Кассету StereoChrom C120 фирмы Agfa (Type II) также можно назвать удачной.

Понятие типичной продолжительности аудиокассеты применимо только для чистых кассет. В случае кассет с записью фабричного производства продолжительность может быть самой разной и отличаться от стандартной в меньшую или большую сторону (но, как правило, не более 60 минут). Она зависит от суммарной продолжительности песен, записанных на кассету. В процессе производства такой кассеты длина плёнки рассчитывается таким образом, чтобы на неё поместилась вся аудиоинформация и не осталось пустого места.

Жесткий диск (Hard Disk Drive)

Пока этим требованиям в наибольшей степени удовлетворяют так называемые жесткие диски ( HDD Hard Disk Drive ), хотя не исключено появление в будущем других устройств, обладающих лучшими свойствами. Три основных требования к жесткому диску — это емкость, быстродействие и минимальные габариты (о надежности мы не говорим, поскольку это, само собой, разумеется). Емкость жестких дисков измеряется в гигабайтах (Гбайт). По состоянию на сегодняшний день емкости жестких дисков уже перевалили за отметку 100 Гбайт.

Для создания существующих магнитных дисков применяются технологии, при которых на пластину напыляется один слой магнитного материала - носителя информации, (как на верхнем рисунке).

Традиционный способ записи на магнитную пластину (вверху). При уменьшении размеров единичных ячеек с горизонтальной намагниченностью резко увеличивается вероятность их спонтанного размагничивания. Новый способ, предложенный Fujitsu (внизу). Использование дополнительного подслоя и вертикального намагничивания позволяет достичь в восемь раз большей плотности записи.

Требование емкости напрямую противоречит требованию минимальных габари­тов. Это противоречие снимается благодаря непрерывному улучшению техно­логии изготовления. Сегодня жесткий диск — это прецизионный прибор, изготовленный с привлечением самых последних достижений технологической науки. Он хрупок, не выносит ударов и требует предельной аккуратности в обращении. По этим причинам жесткий диск стационарно помещается внутри корпуса системного блока. Жесткий диск в совокупности с механическими и электронными устройствами, обеспечивающими его функционирование, называется дисковым накопителем или НМД.

Конструкция жесткого диска

Дисковый накопитель обычно состоит из набора пластин, представляющих собой металлические диски (сегодня большое распространение получили диски из композитных материалов), покрытые магнитным материалом и соединенные между собой при помощи центрального шпинделя. Над каждой поверхностью располагается считывающая головка. При высоких скоростях вращения дисков головки «парят» над их поверхностями на воздушной подушке. Для записи данных используются обе поверхности пластины (керамические, алюминиевые, или из композитных материалов, на которые нанесено специальное магнитное покрытие). В современных дисковых накопителях используется от 4 до 9 пластин. Шпиндель вращается с высокой постоянной скоростью (обычно 3600, 5400 или 7200 оборотов в минуту, но встречаются и более высокие скорости до 15000 об/мин). Каждая пластина содержит набор концентрических записываемых дорожек. Обычно дорожки делятся на блоки данных объемом 512 байт, иногда называемые секторами . Перед данными располагается заголовок (header), состоящий из преамбулы(preamble), которая позволяет головке синхронизироваться перед чтением или записью данных и служебной адресной информацией. После данных идет код с исправлением ошибок (код Хемминга или код Рида-Соломона). Между соседними секторами находится межсекторный интервал. Так что форматированный сектор составляет уже 571 байт. Количество блоков, записываемых на одну дорожку зависит от физических размеров пластины и плотности записи. Как правило, производители указывают размер неформатированного диска (как будто каждая дорожка содержит только данные, но более честно было бы указывать вместимость форматированного диска, когда не учитываются преамбулы, исправляющие коды и межсекторные интервалы. Емкость форматированного диска обычно на 15-20% меньше емкости неформатированного диска.

Данные записываются или считываются с пластин с помощью головок записи/считывания, по одной на каждую поверхность. Линейный двигатель представляет собой электромеханическое устройство, которое позиционирует головку над заданной дорожкой. Обычно головки крепятся на кронштейнах, которые приводятся в движение каретками.

Основные узлы НМД:

· магнитные диски;

· головки записи/считывания;

· двигатель привода дисков;

· механизм привода головок;

· печатная плата с контроллером диска;

· воздушные фильтры, кабели, разъемы и т.д.

Механизм привода головок, с его помощью головки передвигаются от центра диска к его краям и устанавливаются на заданный цилиндр. Различают приводы с шаговым двигателем и сервопривод (с подвижной катушкой), использующий сигнал обратной связи для точного позиционирования над выбранной дорожкой (цилиндром). Сервопривод более дорогое и более точное устройство.

Фильтры, используется два вида фильтров:

· рециркуляции;

· барометрические, необходимые для выравнивания давления внутри устройства с атмосферным.

Накопитель на магнитных дисках (НМД) представляет собой набор пластин, магнитных головок, кареток, линейных двигателей плюс воздухонепроницаемый корпус. Дисковым устройством называется НМД с относящимися к нему электронными схемами (контроллерами). Некоторые контроллеры содержат микропроцессор, производят буферизацию совокупности секторов и кэширование данных, а также устраняют поврежденные секторы.

Основные характеристики НМД:

· тип привода головок;

· способ парковки;

· надежность;

· быстродействие, производительность, стоимость;

· вид интерфейса (IDE, EIDE, SCSI).

Производительность диска является функцией времени обслуживания, которое включает в себя три основных компонента: время доступа, время ожидания и время передачи данных. Время доступа - это время, необходимое для позиционирования головок на соответствующую дорожку, содержащую искомые данные. Оно является функцией затрат на начальные действия по ускорению головки диска (порядка 6 мс), а также функцией числа дорожек, которые необходимо пересечь на пути к искомой дорожке. Характерные средние времена поиска - время, необходимое для перемещения головки между двумя случайно выбранными дорожками, лежат в диапазоне 10-20 мс. Время перехода с дорожки на дорожку меньше 10 мс и обычно составляет 2 мс. Вторым компонентом времени обслуживания является время ожидания. Чтобы искомый сектор повернулся до совмещения с положением головки требуется некоторое время. После этого данные могут быть записаны или считаны. Для современных дисков время полного оборота лежит в диапазоне 8-16 мс, а среднее время ожидания составляет 4-8 мс.

Последним компонентом является время передачи данных, т.е. время, необходимое для физической передачи байтов. Время передачи данных является функцией от числа передаваемых байтов (размера блока), скорости вращения, плотности записи на дорожке и скорости электроники. Типичная скорость считывания информации равна 1-15 Мбайт/с.

