Главная              Рефераты - Разное

Учебное пособие: Курс лекций по дисциплине «неорганическая химия» (для студентов инженерно технологического факультета)

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ

АГРАРНЫЙ УНИВЕРСИТЕТ»

Кафедра химии

Курс лекций по дисциплине

«НЕОРГАНИЧЕСКАЯ ХИМИЯ»

(для студентов инженерно – технологического факультета)

Гродно 2012

УДК: 546 (076.5)

ББК 24.1 Я 73

Р 13

Рецензенты: доктор биологических наук, профессор кафедры химии Учреждения образования «Гродненский государственный аграрный университет» З.В. Горбач, кандидат химических наук, доцент кафедры общей и неорганической химии Учреждения образования «Белорусский государственный технологический университет» Л.И.Хмылко.

Апанович, З.В.

Курс лекций по дисциплине «Неорганическая химия».

Р 13

Р 13 Лекции по курсу «Неорганическая химия »для студентов инженерно – технологического факультета / З.В. Апанович. – Гродно: ГГАУ , 2012. – 146с.

Учебно-методическое пособие включает лекции по отдельным темам курса «Неорганическая химия» и предназначено для контролируемой самостоятельной работы студентов инженерно – технологического факультета, для которых введен отдельный курс по химии элементов, а также может быть использовано студентами других факультетов.

УДК : 546 (076.5)

ББК 24.1 Я 73


Рекомендовано межфакультетской методической комиссией инженерно – технологического факультета 24 апреля 2009 г. (протокол №8).

© УО «Гродненский государственный аграрный университет», 2012

© Апанович З.В., 2012

Содержание

ЛЕКЦИЯ 1

Тема: s - Элементы I группы

1. Общая характеристика элементов I А группы.

7

Особенности лития и его соединений

2. Водород. Получение. Физические и химические свойства. Особенности положения в периодической системе

15

3. Вода и ее свойства. Экологическое и биологическое значение воды

18

4. Пероксид водорода. Окислительно-восстановительная двойственность Н2 О2

21

5. Биогенные свойства элементов I А группы

23

ЛЕКЦИЯ 2

Тема: s – Элементы II группы

1. Общая характеристика элементов II А группы. Физические и химические свойства щелочноземельных металлов (Ca, Sr, Ba) их бинарных соединений, гидроксидов и солей. Способы получения

28

2. Особенности соединений бериллия

34

3. Жесткость воды и ее влияние на живые организмы

36

4. Важнейшие соединения (в практическом отношении) элементов II А группы

38

5. Биогенная роль элементов II-А группы. Применение в сельском хозяйстве

39

ЛЕКЦИЯ 3

Тема: p – Элементы III группы

1. Общая характеристика элементов III-A группы

41

2. Бор. Получение. Химические свойства

43

3. Алюминий

48

4. Биогенная роль

52

ЛЕКЦИЯ 4

Тема: р - Элементы IV группы

1. Общая характеристика IV-A группы

54

2 Химия углерода

57

3. Химия кремния

66

4. Химия германия, олова, свинца (Ge, Sn, Pb)

69

5. Биогенная роль

70

ЛЕКЦИЯ 5

Тема: р - Элементы V группы

1. Общая характеристика элементов V-А группы

71

2. Химия азота

74

3. Химия фосфора

92

4. Биогенная роль

99

ЛЕКЦИЯ 6
Тема: р - Элементы VI группы

1. Общая характеристика элементов VI-A группы

101

2. Химия кислорода

104

3. Химия серы

113

4. Биогенная роль

125

ЛЕКЦИЯ 7

Тема: р - Элементы VII группы (галогены)

1.Общая характеристика элементов VII-A

128

2.Особые свойства фтора, как наиболее электроотрицательного элемента

131

3.Способы получения галогеноводородов и их свойства

137

4.Кислородсодержащие соединения галогенов

140

5.Биогенная роль (фтор и йод как микроэле­менты)

145

ЛЕКЦИЯ 1

Тема: s - Э лементы I группы

1. Общая характеристика элементов I А группы. Особенности лития и его соединений.

В периодической системе всего 14 s -элементов (включая водород и гелий). Это элементы I А и II А групп. Элементы I А группы – щелочные металлы Li, Na, K, Rb, Cs, Fr. Все они имеют на внешнем электронном уровне атома по одному электрону ns 1 , сильно удаленному от ядра, с низким потенциалом ионизации. Всегда проявляют степень окисления +1.

Сверху вниз в подгруппе возрастает радиус атома элементов за счет возникновения новых электронных уровней.

В группах по мере увеличения числа энергетических уровнейатомные радиусы растут . Переход нейтрального атома в катион , сопровождается уменьшением радиуса поскольку в катионе заряд ядра удерживает меньшее число электронов. Очевидно, с возрастанием заряда ионный радиус катиона будет падать.

Энергия ионизации – это та энергия, которую необходимо затратить на отрыв внешнего электрона у невозбужденного атома. Строение внешних оболочек ns 1 , поэтому они имеют низкие энергии ионизации, уменьшающиеся при переходе по подгруппе сверху вниз. Связь электрона с ядром ослабевает при этом за счет увеличения радиуса атома и экранирования заряда ядра предшествующими внешнему электрону оболочками, увеличивается расстояние электрона от ядра и энергия ионизации уменьшается.

С ростом заряда ядра от Na к Fr усиливаются восстановительные свойства, это самые активные металлы . Их стандартные электродные потенциалы j° отрицательные и имеют большое абсолютное значение. Наиболее отрицателен j° лития равный -3,02 В по сравнению с ионами других щелочных металлов (ион Li+ имеет среди них наименьший радиус), хороший комплексообразователь. Энтальпия гидратации катионов лития велика (∆Н° гидрат. = - 486,6 кДж/моль). Чем меньше алгебраическая величина потенциала, тем выше восстановительная способность этого металла и тем ниже окислительная способность его ионов. Металлический литий – самый сильный восстановитель, а ион Li+ самый слабый окислитель.

С увеличением порядкового номера, уменьшается относительная электроотрицательность (ОЭО).

Все щелочные металлы образуют одинаковую кристаллическую структуру. У щелочных металлов тип металлической структуры – объемно - центрированная кубическая упаковка (ОЦКУ).

Координационное число равно 8.

От Li к Cs увеличиваются размеры атомов и межъядерные расстояния в кристаллических решетках. Так как химическая связь большей длины является менее прочной, то по мере роста межъядерного расстояния уменьшается прочность кристаллических решеток, поэтому снижаются температуры плавления и кипения. Щелочные металлы активно окисляются кислородом воздуха при обычной температуре, поэтому их хранят под слоем керосина или бензина.

+ О2 = 2 О

Взаимодействуют с другими окислителями (галогенами, серой, фосфором), образуя соединения LiCl, Li2 S, Li3 P, NaBr, Na2 S.

С азотом взаимодействует только литий при обычной температуре.

6 Li + N 2 = 2 Li 3 N

Нагревая щелочной литий в струе газообразного водорода получают гидрид.

2 Li + Н2 = 2 LiH - .

С кислородом образуют оксиды, пероксиды, надпероксиды, озониды.