Пример:

HAD компании Seagate Technology, объем – 9 Гбайт, среднее время доступа – 8 мс, скорость – 7200 об/мин, интерфейс Fast SCSI -2, скорость считывания – 13 Мбайт/сек.

Способы кодирования данных

В современных системах для процесса записи/считывания используется гигантский магнито-резистивный эффект (GMR – Giant magnetic Resistance), который позволяет реализовать достаточно высокую плотность записи. Сам процесс записи и считывания основан на физических явлениях, описанных еще Фарадеем. Проиллюстрируем эти процессы с помощью рисунка 8.1.

Индуктивная

катушка

Магнитная

головка


Зазор Магнитные домены


S N N S S N N S S N N S S N N S S N N S

Сигнал записи


Физическая зона

Сигнал считывания

Направление вращения

Рис. 10.1 Схема процесса записи/считывания

Поскольку количество зон смены знака (их называют битовые ячейки) ограничено возможностями технологии применяются различные способы кодирования, позволяющие, как бы, “втиснуть” как можно больше битов данных в отведенное количество зон.

Различают:

- частотная модуляция – FM (одинарная плотность – Single density);

- модифицированный частотный сигнал - MFM (двойная плотность – Double density);

- кодирование с ограниченной длиной поля записи – RLL (самый популярный сегодня).

Интерфейсы НМД

В состав компьютеров часто входят специальные устройства, называемые дисковыми контроллерами. К каждому дисковому контроллеру может подключаться несколько дисковых накопителей. Между дисковым контроллером и основной памятью может быть целая иерархия контроллеров и магистралей данных, сложность которой определяется главным образом стоимостью компьютера. Поскольку время передачи часто составляет очень небольшую часть общего времени доступа к диску, контроллер в высокопроизводительной системе разъединяет магистрали данных от диска на время позиционирования так, что другие диски, подсоединенные к контроллеру, могут передавать свои данные в основную память. Поэтому время доступа к диску может увеличиваться на время, связанное с накладными расходами контроллера на организацию операции ввода/вывода.

HDD

CPU

Контроллер

диска

Основная

память

Интерфейс SCSI

Главный адаптер


Шина SCSI

Рис. 10.2 Структура интерфейсов НМД

Необходимо отметить, что в последнее время все большее распространение получил интерфейс SCSI. Он не только более производителен, но и поддерживает до 16 устройств, что очень важно для файл-серверов и серверов сети.

Структура хранения информации на жестком диске

Компьютеру важно не просто записать информацию на диск, а так записать, ее, чтобы потом найти, причем быстро и безошибочно. Поэтому на жестком диске создается специальная структура для хранения данных. Операция созда­ния такой структуры называется форматированием диска. После форматиро­вания каждый файл, записанный на диск, может иметь собственный адрес, выраженный в числовой форме.

Несмотря на то, что физически жесткий диск состоит из п дисков и имеет 2п поверхностей, для изучения его структуры нам достаточно рассмотреть только одну поверхность. Эта поверхность разбивается на концентрические дорожки. В зависимости от конструкции диска таких дорожек может быть больше или меньше, и каждая дорожка имей свой уникальный номер.

Если мы теперь вновь вспомним, что реальный жесткий диск имеет много поверхностей, то у нас появится новый термин — цилиндр. До­рожки с одинаковыми номерами, но принадлежащие разным поверх­ностям, образуют один цилиндр. Каждый цилиндр имеет номер, совпадающий с номером входящих в него дорожек.

Дорожки, в свою очередь, разбиваются на секторы. Длина каждого сектора равна 512 байтам данных. Таким образом, сектор — наименьший элемент структуры жесткого диска. Для того чтобы записать, а затем затребовать информацию, необходимо задать адрес, состоящий из трех чисел: номера цилиндра, номера поверхности (номера головки) и номера сектора. Этот метод называется CHS (Cylinder Head Sector). Современным развитием этого метода является механизм трансляции линейных адресов и линейной адресации LBA (Logical Block Adressing), связанный однозначно с CHS.

Таблица размещения файлов

Файлы в кан­целярском понимании — это «дела», с обычными человеческими именами, пылящиеся в таком месте, куда месяцами не ступает нога человека, но установить это место всегда можно по номеру «дела», если заглянуть в амбарную книгу, называемую реестром.

Роль такого «реестра» на жестком диске выполняет специальная таблица, кото­рая называется FAT-таблицей File Allocation Table (по-русски: таблица размещения файлов). Она находится на служебной дорожке жесткого диска и должна именовать, сохранять и производить поиск данных. Физическое повреждение секторов, в которых записана эта таблица, равносильно краху всей информа­ции, хранящейся на жестком диске, поэтому эта таблица всегда продублирована, и операционная система компьютера бережно следит за тем, чтобы информация в разных экземплярах таблицы строго совпадала. Для ОС W.95/98 это были FAT 16 и FAT 32. В этих случаях размер кластера определялся объемом HDD. Однако FAT 32 поддерживал только 32 Гбайт (W.95) при размере кластера 16 Кбайт. Это заставило разработчиков перейти на NTFS начиная с ОС Windows 2000 (для ПК), хотя эта система успешно работала и с Win. NT. Основными преимуществами NTFS является умение управлять дисками с объемом несколько терабайт, исправлять ошибки после сбоев и защищать систему от несанкционированного доступа. Вместе с тем ограниченное количество логических дисков, потери при перезагрузке при изменении размеров кластера вынудили разработчиков к дальнейшему совершенствованию системы. Итак, улучшенная NTFS называется WinFS для ОС Windows Longhorn. Теперь структура каталогов будет давать представление не только о месте хранения файлов, но и определять его предысторию.

Оптическая память

Магнито-оптические диски

Другим направлением развития систем хранения информации являются магнитооптические диски. Запись на магнитооптические диски (МО-диски) выполняется при взаимодействии лазера и магнитной головки. Луч лазера разогревает до точки Кюри (температуры потери материалом магнитных свойств) микроскопическую область записывающего слоя, которая при выходе из зоны действия лазера остывает, фиксируя магнитное поле, наведенное магнитной головкой. В результате данные, записанные на диск, не боятся сильных магнитных полей и колебаний температуры. Все функциональные свойства дисков сохраняются в диапазоне температур от -20 до +50 градусов Цельсия. В то время, как вектор намагничивания при традиционной записи ориентирован в плоскости его поверхности диска, с помощью магнито-оптических технологий удается придать вектору вертикальную ориентацию, что значительно ослабляет взаимодействие доменов, а значит чувствительность к внешним полям и высоким температурам.

Конструктивно магнитооптический диск состоит из толстой стеклянной подложки, на которую наносится светоотражающая алюминиевая пленка и ферромагнитный сплав — носитель информации, покрытый сверху защитным слоем прозрачного пластика. У таких дисков диаметром 3,5 дюйма информационная емкость одной стороны достигает 128-230 Мбайт, при диаметре 5,25 дюйма — 600 Мбайт, с двух сторон — 1,3 Гбайт. Дисководы могут быть как встроенными, так и внешними. МО-диски уступают обычным жестким магнитным дискам лишь по времени доступа к данным. Предельное достигнутое МО-дисками время доступа составляет 19 мс. Магнитооптический принцип записи требует предварительного стирания данных перед записью, и соответственно, дополнительного оборота МО-диска. Однако завершенные недавно исследования в SONY и IBM показали, что это ограничение можно устранить, а плотность записи на МО-дисках можно увеличить в несколько раз используя голубой лазер. Во всех других отношениях МО-диски превосходят жесткие магнитные диски.

В магнитооптическом дисководе используются сменные диски, что обеспечивает практически неограниченную емкость. Стоимость хранения единицы данных на МО-дисках в несколько раз меньше стоимости хранения того же объема данных на жестких магнитных дисках.

Сегодня на рынке МО-дисков предлагается более 150 моделей различных фирм. Одно из лидирующих положений на этом рынке занимает компания Pinnacle Micro Inc. Для примера, ее дисковод Sierra 1.3 Гбайт обеспечивает среднее время доступа 19 мс и среднее время наработки на отказ 80000 часов. Для серверов локальных сетей и рабочих станций компания Pinnacle Micro предлагает целый спектр многодисковых систем емкостью 20, 40, 120, 186 Гбайт и даже 4 Тбайт. Для систем высокой готовности Pinnacle Micro выпускает дисковый массив Array Optical Disk System, который обеспечивает эффективное время доступа к данным не более 11 мс при скорости передачи данных до 10 Мбайт/с.

Дисковые массивы и уровни RAID

Одним из способов повышения производительности ввода/вывода является использование параллелизма путем объединения нескольких физических дисков в матрицу (группу) с организацией их работы аналогично одному логическому диску. К сожалению, надежность матрицы любых устройств падает при увеличении числа устройств.

Для достижения повышенного уровня отказоустойчивости приходится жертвовать пропускной способностью ввода/вывода или емкостью памяти. Необходимо использовать дополнительные диски, содержащие избыточную информацию, позволяющую восстановить исходные данные при отказе диска. Отсюда получают акроним для избыточных матриц недорогих дисков RAID (redundant array of inexpensive disks). Существует несколько способов объединения дисков RAID. Каждый уровень представляет свой компромисс между пропускной способностью ввода/вывода и емкостью диска, предназначенной для хранения избыточной информации.

Когда какой-либо диск отказывает, предполагается, что в течение короткого интервала времени он будет заменен и информация будет восстановлена на новом диске с использованием избыточной информации. Это время называется средним временем восстановления (mean time to repair - MTTR). Этот показатель можно уменьшить, если в систему входят дополнительные диски в качестве "горячего резерва": при отказе диска резервный диск подключается аппаратно-программными средствами. Периодически оператор вручную заменяет все отказавшие диски. Четыре основных этапа этого процесса состоят в следующем:

· определение отказавшего диска,

· устранение отказа без останова обработки;

· восстановление потерянных данных на резервном диске;

· периодическая замена отказавших дисков на новые.

RAID1: Зеркальные диски.

Зеркальные диски представляют традиционный способ повышения надежности магнитных дисков. Это наиболее дорогостоящий из рассматриваемых способов, так как все диски дублируются и при каждой записи информация записывается также и на проверочный диск. Таким образом, приходится идти на некоторые жертвы в пропускной способности ввода/вывода и емкости памяти ради получения более высокой надежности. Зеркальные диски широко применяются многими фирмами. В частности компания Tandem Computers применяет зеркальные диски, а также дублирует контроллеры и магистрали ввода/вывода с целью повышения отказоустойчивости. Эта версия зеркальных дисков поддерживает параллельное считывание.

Дублирование всех дисков может означать удвоение стоимости всей системы или, иначе, использование лишь 50% емкости диска для хранения данных. Повышение емкости, на которое приходится идти, составляет 100%. Такая низкая экономичность привела к появлению следующего уровня RAID.

RAID 2: матрица с поразрядным расслоением

Один из путей достижения надежности при снижении потерь емкости памяти может быть подсказан организацией основной памяти, в которой для исправления одиночных и обнаружения двойных ошибок используются избыточные контрольные разряды. Такое решение можно повторить путем поразрядного расслоения данных и записи их на диски группы, дополненной достаточным количеством контрольных дисков для обнаружения и исправления одиночных ошибок. Один диск контроля четности позволяет обнаружить одиночную ошибку, но для ее исправления требуется больше дисков.

При записи больших массивов данных системы уровня 2 имеют такую же производительность, что и системы уровня 1, хотя в них используется меньше контрольных дисков и, таким образом, по этому показателю они превосходят системы уровня 1. При передаче небольших порций данных производительность теряется, так как требуется записать либо считать группу целиком, независимо от конкретных потребностей.

RAID 3: аппаратное обнаружение ошибок и четность

Большинство контрольных дисков, используемых в RAID уровня 2, нужны для определения положения неисправного разряда. Эти диски становятся полностью избыточными, так как большинство контроллеров в состоянии определить, когда диск отказал при помощи специальных сигналов, поддерживаемых дисковым интерфейсом, либо при помощи дополнительного кодирования информации, записанной на диск и используемой для исправления случайных сбоев. По существу, если контроллер может определить положение ошибочного разряда, то для восстановления данных требуется лишь один бит четности. Уменьшение числа контрольных дисков до одного на группу снижает избыточность емкости до вполне разумных размеров. Часто количество дисков в группе равно 5 (4 диска данных плюс 1 контрольный). Подобные устройства выпускаются, например, фирмами Maxtor и Micropolis. Каждое из таких устройств воспринимается машиной как отдельный логический диск с учетверенной пропускной способностью, учетверенной емкостью и значительно более высокой надежностью.

RAID 4: внутригрупповой параллелизм

RAID уровня 4 повышает производительность передачи небольших объемов данных за счет параллелизма, давая возможность выполнять более одного обращения по вводу/выводу к группе в единицу времени. Логические блоки передачи в данном случае не распределяются между отдельными дисками, вместо этого каждый индивидуальный блок попадает на отдельный диск.