4 Li + O 2 → 2 Li 2 O – оксид лития

2 Na + O 2 Na 2 O 2 – пероксид натрия

K + O 2 KO 2 – надпероксид (супероксид калия)

Пероксиды содержат диамагнитный ион О2 2- , надпероксиды– парамагнитный ион О2 - .

Оксиды Na и K могут получиться при недостатке кислорода. Элементы могут образовывать озониды по реакции с озоном:

K + O 3 KO 3

KOH + O 3 KO 3 + O 2 + H 2 O

Все озониды, пероксиды, надпероксиды сильные окислители и разлагаются водой.

KO2 + H2 O → KOH + O2 + H2 O2

KO2 + H2 O( теплая ) → KOH + O2

КО 3 + H2 O → KOH + O2

Причем разложение может идти как обменное взаимодействие.

Na2 O2 + 2H2 O → 2NaOH + H2 O2

Оксиды щелочных металлов Ме2 О – кристаллические термически устойчивые вещества, при взаимодействии с водой образуют щелочи.

Ме2 О + Н2 О = 2МеО H

Ме2 O + H 2 O → 2 MeOH лабораторные способы

2 Na + 2 H 2 O → 2 NaOH + H 2 ↑ получения щелочей

карбонатный способ получения щелочей:

Na2 CO3 + Ca(OH)2 → CaCO3 ↓ + 2NaOH

В промышленности NaOH получают электролизом раствора поваренной соли:

NaCl + H 2 O электролиз NaOH + Cl 2 + H 2

K ( - ) 2H2 O + 2e = H2 + 2OH-

A ( + ) 2Cl- - 2e = Cl2

Этим способом получают достаточно чистый NaOH.

Оксиды и гидроксиды

Li2 O

Na2 O

K2 O

Rb2 O

Cs2 O

Fr2 O

растворимость

LiOH


NaOH

KOH

RbOH

CsOH

FrOH

сила оснований

Гидроксиды щелочных металлов МеОН – твердые кристаллические вещества, легкоплавки, хорошо растворяются в воде с выделением тепла (кроме LiOH), полностью диссоциируют на ионы, сила оснований растет от Li к Fr.

ЭОH ® Э+ + OH-

Более активно реагируют с водой непосредственно щелочные металлы.

Интенсивность взаимодействия с водой увеличивается в ряду Li - Cs, Rb и Cs реагируют с Н2 О со взрывом.

Свойства гидроксидов

Все растворимы в воде – щелочи.

LiOH, NaOH, KOH, RbOH, CsOH, FrOH


реакционная способность увеличивается

1) реакция нейтрализации:

NaOH + HCl NaCl + H2 O

2) c кислотными оксидами:

NaOH + CO2 NaHCO3

2NaOH + CO2 Na2 CO3 + H2 O

3) с амфотерными оксидами:

2NaOH + BeO + H2 O → Na2 [Be(OH)4 ]

4) с неметаллами:

С l 2 + KOH KCl + KClO + H 2 O

холодная

С l 2 + KOH KCl + KClO 3 + H 2 O

горячая

3S + 6NaOH → 2Na2 S + Na2 SO3 + 3H2 O

5) с амфотерными металлами:

2Al + 2NaOH + 6H2 O 2Na[Al(OH)4 ] + 3H2

6) с солями:

2 AlCl 3 + 6 NaOH (недост.) 2 Al ( OH )3 + 6 NaCl

AlCl3 + 4 NaOH( избыт .) Na[Al(OH)4 ] + 3NaCl

7) с амфотерными гидроксидами:

Zn(OH)2 + 2NaOH Na2 [Zn(OH)4 ]

Щелочи жадно поглощают из воздуха влагу и СО2 , т.е. содержат примесь Н2 О (в виде кристаллогидратов NaOH×H2 O) и карбонатов.

Щелочи при плавлении разрушают стекло и фарфор

ΔG0 298 = -100кДж

За счет этого щелочи нельзя долго хранить в посуде с пришлифованными пробками, они прилипают вследствие взаимодействия щелочи со стеклом.

Твердые щелочи и их концентрированные растворы разрушают живые ткани, особенно опасно попадание частиц твердой щелочи в глаза (приводит к слепоте).

Не только с кислотами, но даже с водой большинство щелочных металлов реагируют со взрывов – отсюда шутливые плакаты с серьезным подтекстом в студенческих практикумах: «Не хотите быть уродом, не бросайте натрий в воду!»

Особенности лития и его соединений

Литий существенно отличается от остальных элементов IA группы. Особые свойства характерны для всех элементов II периода. В отличие от остальных ионов щелочных металлов, у которых по 8 электронов на предвнешнем уровне ион Li+ имеет только 2 электрона. У лития на кайносимметричной 2р-орбитали нет еще ни одного электрона.

Связь лития с другими элементами имеет менее ионный характер, что приближает его к магнию (диагональное сходство элементов в периодической системе). В периодической системе только у 2-го или даже 3-го элемента А групп полностью проявляются характерные свойства. Аномальное поведение Li заключается в том, что у Li самое отрицательное значение электродного потенциала и можно ожидать, что Li поэтому должен быть самым активным из всех металлов. Но это не так. По активности он близок к Mg, Ca.

Поэтому низкое значение электродного потенциала объясняется тем, что у Li самая высокая энергия гидратации из-за малого размера атома. Такая закономерность справедлива лишь для всех водных растворов. По химическим свойствам Li отличается от щелочных металлов, как и его соединения.

Подобно соединениям магния малорастворимы в воде LiF, Li2 CO3 , Li3 PO4 . LiOH менее других растворим в воде.

Li взаимодействует с азотом Li3 N,

6 Li + N 2 → 2 Li 3 N -3 (нитрид лития),

с кремнием − Li4 Si,

4 Li + Si Li 4 Si (силицид лития)

с углеродом – Li2 С2 ,

2 Li + 2C = (ацетиленид лития)

с водородом − LiH,

2 Li + H 2 → 2 LiH (гидрид лития)

с кислородом − Li2 O

4 Li + O 2 → 2 Li 2 O (оксид лития)

Гидроксиды МеОН, за исключением LiOH выдерживают нагревание до более 1000°С, LiOH разлагается при температуре красного каления (550 – 6000 С).

Кислородосодержащие соединения (LiOH, LiNO3 , Li2 CO3 ) при нагревании разлагаются.

Li2 CO3 Li2 O + CO2

Малый радиус иона Li+ обусловливает возможность координации лигандов вокруг этого иона, образование большого числа двойных солей, различных сольватов, высокую растворимость ряда солей лития в органических растворителях (подобно магнию).

Аналогию в свойствах соединений лития и магния можно объяснить близостью величин их ионных радиусов

r (Li+ ) = 0,068 нм, r (Mg+2 ) = 0,074 нм.

Получение элементов I А группы

Получение Li :

1) В промышленности – электролизом расплавов солей:

2 LiCl 2 Li + Cl 2

расплав

K ( -) Li+ + 1e →Li0

A (+) 2Cl- - 2e →Cl2

Электролизом водных растворов щелочных металлов их получить нельзя.

2) Остальные металлы получают в основном:

а) металлотермией из расплавов солей или оксидов;

LiCl + Na Li + NaCl

CsCl + Na Cs + NaCl

Na – получить трудно, т.к. tпл Na и NaCl близки, и для понижения tпл необходимы добавки.

Наиболее чистый Na, K получают

б) электролизом расплавов их хлоридов или гидроксидов.

расплав

Реже используется восстановление соединений щелочных металлов Al, Si или коксом; полученные при этом металлы не отличаются высокой чистотой из-за частичного образования алюминатов, карбидов, силицидов.

Возможность протекания этих реакций объясняется более высокой летучестью щелочных металлов по сравнению с Si, С, Al (tкипения (Al) = 2467°C, а tкипения (Na) = 983°C).

Получение соды по методу Сольве

Исходные вещества NH3 , CO2 , NaCl,

вначале получают CO2

CaCO 3 CaO + CO 2

В теплый насыщенный раствор NaCl пропускают аммиак, а затем углекислый газ, вначале образуется NH4 HCO3

1) ,

далее он вступает в обменную реакцию с NaCl

2) .

Из 4-х солей наименее растворим в воде NaHCO3 , который выпадает в осадок, затем при нагревании

3) .

2. Водород ( Hydrogenium – воду рождающий)

Имеет 3 изотопа: протий , дейтерий или Д и тритий или Т, тритий образуется в атмосфере в результате ядерных реакций, вызванных действием космического излучения.

Свободного водорода на Земле почти нет, в атмосфере его содержание не превышает 5×10-5 %. Практически весь водород находится в связанном состоянии в составе многих минералов, углей, нефти, живых и растительных организмов, но самым распространенным его соединением является вода.

Водород – s-элемент, в различных вариантах периодической системы помещают его то в I A, вместе со щелочными металлами, то в VII A вместе с галогенами, а иногда рассматривают отдельно.

Со щелочными металлами он сходен в том, что образует положительный ион Н+ и играет роль восстановителя.

Но с галогенами у него больше сходства: в гидридах активных металлов (CaH2 , NaH), содержится ион Н- , подобный ионам Г- (NaCl, CaCl2 ). Молекулы водорода и галогенов двухатомны (Н2 , Cl2 , Br2 ). Для водорода, как и для фтора, хлора, характерны газообразное состояние и неметаллические свойства. Потенциалы ионизации водорода и галогенов близки. Атомы водорода легко замещаются атомами галогенов в органических соединениях. Поэтому вариант ПС, где Н возглавляет VII А группу более правилен.

Особенности водорода – единственный валентный электрон водорода находится непосредственно в зоне действия атомного ядра. Особенностями строения атома водорода обусловлено существование водородной связи.

Получение Н2

В промышленности водород получают из воды и углеводородов. При этом восстановителем водорода при температуре (600-900°С) являются атомы углерода

.

Конверсия метана с водяным паром:

.

При более высокой температуре (950-1100°) можно получить разложением метана особо чистый водород и углерод.

В лаборатории:

1) при действии разбавленного раствора кислоты на активный металл (в аппарате Киппа):

или

2) щелочные металлы и щелочноземельные вытесняют водород из воды.

3) действием едких щелочей на металлы

или

4) разложением гидридов типичных металлов водой

5) электролизом воды (электролиз водных растворов щелочей).

2H2 O 2H2 + O2

Физические свойства. В обычных условиях водород – это самый легкий газ без цвета, запаха и вкуса, плохо растворим в воде.

Атомарный водород гораздо активнее молекулярного, для которого нужны дополнительные затраты энергии на расcпаривание электронов.

По электроотрицательности занимает промежуточное положение между неметаллами и металлами. И в реакциях с неметаллами и кислородсодержащими веществами играет роль восстановителя.

Химические свойства Н2

Водород легко соединяется с кислородом, горит на воздухе или в атмосфере чистого кислорода бледно-синим пламенем.

1)

Если состав смеси приближается к стехиометрическому

(2 объема Н2 и 1 объем кислорода), то смесь называется “гремучим газом”, т.к. реакция имеет в этом случае взрывной характер.

Водородно-кислородное пламя, имеющее температуру 2500°-2800°С используют для плавления тугоплавких металлов и автогенной сварки.

2) (при температуре 450 – 5000 С и повышенном давлении, в присутствии катализатора).

3) (при нагревании).

4) (при повышении температуры и давления, в присутствии катализатора).

5) (с очень активными металлами водород взаимодействует непосредственно как окислитель, превращаясь в ион Н- (гидрид-ион).

3. Вода и ее свойства. Экологическое и биологическое значение Н2 О

Три изотопа водорода и три стабильных изотопа кислорода 16 О, 17 О, 18 О в различных сочетаниях могут образовывать 18 изотопических разновидностей воды с молекулярными массами от 18 до 24 (Т2 18 О). В тяжелой воде вещества растворяются хуже, растворы меньше проводят электрический ток. Она гигроскопична, жадно поглощает влагу из воздуха. Помещенные в нее без предварительной подготовки живые существа (рыбы, черви и т.п.) погибают, семена в ней не прорастают, микробы не живут. Вода имеет очень большое значение в жизни растений, животных и человека. Согласно с современными представлениями происхождение жизни связано с водной средой. Во всяком живом организме в воде протекают химические процессы, обеспечивающие жизнедеятельность организма.

104°5’

Физические свойства. Чистая вода бесцветная, прозрачная жидкость, без запаха и вкуса. Плотность воды при переходе из твердого состояния в жидкое не уменьшается, как у всех других веществ, а возрастает и максимальной плотностью обладает вода при 4°С, а при дальнейшем нагревании плотность ее уменьшается.

Вода обладает аномально большой теплоемкостью равной 4,18 , песок = 0,79, NaCl = 0,88 (Дж/(г×К).

Поэтому это имеет большое значение для жизни. При переходе от лета к зиме, ото дня к ночи она остывает медленно и является регулятором температуры на земном шаре.

Она имеет самую высокую температуру кипения в ряду

Н2 О – Н2 S – H2 Se – H2 Te,

Tкипения , °С 100 -60 -41 -2

Если от H2 Te к Н2 S температура кипения закономерно уменьшается, то при переходе от Н2 S к Н2 О резко увеличивается. Это объясняется наличием водородной связи между молекулами воды, вследствие кулоновского взаимодействия положительно заряженного атома водорода одной молекулы и электроотрицательным атомом кислорода другой

Такое взаимодействие затрудняет отрыв молекул друг от друга, т.е. уменьшает их летучесть, а, следовательно, повышает температуру кипения.

Молекула воды из-за sp3 -гибридизации орбиталей атома кислорода имеет угловую конфигурацию, а атомы водорода, соединенные с сильно-электроотрицательным атомом кислорода, определяют ее способность к установлению четырех водородных связей с соседними молекулами.


104°5’

Химические свойства Н2 О

Вода – очень активный реагент по следующим причинам:

а) за счет ориентационного взаимодействия с полярными молекулами других веществ;

б) установления водородных связей;

в) проявления донорных свойств со стороны атома кислорода по отношению к частицам – акцепторам электронных пар;

г) электролитической диссоциации при обычных условиях (ионы Н+ гидратируются, образуя ионы Н3 О+ ).

1. При температуре выше 1000°С диссоциация водяного пара, но равновесие сдвинуто в сторону воды.

.

2. Оксиды металлов и неметаллов соединяются с водой, образуя основания и кислоты (гидрооксиды).