Достоинство поразрядного расслоения состоит в простоте вычисления кода Хэмминга, что необходимо для обнаружения и исправления ошибок в системах уровня 2. В RAID уровня 3 обнаружение ошибок диска с точностью до сектора осуществляется дисковым контроллером. Следовательно, если записывать отдельный блок передачи в отдельный сектор, то можно обнаружить ошибки отдельного считывания без доступа к дополнительным дискам. Главное отличие между системами уровня 3 и 4 состоит в том, что в последних расслоение выполняется на уровне сектора, а не на уровне битов или байтов.

В системах уровня 4 для записи небольших массивов данных используются два диска, которые выполняют четыре выборки (чтение данных плюс четности, запись данных плюс четности). Производительность групповых операций записи и считывания остается прежней, но при небольших (на один диск) записях и считываниях производительность существенно улучшается. К сожалению, улучшение производительности оказывается недостаточной для того, чтобы этот метод мог занять место системы уровня 1.

RAID 5: четность вращения для распараллеливания записей

RAID уровня 4 позволяли добиться параллелизма при считывании отдельных дисков, но запись по-прежнему ограничена возможностью выполнения одной операции на группу, так как при каждой операции должны выполняться запись и чтение контрольного диска. Система уровня 5 улучшает возможности системы уровня 4 посредством распределения контрольной информации между всеми дисками группы.

Это небольшое изменение оказывает огромное влияние на производительность записи небольших массивов информации. Если операции записи могут быть спланированы так, чтобы обращаться за данными и соответствующими им блоками четности к разным дискам, появляется возможность параллельного выполнения N/2 записей, где N - число дисков в группе. Данная организация имеет одинаково высокую производительность при записи и при считывании как небольших, так и больших объемов информации, что делает ее наиболее привлекательной в случаях смешанных применений.

RAID 6: Двумерная четность для обеспечения большей надежности

Этот пункт можно рассмотреть в контексте соотношения отказоустойчивость/пропускная способность. RAID 5 предлагают, по существу, лишь одно измерение дисковой матрицы, вторым измерением которой являются секторы. Теперь рассмотрим объединение дисков в двумерный массив таким образом, чтобы секторы являлись третьим измерением. Мы можем иметь контроль четности по строкам, как в системах уровня 5, а также по столбцам, которые, в свою очередь. могут расслаиваться для обеспечения возможности параллельной записи. При такой организации можно преодолеть любые отказы двух дисков и многие отказы трех дисков. Однако при выполнении логической записи реально происходит шесть обращений к диску: за старыми данными, за четностью по строкам и по столбцам, а также для записи новых данных и новых значений четности. Для некоторых применений с очень высокими требованиями к отказоустойчивости такая избыточность может оказаться приемлемой, однако для традиционных суперкомпьютеров и для обработки транзакций данный метод не подойдет.

Лазерные компакт-диски CD - ROM

Для переноса больших объемов данных используют лазерные компакт-диски, получившие обозначение CD-ROM (Compact Disc Read Only Memory). В силу большой емкости (один диск может содержать до 650 Мбайт данных) эти носители широко используются для распространения мультимедийной информации, содержащей большие объемы графики, звука и видео. Они также не имеют конкурентов по параметру стоимости хранения мегабайта информации.

Сегодня диски CD-ROM являются основным типом носителя для распространения программного обеспечения. Если компьютер не имеет дисковода CD-ROM, установка нового программного обеспечения превращается в серьезную проблему.

Основным техническим требованием к дисководам CD-ROM является скорость доступа к данным и скорость их считывания. Этот параметр измеряется в кратных единицах. Так, например, 2-скоростные дисководы обеспечивают скорость считывания 300 Кбит в секунду. Соответственно, 4-скоростные дисководы обеспечивают скорость 600 Кбит в секунду и т.д.

Производительность дисковода CD-ROM нам чаще всего важна не сама по себе, а в сравнении с производительностью жесткого диска. Современные 24- и 32-скоростные дисководы CD-ROM по параметру скорости считывания данных намного превосходят жесткие диски, но могут уступать им во времени доступа к данным.

Лазерные компакт-диски не боятся магнитных полей и менее критичны к пыли и влаге, чем магнитные дискеты. В то же время, в большинстве случаев они не защищены пластиковым корпусом, как магнитные дискеты, и при неакуратном обращении могут получать механические повреждения: царапины, трещины, сколы и т. п. В качестве интерфейса применяются SCSI/ASPI – самый подходящий, но дорогой, иногда рекомендуется – IDI/ATAPI.

CD-R

В отличие от CD-ROM могут не только читать диски, но и записывать их. Могут устанавливаться в компьютер вместо CD-ROM. Запись на диски CD-R осуществляется благодаря наличию на нем особо светочувствительного слоя, выгорающего под воздействием высокотемпературного лазерного луча. То есть перед нами нечто похожее на обычную фотографию. Правда, считывает CD-R по нынешним временам не слишком быстро - со скоростью 8-скоростного CD-ROM (8 x 150 = 1200 кб/c = 1,17 Мб/c), но ведь чтение - не главная его функция. Главная - запись. Писать CD-R может в 2-х режимах - односессионном (когда весь диск записывается в один прием) и многосессионном. CD-R - идеален для хранения всевозможных архивов (изображений, звуков, да и просто программ, загромождающих место на вашем жестком диске). Можно сделать копию содержимого всего жесткого диска (на всякий случай). И, конечно же, копировать аудио-, видеодиски и программы.

CD-RW

Новый стандарт перезаписываемых CD-ROM. Внешне диски не отличаются от обычных CD-R, объем - тот же - 640 Мб. Но технология записи CD-R и CD-RW разная.

На дисках CD-RW также имеются поглощающие и отражающие свет участки. Однако это не бугорки или ямки, как в дисководах CD-ROM и CD-R. Диск CD-RW представляет из себя как бы слоеный пирог, где на металлической основе покоится рабочий, активный слой. Он состоит из специального материала, который под воздействием лазерного луча изменяет свое состояние. Находясь в кристаллическом состоянии, одни участки слоя рассеивают свет, а другие - аморфные - пропускают его через себя на отражающую металлическую подложку.

Достоинства:

1. на диск можно записывать информацию и читать ее;

2. дисковод CD-RW использует как диски собственного формата, так и с диски CD-ROM и CD-R. Последние он не только читает, но и пишет, причем в любом - односессионном или многосессионном формате.

Недостатки:

  1. перезаписываемые диски CD-RW могут читать не все современные дисководы CD-ROM - только последние модели, соответствующие стандарту Multiread. И даже если вы запишите на CD-RW музыкальный диск, его не прочтет ни один чисто музыкальный компакт-проигрыватель.
  2. высокая цена: цена диска в 2 - 2,5 раза выше, чем у CD-R.
  3. низкая скорость: запись дисков - максимум на учетверенной скорости, а чтение - со скоростью 6х и 8х.