3. Некоторые соли образуют с водой кристаллогидраты. При растворении веществ с ионной структурой молекулы растворителя удерживаются около иона силами электростатического притяжения, т.е. за счет ион -дипольного взаимодействия.

Например: кристаллогидрат сульфата натрия Na2 SO4 ×10H2 O (глауберова соль), Na2 CO3 ×10H2 O - кристаллическая сода.

Гидраты, образующиеся в результате донорно-акцепторного взаимодействия (где ионы растворенного вещества выступают обычно в качестве акцепторов, а молекулы растворителя в качестве доноров электронных пар) представляют собой частный случай комплексных соединений.

Аквакомплексы – лигaндами является вода, [Co(H2 O)6 ]Cl2 , [Al(H2 O)6 ]Cl3 , [Cr(H2 O)6 ]Cl3 и др. Некоторые аквакомлексы в кристаллическом состоянии удерживают кристаллизационную воду [Cu(H2 O)4 ]SO4 ×H2 O – медный купорос.

4. Пероксид водорода. Окислительно - восстановительная двойственность Н2 О2

1. Строение молекулы . Структурная формула Н - О – О - Н. Энергия связи О-О (210 кДж/моль) почти в 2 раза меньше энергии связи О-Н (468 кДж/моль). Из-за несимметричного распределения связей Н - О молекула Н2 О2 сильно полярна. Между молекулами Н2 О2 возникает довольно прочная водородная связь, поэтому в обычных условиях Н2 О2 – сиропообразная светло-голубая жидкость с высокой температурой кипения равной 150°С. Температура плавления 0,41°С. Почти в 1.5 раза тяжелее воды, поверхностное натяжение (σ) больше, чем у Н2 О.

В молекуле Н2 О2 связи между атомами кислорода и водорода полярны (вследствие смещения общих электронных пар к кислороду). В водных растворах – это слабая кислота, хоть и в незначительной степени распадается на ионы:

I ст. К1 = 2,6×10-12 .

II ст. практически не протекает,

т.к. подавляется диссоциацией Н2 О, которая протекает в большей степени, чем Н2 О2 . Сместить диссоциацию по 2-й ступени можно введением щелочи.

2. С некоторыми основаниями Н2 О2 взаимодействует непосредственно образуя соли, что подтверждает его кислотные свойства.

Ba(OH)2 + H2 O2 = BaO2 + 2H2 O

соль

пероксида водорода

3. В отличие от воды пероксид водорода – непрочное соединение, разлагается даже при комнатной температуре (диспропорционирует на свету)

Н2 О2 -1 + Н2 О2 -1 = О2 0 + 2Н2 О-2

Н2 О2 = Н2 О+ О

Неустойчивость Н2 О2 обусловлена непрочностью связи О - О.

Атомы кислорода в молекуле Н2 О2 связаны непосредственно друг с другом неполярной ковалентной связью. Связи О - Н полярны. Поэтому молекула Н2 О2 также полярна.

Пероксиды относят к классу солей. Как соли они могут вступать в реакцию обмена с кислотами:

ВаО 2 + Н 2 SO4 = BaSO4 ¯ + H2 O2

в отличие от оксидов

SnO2 + 2H2 SO4 = Sn(SO4 )2 + 2H2 O

Этой реакцией пользуются для различия оксидов и пероксидов.

Н 0.95 А0 = 0,095нм

1,48 А0 = 0,148нм

120°

О О

95°

Н

ЕО-О = 210 кДж/моль ЕО-Н = 468 Дж/моль

Молекула нелинейна, две связи О - Н расположены не симметрично, а в 2-х плоскостях под углом 120°. Поэтому полярность mН2 О2 > mН2 О.

4. Окислительно-восстановительная двойственность Н2 О2

Н2 О2 + 2К I = I 2 + 2 KOH

окислитель восстановитель

Н 2 О 2 + Ag+ 2 O = 2Ag0 + O2 + H2 O

восстановитель окислитель

H2 O2 + KMnO4 + H2 SO4 → O2 + MnSO4 + K2 SO4 + H2 O

H2 O2 + KI + H2 SO4 → H2 O + I2 + K2 SO4

Na2 O2 и K2 O2 – используют для регенерации кислорода в подводных лодках и в изолирующих противогазах.

2Na2 O2 + 2CO2 → 2Na2 CO3 + O2

Наличие атомарного кислорода сообщает Н2 О2 и Na2 O2 сильные окислительные свойства. Na2 O2 способен гидролизоваться с образованием H2 O2 по реакции

Na2 O2 + 2H2 O = 2NaOH + H2 O2

В связи с этим они находят применение для отбеливания шерсти, шелка, мехов.

Аптечная перекись водорода – 3% водный раствор Н2 О2 , применяется как дезинфицирующее средство, (30% раствор называется пергидроль).

5. Биогенная роль элементов I А группы

Литий.

Недостаток лития в пищевом рационе способствует заболеваемости маниакально-депрессивными психозами, шизофренией и др. Для депрессивных больных характерен избыток, а для страдающих маниями – недостаток натрия в клетках. Роль же лития важна для выравнивания натрий -калиевого баланса в организмах больных.

Биологическая роль K и Na . Взаимосвязь ионов K и Na в биологических системах. Калий как необходимый элемент цитоплазмы, натрий как элемент межклеточных растворов

Содержание натрия в организме человека массой 70 кг составляет 60г. Из этого 44% натрия находится во внеклеточной жидкости и 9% - во внутриклеточной. Концентрация Na+ внутри клетки приблизительно в 15 раз меньше, чем во внеклеточной жидкости. Наоборот, концентрация К+ приблизительно в 35 раз выше внутри клетки, чем вне ее.

Остальное количество находится в костной ткани, являющейся местом депонирования иона Na+ в организме (около 40%). Натрий – основной внеклеточный ион, в организме находится в виде растворимых солее NaCl, Na3 PO4 , NaHCO3 , распределен в сыворотке крови, спинномозговой жидкости, по всему организму, глазной жидкости, пищеварительных соках, желчи, почках, легких, мозге. Натрий поддерживает постоянство осмотического давления и кислотно-основное равновесие (фосфатная буферная система Na2 HPO4 + NaH2 PO4 ).

Натрий содержится в поваренной соли, овощах. Натрий концентрируют в больших количествах водоросли, ламинарии, фукусы. Высокие содержания натрия способна переносить сахарная свекла.

. В поддержании кислотно - щелочного равновесия в организме важнейшая роль принадлежит натрию. Его главная обязанность поддерживать нормальное кровяное давление, защищать организм от потери жидкости, влиять на мышечную активность.

Радиоактивный 24 Na используется в качестве метки для определения скорости кровотока и для лечения некоторых форм лейкимии.

NaCl – основной источник соляной кислоты для желудочного сока. Непрерывное, избыточное появление NaCl в организме способствует развитию гипертонии. Около 90% потребляемого натрия выводится мочой, а остальные – с потом и калом.

Изотонический раствор NaCl (0,9%) для инъекций вводят подкожно, внутривенно при обезвоживании организма и при интоксикациях, а также применяют для промывания глаз, слизистой оболочки носа, а также для растворения лекарственных препаратов.

Гипертонические растворы NaCl (3-5-10%) применяют наружно в виде компрессов и примочек при лечении гнойных ран. Применение таких компрессов способствует, по законам осмоса, отделению гноя из ран и плазмолизу бактерий.

NaCl – используется для консервирования продукции сельского хозяйства (соления, квашения овощей).

NaOH – (каустическая сода) используется в мыловаренной, кожевенной, фармацевтической, текстильной промышленность и в сельском хозяйстве, 10%-ый раствор входит в состав силамина, применяемого в ортопедической практике для отливки огнеупорных моделей.

NaHCO 3 (питьевая, чайная сода) – применяют в виде полосканий, промываний при воспалительных заболеваниях глаз, слизистых оболочек верхних дыхательных путей. Действие основано на гидролизе, раствор имеет слабощелочную среду.

NaHCO3 + H2 O ↔ NaOH + H2 CO3 .

При воздействии щелочей на микробные клетки происходит осаждение клеточных белков и вследствие этого гибель микроорганизмов. NaHCO3 применяется в кондитерском деле, в медицине, в лабораторной практике.

NaHCO3 – используют при повышенной кислотности (ацидоз), взаимодействует с кислыми продуктами, образуя натриевые соли органических кислот, которые выводятся с мочой, а СО2 с выдыхаемым воздухом.

NaHCO3 + HCl = NaCl + H2 O + CO2

– нейтрализуется избыточная соляная кислота. Слишком большая доза NaHCO3 приводит к алкалозу, что не менее вредно, чем ацидоз.

Na 2 CO 3 – (кальцинированная сода).

Na 2 CO 3 • 10 H 2 O – (кристаллическая сода), потребляется мыловаренной, стекольной, текстильной, бумажной, нефтяной промышленностью.

Na 2 SO 4 • 10 H 2 O – глауберова соль (мирабилит) или слабительное. Эта соль медленно всасывается из кишечника, что приводит к повышению осмотического давления и накоплению воды в кишечнике, содержимое его разжижается, и каловые массы быстрее выводятся из организма.

Na 2 B 4 O 7 · 10 H 2 O - (бура) применяется наружно, как антисептическое средство для полосканий, спринцеваний, смазываний. Антисептическое действие аналогично NaHCO3 и связано с гидролизом и с образованием противомикробного лекарственного средства борной кислоты.

Na2 B4 O7 + 7H2 O ↔ 4H3 BO3 + 2NaOH

NaNO 3 – натриевая (чилийская) селитра, азотное удобрение с нитратной формой азота.

Na 3 [ AlF 6 ] – криолит

Наибольшее практическое значение среди соединений натрия имеют: NaOH – каустическая сода, NaHCO3 – питьевая сода, Na2 CO3 - кальцинированная сода, Na2 CO3 ×10H2 O – кристаллическая сода.

Калий.

Содержание калия в организме 70 кг приблизительно 160г. Калий - основной внутриклеточный катион, распространен по всему организму: печень, почки, сердце, костная ткань, мышцы, кровь, мозг. Ионы К+ играют важную роль в физиологических процессах – сокращении мышц, функционировании сердца, проведении нервных импульсов. Калий антагонист натрия. Калий в отличие от натрия «работает» внутри клеток, где участвует в регулировании водного баланса. Необходим калий для нормальной работы сердечной мышцы.

Почти все соли калия хорошо растворимы в воде, но в отличие от солей натрия не содержат кристаллизационной воды. Вместе с азотом и фосфором, калий – один из основных элементов питания растений, при отсутствии его они погибают.

Забирают из почвы калий подсолнечник, лен, конопля и калий накапливается в их стеблях. Калий участвует в процессе фотосинтеза, приводит к снижению содержания сахаров в корнеплодах свеклы и крахмала в зерне, отмиранию листьев растений, снижению всхожести семян, восприимчивости к грибковым заболеваниям.

Na и К присутствуют в почвах в трех основных формах – необменной, обменной, водорастворимой. Основная масса щелочных металлов (более 99 %) в необменной форме. В обменной форме калия больше чем натрия, т.к. калий прочнее удерживается почвенными ионообменниками. Натрий входит в ППК только в солонцах и засоленных почвах. В почвенных растворах натрий преобладает над калием. Катионы Na+ слабо удерживаются почвенными массами, мигрируют на далекие расстояния. Накапливаются в океанах, морях, соленых озерах.

Соли натрия накапливаются в почвах засушливых районов, вызывая засоление. Засоленные почвы (солонцы, солончаки, солоди) содержат много Na2 CO3 , Na2 SO4 , NaCl. Для этих почв характерны щелочная среда, высокое осмотическое давление, так называемая физиологическая сухость. Это нарушает поступление воды в корни растений, вызывает их увядание и гибель. Эти почвы подвергают нейтрализации и рассолонцеванию. Для этого вносят гипс CaSO4 •2H2 O (гипсование).

Особенно велика биогенная роль калия. В культурных растениях большие содержания калия обнаружены в картофеле, свекле, табаке, изюме, черносливе, цветной капусте, редьке, абрикосах, подсолнечнике. В животных организмах калий имеется в печени, селезенке. Велико содержания калия в эритроцитах, крови животных. В организмах калий находится в виде минеральных солей органических кислот (щавелевой, лимонной, пировиноградной). Установлено, что соли калия не могут быть заменены в организме никакими другими солями.

При недостатке калия в почвах растения поражаются грибковыми и бактериальными болезнями, листья их бледнеют и отмирают.

При нарушении деятельности почек у животных калий накапливается в крови, что приводит к тяжелым расстройствам функций сердца, мышц, центральной нервной системы. Калий играет большую роль в обмене веществ и фотосинтезе. Ферсман сказал о значении калия для организмов «Калий – основа жизни растений».

KCl – концентрированное калийное удобрение, является сырьем для получения сильвинита ( KCl × NaCl ).

KNO 3 – калийная селитра, сложное удобрение, содержит два элемента питания растений – калий и азот, используется в производстве тугоплавкого стекла и черного пороха.

KPO 3 – метафосфат, сложное удобрение содержит – два элемента калий и фосфор.

K 2 SO 4 – самое дорогое из калийных удобрений, т.к. методы получения дороги.

K 2 CO 3 (поташ) – зола, необходим в мыловарении, стекольном производстве, в фотографии, при крашении тканей.

K2 O × Al2 O3 × 6H2 O – полевой шпат (ортоклаз).

ЛЕКЦИЯ 2

Тема: s - Э ЛЕМЕНТЫ II ГРУППЫ

1. Общая характеристика элементов II А группы. Физические и химические свойства щелочноземельных металлов Ca , Sr , Ba ), их бинарных соединений, гидроксидов и солей

Be, Mg, Ca, Sr, Ba, Ra – элементы II А группы, из них Ca, Sr, Ba, Ra – щелочноземельные металлы, т.к. их гидроксиды обладают щелочными свойствами.

Из всех этих элементов только бериллий – является моноизотопным, все остальные полиизотопны. Радий – единственный элемент этой подгруппы, для которого неизвестно ни одного устойчивого изотопа. Все 14 изотопов радиоактивны и среди них наиболее устойчив 226 Ra.