DVD

В свое время к 2000 году, по обещаниям разработчиков, видеокассеты, компакт-диски и другие носители информации должны были прекратить свое существование. Их должны были заменить Единые и Универсальные - DVD.

Сначала DVD расшифровывался так - Digital Video Disk - цифровой видеодиск нового поколения. Но позднее консорциум DVD отказался от этой расшифровки. Впервые слово DVD прозвучало в мире 8 декабря 1995 года. DVD может быть односторонним и двухсторонним, однослойным и многослойным. Но фирмы, входящие в консорциум так до сих пор решение и не приняли. Поэтому пока остановились на односторонних и однослойных.

По внешнему виду и способу записи DVD не очень отличаются от привычных CD-ROM. Но однослойный и односторонний DVD имеет емкость 4,7 Гбайт (в 8 раз больше объема CD-ROM). Объем двухстороннего и многослойного DVD может достигать 17 Гбайт. На одном DVD можно уместить видеофильм на 140 минут с пятью альтернативными звуковыми дорожками на разных языках и четырьмя каналами субтитров. Сравнительно недавно появились первые записывающие дисководы DVD-R, а въдальнейшем - перезаписывающие дисководы DVD-RW (DVD-RAM), работающие с односторонними однослойными дисками емкостью 4,7 Гбайт (или 5,2 Гбайт - в зависимости от производителя). В дальнейшем появились DVD-RW, работающие с многослойными дисками объемом до и более 10 Гбайт.

Можно было бы продолжить обзор устройств внешней памяти, однако как бы мы не поспешали прогресс в этой области обогнать невозможно. С каждой минутой появляются не только новые устройства, но и совершенно новые принципы хранения информации.

Blu - ray Disc

Blu- ray Disc , BD (англ. blue ray — синий луч и disc — диск) — формат оптического носителя, используемый для записи и хранения цифровых данных, включая видео высокой чёткости с повышенной плотностью. Стандарт Blu-ray был совместно разработан консорциумом BDA.

Blu-ray (букв. «синий-луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера. Представлен на международной выставке потребительской электроники Consumer Electronics Show (CES), которая прошла в январе 2006 года. Коммерческий запуск формата Blu-ray прошел весной 2006 года.

С момента появления формата в 2006 году и до начала 2008 года у Blu-ray существовал серьезный конкурент — альтернативный формат HD DVD. В течение двух лет многие крупнейшие киностудии, которые изначально поддерживали HD DVD, постепенно перешли на Blu-ray. Warner Brothers, последняя компания, выпускавшая свою продукцию в обоих форматах, отказалась от использования HD DVD в январе 2008 года. 19 февраля того же года Toshiba, создатель формата, прекратила разработки в области HD DVD. Это событие положило конец так называемой «войне форматов».

Вариации и размеры

Однослойный диск Blu-ray (BD) может хранить 23,3/25/27 или 33 Гб, двухслойный диск может вместить 46,6/50/54 или 66 Гб. Также в разработке находятся диски вместимостью 100 Гб и 200 Гб с использованием соответственно четырёх и восьми слоёв. Корпорация TDK уже анонсировала прототип четырёхслойного диска объёмом 100 Гб.

5 октября 2009 года японская корпорация TDK сообщила о создании записываемого Blu-ray диска емкостью 320 Гигабайт. Новый десятислойный носитель полностью совместим с существующими приводами, сообщает сайт TechOn. Компания представит диск на выставке CEATEC, которая начнется в Японии 6 октября 2009 года. [4]

На данный момент доступны диски BD-R (одноразовая запись) и BD-RE (многоразовая запись), в разработке находится формат BD-ROM. В дополнение к стандартным дискам размером 120 мм, выпущены варианты дисков размером 80 мм для использования в цифровых фото- и видеокамерах. Планируется, что их объём будет достигать 15 Гб для двухслойного варианта

Технические особенности

Лазер и оптика

В технологии Blu-ray для чтения и записи используется сине-фиолетовый лазер с длиной волны 405 нм. Обычные DVD и CD используют красный и инфракрасный лазеры с длиной волны 650 нм (635 нм для DVD for Authoring) и 780 нм соответственно.

Такое уменьшение позволило сузить дорожку вдвое по сравнению с обычным DVD-диском (до 0,32 мкм) и увеличить плотность записи данных.

Более короткая длина волны сине-фиолетового лазера позволяет хранить больше информации на 12 см дисках того же размера, что и у CD/DVD. Эффективный «размер пятна», на котором лазер может сфокусироваться, ограничен дифракцией и зависит от длины волны света и числовой апертуры линзы, используемой для его фокусировки. Уменьшение длины волны, использование большей числовой апертуры (0,85, в сравнении с 0,6 для DVD), высококачественной двухлинзовой системы, а также уменьшение толщины защитного слоя в шесть раз (0,1 мм вместо 0,6 мм) предоставило возможность проведения более качественного и корректного течения операций чтения/записи. Это позволило записывать информацию в меньшие точки на диске, а значит, хранить больше информации в физической области диска, а также увеличить скорость считывания до 432 Мбит/с.

Скорость записи

Скорость привода

Скорость передачи данных

Время записи Blu-Ray дисков (мин.)

Мбит/с

Мбайт/с

Однослойные

Двухслойные

1X

36

4.5

90

180

2X

72

9

45

90

4X

144

18

23

45

6X

216

27

15

30

8X

288

36

12

23

12X

432

54

8

15

Технология твёрдого покрытия

Из-за того, что на дисках Blu-Ray данные расположены слишком близко к поверхности, первые версии дисков были крайне чувствительны к царапинам и прочим внешним механическим воздействиям, из-за чего они были заключены в пластиковые картриджи. Этот недостаток вызывал большие сомнения относительно того, сможет ли формат Blu-ray противостоять HD DVD — стандарту, который в то время рассматривался как основной конкурент Blu-ray. HD DVD, помимо своей более низкой стоимости, мог нормально работать без картриджей, так же как и форматы CD и DVD, что делало его более удобным для покупателей, а также более интересным для производителей и дистрибьюторов, которым было невыгодно нести дополнительные траты на изготовление картриджей.

Решение этой проблемы появилось в январе 2004 года с появлением нового полимерного покрытия, которое дало дискам более качественную защиту от царапин и пыли. Это покрытие, разработанное корпорацией TDK, получило название «Durabis». Оно позволяет очищать BD при помощи бумажных салфеток, которые могут нанести повреждения CD и DVD. Формат HD DVD имеет те же недостатки, так как эти диски производятся на основе старых оптических носителей. По сообщению в прессе, «голые» BD с этим покрытием сохраняют работоспособность, даже будучи поцарапанными отвёрткой.