Атомы элементов на внешнем электронном уровне имеют по 2 электрона с противоположными спинами. В возбужденном состоянии один из двух внешних электронов занимает р-орбиталь ), за счет чего атомы могут быть двухвалентными.

2s 2p

Be [He] 2s2

Be* [He] 2s1 2p1

Радиусы атомов их меньше, чем у атомов щелочных металлов, поэтому потенциал ионизации больше. От Be(Mg) к Ra увеличивается радиус атома и иона, в соответствии с этим усиливаются металлические свойства. Причем они менее выражены, чем у щелочных металлов.

У щелочноземельных металлов – тип металлических структур:Be, Mg – ГПУ (гексагональная плотная упаковка)

Ca, Sr – ГКУ (гранецентрированная кубическая упаковка)

Ba – ОЦКУ (объемно-центрированная кубическая упаковка)


ГПУ ГКУ ОЦКУ

Температура плавления и кипения бериллия, а также твердость значительно превосходит остальные элементы подгруппы, это связано с тем, что бериллий образует наиболее прочную кристаллическую решетку. Стандартный электродный потенциал уменьшается сверху вниз, соответственно. Восстановительная активность увеличивается от Ве к Ra, но они менее активные восстановители, чем щелочные металлы.

Незакономерное изменение физических свойств: плотности, температуры плавления, температуры кипения обусловлены существенными различиями в строении пространственных кристаллических решеток.

В свободном состоянии это легкие металлы, тверже щелочных, самый мягкий барий, имеют серебристо-белый цвет.

Для элементов II-A группы характерна степень окисления +2, соединения со степенью окисления +1 – неустойчивы.

Все окисляются на воздухе и бериллий, и магний покрываются плотной пленкой оксидов, защищающей их от воздействий. Но остальные металлы взаимодействуют с кислородом воздуха более энергично, поэтому хранят также как и щелочные.

При нагревании все металлы сгорают на воздухе с образованием оксидов.

При высоких температурах взаимодействуют с азотом, образуя нитриды.

Взаимодействуют с водой, вытесняя водород, все кроме бериллия, магний реагирует медленно и только при высоких температурах, а остальные бурно, т.к. в ряду стандартных электродных потенциалов находятся левее водорода.

Магний сначала образует оксид, а затем гидроксид.

Магний покрыт оксидной плёнкой MgO, который растворяется в H2 O при нагревании.

Гидролиз бинарных соединений ( при нагревании)

Са S + 2H2 O → Ca(OH)2 + H2 S↑

Ca3 P2 + 6H2 O → 3Ca(OH)2 + 2PH3

CaC2 + 2H2 O → Ca(OH)2 + C2 H2

CaH2 + 2H2 O → Ca(OH)2 + 2H2

Ca3 N2 + 6H2 O → 3Ca(OH)2 + 2NH3

Mg2 Si + 4H2 O → 2Mg(OH)2 + SiH4

Ca, Sr, Ba легко взаимодействуют с водородом, а Be, Mg – не взаимодействуют.

Наряду с обычными оксидами в отличие от Be и Mg образуют пероксиды

Гидроксиды щелочноземельных металлов – сильные основания (щелочи). Be(OH)2 - aмфолит.

Mg(OH)2 – как основание средней силы хорошо растворяется в кислотах и в растворах солей аммония

.

С ростом ионных радиусов Э2+ в ряду Be-Ba растет растворимость гидроксидов и усиливаются основные свойства в ряду Са(ОН)2 – Sr(OH)2 –Ba(OH)2 . Об этом можно судить по значениям образования ЭСО3 в реакции:

BeCO3 MgCO3 CaCO3 SrCO3 BaCO3

,кДж/моль 25,1 -38,1 -74,9 -110,0 -128,0

Малорастворимые гидроксиды бериллия и магния получают с помощью реакций обмена между солями этих металлов и щелочами.

MgCl 2 + 2 KOH Mg ( OH )2 ↓ + 2 KCl

Гидроксиды рассматриваемых элементов разлагаются при нагревании.

Из разбавленых кислот (кроме HNO3 ) эти металлы вытесняют водород

;

разбавленную HNO3 восстанавливают до иона аммония, концентрированную как активные металлы до N2 О

Способы получения

Получение бериллия.

1. Из оксидов, фторидов пирометаллургическим методом, т.е. при высокой температуре (восстановители – CO, C, Mg).

2. Электролиз расплавов солей.

Получение магния из оксидов восстановлением C и Si

Mg + H2

Ca - электролизом расплавов солей, Sr и Ba- алюмотермией

3

Растворимость солей:

Хорошо растворимы: хлориды, бромиды, иодиды и нитраты.

Плохо растворимы сульфаты (кроме MgSO4 ), карбонаты, фосфаты, силикаты. Сульфиты – малорастворимы в воде и сильно гидролизуются.

Все соли бария токсичны, применяются в сельском хозяйстве как инсектициды – яды для борьбы с вредными насекомыми (BaCl2 , BaCO3 ).

2. Особенности бериллия

Также как литий отличается от элементов I-A группы, Be – отличается от элементов II-А группы.

Атом Ве имеет на предвнешнем электронном уровне только два электрона, в отличие от остальных элементов II-A группы, у которых их по 8. У него наименьший радиус. Поэтому Ве проявляет диагональное сходство с Al.

Ве и его аналоги при нагревании с галогенами образуют галогениды ЭГ2 . Их получают также действуя НГ на металл или на Э(ОН)2 .

Be + Cl2 → BeCl2

ЭГ2 – кристаллические вещества.

В молекуле BeCl2 в наружном слое 4 электрона. Ве – может быть акцептором электронных пар и образовывает две связи по донорно-акцепторному механизму. Cl – донор электронной пары.

В итоге при конденсации BeCl2 образуются линейные полимерные цепи. Бериллий образует бинарные соединения:

Be + O2 = 2BeO

Be + S BeS

и разлагаются водой

В обычных условиях бериллий не образует простых ионов, как и для алюминия, для него характерны катионные и анионные комплексы, где координационное число Be равно 4 (Кч. Be = 4); в водных растворах не существует иона Be2+ так как он гидратирован.

Также как и алюминий бериллий обладает амфотерными свойствами, растворяется и в кислотах и в щелочах

Be + 2H+ + 4H2 O = [Be(H2 O)4 ]2+ + H2

Be + 2OH- + 2H2 O = [Be(OH)4 ]2- + H2

Be пассивируется концентрированной азотной и серной кислотами, но при нагревании реагируют с этими кислотами:

Амфотерный оксид Ве взаимодействует при сплавлении как с кислотными так и с основными оксидами.

(бериллат натрия)

(ортосиликат бериллия).

Как и оксид, амфотерны сульфиды и галогениды бериллия.

BeS + Na2 S → Na2 BeS2

кис . осн .

BeS + SiS2 → Be2 [SiS4 ]

осн . кис .

BeF2 + NaF → Na2 [BeF4 ]

кис . осн .

BeF2 + SiF4 → Be[SiF6 ]

осн. кис.

Амфотерен и гидроксид бериллия

Соль бериллия, образованную слабой кислотой, можно получить только непосредственно соединением элементов, но нельзя получить смешиванием водных растворов, так как идет совместный гидролиз солей.

Все соединения Ве токсичны. С учетом особенностей его свойств, применяется в атомной технике, электронике.