Совместимость

Хотя Ассоциация Blu-ray дисков и не обязывает производителей проигрывателей, она настоятельно рекомендует им давать возможность Blu-ray-устройствам проигрывать диски формата DVD для обеспечения обратной совместимости.

Более того, компания JVC разработала трёхслойную технологию, которая позволяет наносить на один диск как физическую область для DVD, так и для BD, получая, таким образом, комбинированный BD/DVD диск. Прототипы дисков были показаны на международной выставке потребительской электроники CES, прошедшей в январе 2006 года. Если её удастся внедрить в коммерческое использование, то возможно, что у покупателей появится возможность купить диск, который можно будет проигрывать как в современных DVD-проигрывателях, так и в будущих BD-проигрывателях, получая картинку разного качества.

Flash память

USB-накопитель на флеш памяти

Флеш память (англ. Flash- Memory ) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. хуй хуй Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально — около миллиона циклов[1]). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи — намного больше, чем способна выдержать дискета илиCD-RW.

Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

Благодаря своей компактности, дешевизне и низкому энергопотреблению флеш память широко используется в цифровых портативных устройствах — фото- и видеокамерах, диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрутизаторах, миниАТС, принтерах, сканерах, модемax), различных контроллерах.

Также в последнее время широкое распространение получили USB флеш-накопители («флешка» , USBдрайв, USBдиск), практически вытеснившие дискеты и CD. Одним из первых флэшки JetFlash в 2002 году начал выпускать тайваньский концерн Transcend.

На конец 2008 г. основным недостатком, не позволяющим устройствам на базе флеш памяти вытеснить с рынка жёсткие диски, является высокое соотношение цена/объём, превышающее этот параметр у жестких дисков в 2‑3 раза. В связи с этим и объёмы флеш накопителей не так велики. Хотя работы в этих направлениях ведутся. Удешевляется технологический процесс, усиливается конкуренция. Многие фирмы уже заявили о выпуске SSD накопителей объёмом 256 ГБ и более. Например в ноябре 2009 года компания OCZ предложила SSD накопитель ёмкостью 1 Тб и 1,5 млн. циклов перезаписи.

Ещё один недостаток устройств на базе флеш памяти по сравнению с жёсткими дисками — как ни странно, меньшая скорость. Несмотря на то, что производители SSD накопителей заверяют, что скорость этих устройств выше скорости винчестеров, в реальности она оказывается ощутимо ниже. Конечно, SSD накопитель не тратит подобно винчестеру время на разгон, позиционирование головок и т. п. Но время чтения, а тем более записи, ячеек флеш‐памяти, используемой в современных SSD накопителях, больше. Что и приводит к значительному снижению общей производительности. Справедливости ради следует отметить, что последние модели SSD накопителей и по этому параметру уже вплотную приблизились к винчестерам. Однако, эти модели пока слишком дороги.

Принцип действия

Программирование флеш-памяти

Стирание флеш-памяти

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками ( англ. cell ). В традиционных устройствах с одноуровневыми ячейками (англ. single- level cell, SLC ), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi- level cell, MLC ) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

NOR

В основе этого типа флеш-памяти лежит ИЛИ‑НЕ элемент (англ. NOR ), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникаеттуннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND архитектуры.

NAND

В основе NAND типа лежит И-НЕ элемент (англ. NAND ). Принцип работы такой же, от NOR типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND чипа может быть существенно меньше. Так же запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

История

Флеш-память была изобретена инженером компании Toshiba Фудзио Масуокой в 1984 году. Название «флеш» было придумано также в Toshiba коллегой Фудзио, Сёдзи Ариидзуми, потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash ). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR-типа.

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.

На конец 2008 года, лидерами по производству флеш-памяти являются Samsung (31 % рынка) и Toshiba (19 % рынка, включая совместные заводы с Sandisk). (Данные согласно iSupply на Q4’2008). Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0[2], выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND чипов: Intel, Hynix и Micron Technology.

Характеристики

Скорость некоторых устройств с флеш-памятью может доходить до 100 МБ/с[4]. В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 КБ/с). Так, указанная скорость в 100x означает 100 × 150 КБ/с = 15 000 КБ/с = 14.65 МБ/с.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.

В 2005 году Toshiba и SanDisk представили NAND чипы объёмом 1 ГБ, выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 8 ГБ чип, выполненный по 40-нм технологическому процессу[ . В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 ГБ. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB устройства и карты памяти имели объём от 512 МБ до 64 ГБ. Самый большой объём USB устройств составлял 4 ТБ.

Файловые системы

Основное слабое место флеш-памяти — количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.

Для решения этой проблемы были созданы специальные файловые системы: JFFS2 и YAFFS[ для GNU/Linux и exFAT для Microsoft Windows.

USB флеш-носители и карты памяти, такие, как SecureDigital и CompactFlash, имеют встроенный контроллер, который производит обнаружение и исправление ошибок и старается равномерно использовать ресурс перезаписи флеш-памяти. На таких устройствах не имеет смысла использовать специальную файловую систему и для лучшей совместимости применяется обычная FAT.

Применение

Флеш-карты разных типов

Флеш-память наиболее известна применением в USB флеш-накопителях (англ.USB flash drive ). В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми ОС современных версий.

Благодаря большой скорости, объёму и компактным размерам USB флеш-накопители полностью вытеснили с рынка дискеты. Например, компания Dell с 2003 года перестала выпускать компьютеры с дисководом гибких дисков[9].

В данный момент выпускается широкий ассортимент USB флеш-накопителей, разных форм и цветов. На рынке присутствуют флешки с автоматическим шифрованием записываемых на них данных. Японская компания Solid Alliance даже выпускает флешки в виде еды.

Есть специальные дистрибутивы GNU/Linux и версии программ, которые могут работать прямо с USB носителей, например, чтобы пользоваться своими приложениями в интернет-кафе.

Технология ReadyBoost в Windows Vista способна использовать USB-флеш накопитель или специальную флеш-память, встроенную в компьютер, для увеличения быстродействия. На флеш-памяти также основываются карты памяти, такие как SecureDigital (SD) и Memory Stick, которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Флеш-память занимает большую часть рынка переносных носителей данных.

NOR тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких как DSL модемы, маршрутизаторы и т. д. Флеш-память позволяет легко обновлять прошивку устройств, при этом скорость записи и объём для таких устройств не так важны.