3. Жесткость воды, ее влияние на живые организмы.

В природных водах содержатся соли кальция, например, благодаря растворимости гипса CaSO4 ×2H2 O. В присутствии СО2 растворяются в воде карбонаты кальция и магния

Вода, в которой много растворимых солей Ca и Mg считается жесткой. Жесткость воды выражается числом миллиэквивалентов ионов Са2+ и Mg+2 , содержащихся в 1 л Н2 О.

(мг- экв/л),

где и - концентрация Са+2 и Mg+2 (мг-экв/л).

Вода считается мягкой, если в литре воды содержание кальция и магния менее 4 мг-экв/л, средней 4-8, жесткой 8-12, очень жесткой – более 12 мг-экв/л.

В жесткой воде мыло плохо пенится, снижается его моющие действия, т.к. соли Ca и Mg образуют с ним нерастворимые соединения. Мыло – Na-соли высокомолекулярных кислот, натрий замещается на Ca2+ и образуется осадок.

В жесткой воде плохо развариваются овощи. У животных нарушается Ca-Mg обмен.

Только растворимые соли Ca и Mg обуславливают жесткость воды. Различают временную и постоянную жесткость воды. Временная (карбонатная) жесткость воды связана с наличием в воде растворимых гидрокарбонатов Ca и Mg. Ее устраняют нагреванием (кипячением).

или добавлением известковой воды, фосфатов

, или

3Ca(HCO3 )2 + 2Na3 PO4 = Ca3 (PO4 )2 ↓ + 3Na2 CO3 + 3H2 O + 3CO2

Устранить жесткость – значит получить нерастворимые соли. При этом образуется накипь СаСO3 и MgCO3 . Накипь плохо проводит тепло, вызывает увеличение расхода топлива.

Постоянная жесткость обусловлена наличием в растворе Са и Mg-солей сильных кислот – сульфатов, хлоридов. Кипячением она не устраняется. Постоянная жесткость удаляется добавлением соды и извести

MgSO4 + Ca(OH)2 = Mg(OH)2 + Ca SO4 ¯

Общая жесткость – сумма временной и постоянной жесткости.

Общую жесткость можно удалить действием соды и известкового молока (содово-известковый способ).

.

Все это химические способы устранения жесткости.

Ионы Са2+ и Mg2+ можно удалить из воды посредством катионитов (ионообменных смол), сложных веществ, нерастворимых в воде, способных обменивать свои катионы.

(R – сложный кислотный остаток)

Ионы Са2+ и Mg2+ из воды переходят в катиониты.

Для восстановления катионита, его промывают концентрированным раствором NaCl, катионит потом снова можно использовать для очистки воды.

4. Важнейшие соединения элементов II -А группы

BeO , MgO – для производства огнеупорных материалов, М gO – жженая магнезия, применяется для нейтрализации при отравлении кислотами, входит в состав зубных порошков.

СаО – негашеная известь.

BaO 2 – для производства Н2 О2 и как отбеливающее средство.

Са(ОН)2 – гашенная известь (известковое молоко) дешевое растворимое основание.

СаСО3 – карбонат кальция – главная составная часть известняка, мела, мрамора. Служит для производства (негашеной, гашеной и хлорной извести).

Са SO 4 – используют для штукатурных работ, в медицине для изготовления отливочных форм и слепков, наложения повязок при переломах.

2 CaSO 4 × H 2 O – алебастр (в строительстве)

Са SO 4 × 2 H 2 O – гипс (в строительстве)

CaCl 2 – широко применяется в медицине для внутренних инъекций.

применяются в медицине (слабительное)

MgSO4 × 7H2 O

MgCl2 × 6H2 O

Раствор Ва(ОН)2 – баритовая вода – лабораторный реактив для открытия СО2 .

Ba ( NO 3 )2 – в пиротехнике.

5. Биогенная роль элементов II -А группы. Применение в сельском хозяйстве

Кальций – микроэлемент.

Кальцию принадлежит исключительно важная биогенная роль. Он необходим организмам для скелетообразования, костной ткани, зубов, сердечной и нервной деятельности.

Кальций играет большую роль в процессах фотосинтеза, образования белков, различных органических кислот. В животных организмах его присутствие необходимо для свертывания крови, осаждения казеина (сложного белка) при действии сычужного фермента. Избыток ионов кальция подавляет возбудимость мышечной ткани и нервных волокон, повышает тонус сердечной мышцы, действие нервной системы.

Радиоактивный изотоп кальция (45 Са) широко используется в биологии и медицине при изучении процессов минерального обмена в живых организмах, процессов усвоения кальция растениями.

Многие растения являются кальцефильными, например европейская лиственница, европейская пихта, пушистый дуб. Для своего развития они требуют повышенные концентрации кальция в почвах с нейтральной или слабощелочной средой.

Ион Са2+ - антагонист иона Mg2+ , Ca2+ в отличие от Mg2+ является внеклеточным катионом. При поступлении избытка солей Mg наблюдается усиленное выделение кальция из костной ткани.

Основная масса Са находится в костной и зубной тканях. Са, вводимый с пищей только на 50% всасывается в кишечнике. Плохое всасывание является следствием образования труднорастворимого Са3 (РО4 )2 . Кальций не используется внутри клетки, он выступает в качестве строительного материала в организме, в костях, зубах. Скелет – основное хранилище кальция в организме.

Нарушение нормального обмена веществ приводит к отложениям различных кальциевых солей в различных органах (образование «камней», глаукомы, артериосклеротические изменения сосудов и др.). Ионы кальция участвуют в обмене веществ, они поддерживают в норме свертываемость крови.

Ежедневная нормальная доза кальция для здорового человека составляет 1 г. Кальций содержит шпинат, молочный продукты, сыр, абрикосы.

Са – почвообразующий элемент. Почвы с высоким содержанием Са отличаются хорошей структурой и высоким плодородием. Почвы бедные Са наоборот имеют высокую кислотность.

Почвы редко нуждаются в увеличении содержания Са2+ и Mg2+ . Но карбонаты Са и Mg вносят в почвы для химической мелиорации – устранение избыточной кислотности (известкование ) и устранение избыточной щелочности (гипсование ).

ППК Н2 + + СаСО3 = ППК Са2+ + Н2 О + СО2 ­

ППК Na2 + + Ca2+ + SO4 2- = ППК Са 2+ + 2Na+ + SO4 2-

Хорошо растворимый Na2 SO4 вымывается из почвы.

Магний – необходимая часть молекулы хлорофилла растений, без которого не могут происходить процессы фотосинтеза и развитие растительного мира.

Магниевое микроудобрение – доломит MgCO3 ×CaCO3 .

В растениях магний участвует также в превращениях фосфорных соединений, в образовании жиров, в синтезе и распаде углеводов. При недостатке магния в почвах у растений возникают заболевания – хлороз (разрушение хлорофилла, обесцвечивание хлоропласта), у животных мышечные судороги, наблюдается остановка роста конечностей. Белое вещество мозга содержит Mg больше, чем серое, спинной мозг больше, чем головной. Богаты Mg абрикосы, персики, цветная капуста, картофель, помидоры. Магний содержат орехи, мед, морские продукты, хлеб из обойной муки, фасоль, горох, овсяная и гречневая крупа.