Сейчас активно рассматривается возможность замены жёстких дисков на флеш‑память. В результате увеличится скорость включения компьютера, а отсутствие движущихся деталей увеличит срок службы. Например, в XO-1, «ноутбуке за 100 $», который активно разрабатывается для стран третьего мира, вместо жёсткого диска будет использоваться флеш-память объёмом 1 Гигабайт|. Распространение ограничивает высокая цена за Гигабайт и меньший срок службы, чем у жёстких дисков из-за ограниченного количества циклов записи.

Типы карт памяти

Существуют несколько типов карт памяти, используемых в портативных устройствах:

CF (Compact Flash): карты памяти CF являются старейшим стандартом карт флеш-памяти. Первая CF карта была произведена корпорацией SanDisk в 1994 году. Этот формат памяти очень распространен. Чаще всего в наши дни он применяется в профессиональном фото и видео оборудовании, так как ввиду своих размеров (43х36х3,3 мм) слот расширения для Compact Flash карт физически проблематично разместить в мобильных телефонах или mp3 плеерах. Зато ни одна карта не может похвастаться такими скоростями, объемами и надежностью, как CF.

MMC (MultiMedia Card): карта в формате MMC имеет небольшой размер — 24×32×1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

RS-MMC (Reduced Size MultiMedia Card): карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24×18×1,4 мм, а вес — около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.

DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24×18×1,4 мм.

MMCmicro: миниатюрная карта памяти для мобильных устройств с размерами 14×12×1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SD Card (Secure Digital Card): поддерживается фирмами SanDisk, Panasonic и Toshiba. Стандарт SD является дальнейшим развитием стандарта MMC. По размерам и характеристикам карты SD очень похожи на MMC, только чуть толще (32×24×2,1 мм). Основное отличие от MMC — технология защиты авторских прав: карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи. Несмотря на родство стандартов, карты SD нельзя использовать в устройствах со слотом MMC.

SD и SDHC (SD High Capacity): Старые карты SD (SD 1.0, SD 1.1) и новые SDHC (SD 2.0) (SD High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 4 ГБ для SD и 32 ГБ для SD High Capacity (Высокой Ёмкости). Устройства чтения SDHC обратно совместимы с SD, то есть SD карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SD карта SDHC не будет читаться вовсе. Оба варианта могут быть представлены в любом из трёх форматов физ. размеров (Стандартный, mini и micro).

miniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21,5×20×1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.

microSD (Micro Secure Digital Card): являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11×15×1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.

MS Duo (Memory Stick Duo): данный стандарт памяти разрабатывался и поддерживается компанией Sony. Корпус достаточно прочный. На данный момент — это самая дорогая память из всех представленных. Memory Stick Duo был разработан на базе широко распространённого стандарта Memory Stick от той же Sony, отличается малыми размерами (20×31×1,6 мм.).

Memory Stick Micro (M2): Данный формат является конкурентом формата microSD (по аналогичному размеру), сохраняя преимущества карт памяти Sony.

xD-Picture Card: используются в цифровых фотоаппаратах фирм Olympus, Fujifilm и некоторых других.


Память будущего

Появление в скором будущем задач, требующих очень большой вычислительной мощности, заставляет уже сейчас устремиться к поиску новых технических решений не только в плане совершенствования самих процессоров, но и других компонентов ПК. Независимо от того, какая для изготовления процессора используется технология, количество данных, поставляемых им на обработку, определяется возможностями и других подсистем компьютера.

Емкости современных устройств массовой памяти отражают эту тенденцию. Диски СD-ROM позволяют хранить до 700 Мb информации, развивающаяся технология DVD-ROM - до 17GB. Технология магнитной записи также развивается очень быстро - за последний год типичная емкость жесткого диска в настольных компьютерах возросла до 15-20 GB и более. Однако в будущем компьютерам придется обрабатывать сотни гигабайт и даже терабайты информации - гораздо больше, чем может вместить любой из существующих сегодня CD-ROM-ов или жестких дисков. Обслуживание таких объемов данных и перемещение их для обработки сверхбыстрыми процессорами требуют радикально новых подходов при создании устройств хранения информации.

Голографическая память
Широкие перспективы в этом плане открывает технология оптической записи, известная как голография: она позволяет обеспечить очень высокую плотность записи при сохранении максимальной скорости доступа к данным. Это достигается за счет того, что голографический образ (голограмма) кодируется в один большой блок данных, который записывается всего за одно обращение. А когда происходит чтение, этот блок целиком извлекается из памяти. Для чтения или записи блоков, голографически хранимых на светочувствительном материале (за основной материал принят ниобат лития, LiNbO3) данных ("страниц"), используются лазеры. Теоретически, тысячи таких цифровых страниц, каждая из которых содержит до миллиона бит, можно поместить в устройство размером с кусочек сахара. Причем теоретически ожидается плотность данных в 1TБ на кубический сантиметр (TB/см3). Практически же исследователи ожидают достижения плотности порядка 10GB/см3, что тоже весьма впечатляет, если сравнивать с используемым сегодня магнитным способом - порядка нескольких MB/см2 - это без учета самого механизма устройства. При такой плотности записи оптический слой, имеющий толщину около 1 см, позволит хранить около 1ТВ данных. А если учесть, что такая запоминающая система не имеет движущихся частей и доступ к страницам данных осуществляется параллельно, можно ожидать, что устройство будет характеризоваться плотностью в 1GB/см3 и даже выше.

Необычайные возможности топографической памяти заинтересовали ученых многих университетов и промышленных исследовательских лабораторий. Этот интерес уже довольно давно вылился в две научно-исследовательские программы. Одна из них - программа PRISM (Photorefractive Information Storage Material), целью которой является поиск подходящих светочувствительных материалов для хранения голограмм и исследование их запоминающих свойств. Вторая научно-исследовательская программа - HDSS (Holographic Data Storage System). Так же, как и PRISM, она предусматривает ряд фундаментальных исследований, и ее участниками являются те же компании. В то время как целью PRISM является поиск подходящих сред для хранения голограмм, HDSS ориентирована на разработку аппаратных средств, необходимых для практической реализации голографических запоминающих систем. Как же функционирует система голографической памяти? Рассмотрим для этого установку, собранную исследовательской группой из Almaden Research Center.

На начальном этапе в этом устройстве происходит разделение луча сине-зеленого аргонового лазера на две составляющие - опорный и предметный лучи (последний является носителем самих данных). Предметный луч подвергается расфокусировке, чтобы он мог полностью освещать пространственный световой модулятор (SLM - Spatial Light Modulator), который представляет собой просто жидкокристаллическую (LCD) панель, на которой страница данных отображается в виде матрицы, состоящей из светлых и темных пикселей (двоичные данные).

Оба луча направляются внутрь светочувствительного кристалла, где и происходит их взаимодействие. В результате этого взаимодействия образуется интерференционная картина, которая и является основой голограммы и запоминается в виде набора вариаций показателя преломления или коэффициента отражения внутри этого кристалла. При чтении данных кристалл освещается опорным лучом, который, взаимодействуя с хранимой в кристалле интерференционной картиной, воспроизводит записанную страницу в виде образа "шахматной доски" из светлых и темных пикселей (голограмма преобразует опорную волну в копию предметной). Затем этот образ направляется в матричный детектор, основой для которого служит прибор с зарядовой связью (CCD - Charge-Coupled Device или ПЗС), захватывающее всю страницу данных. При чтении данных опорный луч должен падать на кристалл под тем же самым углом, при котором производилась запись этих данных, и допускается изменение этого угла не более чем на градус. Это позволяет получить высокую плотность данных: изменяя угол опорного луча или его частоту, можно записать дополнительные страницы данных в том же самом кристалле.

Однако дополнительные голограммы изменяют свойства материала (а таких изменений может быть только фиксированное количество), в результате образы голограмм становятся тусклыми, что может привести к искажению данных при чтении. Этим и объясняется ограничение объема реальной памяти, которой обладает материал. Динамическая область среды определяется количеством страниц, которые она может реально вмещать, поэтому участники PRISM и занимаются исследованием ограничений на светочувствительность материалов.

Используемая в трехмерной голографии процедура заключения нескольких страниц с данными в один и тот же объем называется мультиплексированием. Традиционно используются следующие методы мультиплексирования: по углу падения опорного пучка, по длине волны и по фазе, но, к сожалению, они требуют сложных оптических систем и толстых (толщиной в несколько миллиметров) носителей, что делает их непригодными для коммерческого применения, по крайней мере, в сфере обработки информации. Однако совсем недавно Bell Labs были изобретены три новых метода мультиплексирования: сдвиговое, апертурное и корреляционное, основанные на использовании изменения положения носителя относительно световых пучков. При этом сдвиговое и апертурное мультиплексирование используют сферический опорный пучок, а корреляционное - пучок еще более сложной формы. Кроме того, поскольку при корреляционном и сдвиговом мультиплексировании задействованы механические движущиеся элементы, время доступа при их применении будет примерно таким же, как и у обычных оптических дисков. Bell Labs удалось построить экспериментальный носитель на основе все того же ниобата лития, использующий технику корреляционного мультиплексирования, однако уже с плотностью записи около 226GB на квадратный дюйм.

Другой сложностью, возникшей на пути создания устройств голографической памяти, стал поиск подходящего материала для носителя. Большинство исследований в области голографии проводились с использованием фотореактивных материалов (главным образом, упоминавшегося выше ниобата лития), однако если они годятся для записи голографических изображений ювелирных украшений, то этого никак нельзя сказать в отношении записи информации, да еще в коммерческих устройствах: они дороги, имеют слабую чувствительность и ограниченный динамический диапазон (частотная полоса пропускания). Поэтому был разработан новый класс фотополимерных материалов, обладающих неплохими перспективами с точки зрения коммерческого применения. Фотополимеры представляют собой вещества, в которых под действием света происходят необратимые изменения, выражающиеся во флуктуациях состава и плотности. Созданные материалы имеют более продолжительный жизненный цикл (в плане хранения записанной на них информации) и устойчивы к воздействию температур, а также отличаются улучшенными оптическими характеристиками, в общем, подходят для однократной записи данных (WORM).

Ну и, наконец, еще одна проблема - сложность используемой оптической системы. Так, для голографической памяти не годятся светодиоды на базе полупроводниковых лазеров, применяемые в традиционных оптических устройствах, поскольку они обладают недостаточной мощностью, дают пучок с высокой расходимостью и, наконец, полупроводниковый лазер, генерируемый излучение в среднем диапазоне видимой области спектра, получить очень сложно. Здесь же необходим мощный лазер, дающий как можно более параллельный пучок. То же самое можно сказать и о пространственных световых модуляторах: до недавнего времени не было ни одного подобного устройства, которое можно было бы применять в системах голографической памяти. Однако времена меняются, и сегодня уже стали доступными недорогие твердотельные лазеры, появилась микроэлектромеханическая технология (MEM - Micro-Electrical Mechanical, устройства на ее основе представляют собой массивы микрозеркал размером порядка 17 микрон), как нельзя лучше подходящая на роль SLM.

Так как интерференционные шаблоны однородно заполняют весь материал, это наделяет голографическую память другим полезным свойством - высокой достоверностью записанной информации. В то время как дефект на поверхности магнитного диска или магнитной ленты разрушает важные данные, дефект в голографической среде не приводит к потере информации, а вызывает всего лишь "потускнение" голограммы. Небольшие настольные HDSS-устройства должны появиться к 2003 году. Поскольку аппаратура HDSS для изменения угла наклона луча использует акусто-оптический дефлектор (кристалл, свойства которого изменяются при прохождении через него звуковой волны), то, по общим оценкам, время извлечения смежных страниц данных составит менее 10 мс. Любое традиционное оптическое или магнитное устройство памяти нуждается в специальных механических средствах для доступа к данным на различных дорожках, и время этого доступа составляет несколько миллисекунд.

Пожалуй, ошибочно рассматривать устройства голографической памяти как радикально новую технологию, ибо ее основные концепции разработаны около 30 лет назад. Если что и изменилось, так это доступность ключевых компонентов для этой технологии - цены на них стали значительно ниже. Так, полупроводниковый лазер уже не является чем-то диковинным, а давным-давно уже стал стандартом. С другой стороны, SLM - это результат той же технологии, которая применяется при изготовлении LCD-экранов для ПК-блокнотов и калькуляторов, а детекторная матрица CCD позаимствована прямо из цифровой видеокамеры.

Итак, преимуществ у новой технологии более чем достаточно: кроме того, что информация сохраняется и считывается параллельно, можно достичь очень высокой скорости передачи данных и, в отдельных случаях, высокой скорости произвольного доступа. А самое главное - практически отсутствуют механические компоненты, свойственные нынешним хранителям информации (например, шпиндели с гигантским числом оборотов). Это гарантирует не только быстрый доступ (для данной технологии правильней сказать мгновенный) к данным, меньшую вероятность сбоев, но и более низкое потребление электроэнергии, поскольку сегодня жесткий диск - один из наиболее энергоемких компонентов компьютера. Правда, есть трудности с юстировкой оптики, поэтому на первых порах данные устройства, вероятно, будут все еще "бояться" сторонних "механических воздействий".


Список литературы:

· С.Т. Мартиросян, Организация ЭВМ, Электронное учебное пособие, М. 2007

· www.wikipedia.org

· http://mphrolov.narod.ru/bilety05.html