Стронций – концентрируется в костях, частично заменяя кальций. Радиоактивный изотоп 90 Sr вызывает лучевую болезнь. Он поражает костную ткань и в особенности костный мозг. Накопление 90 Sr в атмосфере и в организме способствует развитию лейкемии и рака костей. Применение ЭДТА для удаления 90 Sr приводит к дополнительному вымыванию Са из костей. Поэтому используют не кислоту, а Na2 CaЭДТА – комплекс.

Избыток стронция вызывает ломкость костей, стронциевый рахит и др. Причина – замена кальция костного вещества стронцием: ион стронция легко вымывается из костей и наступает их разрушение.

ЛЕКЦИЯ 3

Тема: p – Элементы III группы

1. Общая характеристика элементов III - A группы.

Известно 30 р - элементов в периодической системе, это элементы, расположенные в III-A - VIII-A группах. У р - элементов заполняется электронами р- подуровень внешнего электронного уровня.

III-A группа – B, Al, Ga, In, Tl – характеризуются наличием 3-х электронов в наружном электронном слое атома, причем у бора на предвнешнем слое атома – 2 электрона, у алюминия – 8 электронов, Ga, In, Tl – 18 электронов. III группа самая элементоемкая – содержит 37 элементов, включая лантаноиды и актиноиды. Все элементы металлы, за исключением бора.

При переходе от Al к Ga радиус атома уменьшается. Это связано с тем, что у Ga заполнение р - подуровня начинается после того, как заполняется 3d10 электронная оболочка. Под действием 3d10 - электронов электронная оболочка всего атома сжимается и размер атома уменьшается (эффект d - сжатия).

Монотонного (последовательного) изменения металлических свойств не наблюдается. Металлические свойства резко усиливаются при переходе от бора к алюминию, несколько ослабевают у галлия, и вновь постепенно растут при переходе к таллию. Обусловлено это тем, что атома Ga происходит сжатие электронной оболочки за счет d –электронов (эффект d – сжатия) , In, Tl (в отличие от B и Al) содержат по 18 электронов на предпоследнем слое. Поэтому нарушается линейное изменение свойств (rат, Тпл и т.п.) от Al к Ga.

Температура кипения закономерно уменьшается от B к Tl. Температура плавления незакономерно из-за особенностей строения кристаллической решетки.

Самый легкоплавкий металл – Ga (Тпл = 29,8˚С).

В невозбужденном состоянии конфигурация внешнего уровня ns2 np1 , в возбужденном состоянии - ns1 np2 .

В невозбужденном состоянии имеется 1 неспаренный электрон, однако соединения большинства этих элементов, в которых их степень окисления +1, очень неустойчивы и наиболее характерна для них степень окисления +3 в возбужденном состоянии, т.к. на перевод электрона из s-состояния в р - надо немного энергии.

2s

2p

5 B 2s2 2p1

­¯

­

(+1)

5 B 2s1 2p2

­

­

¯

(+3)

B – неметал, Al – еще не типичный металл, Ga, In, Tl –типичные металлы. Соединения: ЭН3 , Э2 О3 , Э(ОН)3 .

B [He] 2s2 2p1 В 2 Н 6

растет восстановительная способность, устойчивость

Al [ Ne ]3 s 2 3 p 1 ( AlH 3 ) n

Ga [ Ar ]4 s 2 4 p 1 ( GaH 3 ) n

In [ Kr ]5 s 2 5 p 1 ( InH 3 ) n

Tl [ Xe ]6 s 2 6 p 1 TlH 3

Э 2 О 3

B2 O3 кислотный оксид

Al 2 O 3 амфотерный оксид

Ga 2 O 3 амфотерный оксид (с преобладанием основных свойств)

In 2 O 3 амфотерный оксид (с преобладанием основных свойств)

Tl 2 O ( Tl2 O3 ) основной оксид

Э(ОН)3

нарастают

основные

свойства

H 3 BO 3 ортоборная кислота

Al ( OH )3 амфотерный гидроксид

Ga ( OH )3 амфотерный гидроксид

In ( OH )3 амфотерный гидроксид TlOH основной гидроксид

Образуют соединения с галогенами ЭГ3 , серой Э2 S3 , азотом ЭN.

Много общего имеет химия кислородных соединений бора и кремния: кислотная природа оксидов и гидроксидов, способность образовывать многочисленные полимерные структуры, стеклообразование оксидов.

2. Бор. Получение. Химические свойства

Бор по своим свойствам наиболее схож с элементом IV-A группы кремнием («диагональное сходство»).

Бор – кристаллическое вещество, черного цвета, тугоплавкое при t = 2300 С.

Наиболее распространены две модификации бора: аморфный и кристаллический. Аморфная модификация наиболее реакционноспособна.

Получение бора

1. Термическое разложение гидридов бора:

B 2 H 6 2 B + 3 H 2

2. Магнийтермией из оксида бора:

B2 O3 + 3Mg 3MgO + 2B

B2 O3 + Zn ZnO + B

3. Из хлорида бора:

2 BCl 3 + 3 Zn 3 ZnCl 2 + 2 B

Непосредственно активно бор реагирует только со фтором, однако при нагревании протекает взаимодействие с кислородом, азотом, углеродом.

B + 2F2 → BF4

4B + 3O2 2B2 O3

2B + N2 2BN

4 B + 3C B 4 C 3

Бор реагирует с горячими концентрированными кислотами H24 и HNO3

B + H2 SO4 конц . → H3 BO3 + SO2 ↑ + H2 O

B + HNO3 конц . H 3 BO 3 + NO 2 ↑ + H 2 O

Со щелочами реагирует только в присутствии сильных окислителей:

B + NaOH + H 2 O 2 NaBO 2 + H 2 O

Однако аморфный бор может реагировать со щелочами при кипячении:

B аморфн . + NaOH NaBO2 + H2

SiO2 + B → Si + B2 O3

Галогениды бора

BF3 BCl3 BBr3 BI3

газ газ жидкость твердый

Ecвязи кДж 644 443 376 284

устойчивость падает

ВСl3 образуется посредством взаимодействия трех электронов атома бора в возбужденном состоянии. Образуется три связи по спин - валентному (обменному) механизму.

Тип гибридизации бора – sp2

B*

3Cl

Так как в галогениде BГal3 имеется свободная орбиталь за счет атома бора, то в этом случае молекула BГal3 может быть акцептором электронной пары и участвовать в образовании связи по донорно-акцепторному механизму.

BF3 + :F- → [F3 B

F] - → [BF4 - ] атом бора (sp3 гибридизация)

Ион имеет тетраэдрическую структуру

BF3 + NH3 → BF3 · NH3 (валентность бора = 4)

Галогениды бора имеют кислотный характер и гидролизуются:

BCl 3 + H 2 O H 3 BO 3 + HCl

BF 4 + HF H [ BF 4 ] (сильная кислота)

Кислотные галогениды реагируют с основными галогенидами:

В F 3 + NaF = Na [ BF 4 ]

С водородом бор непосредственно не реагирует. Гидриды бора получают не прямым взаимодействием с водородом, а косвенным путем.

Например, действием соляной кислоты на борид магния.

М g 3 В2 + 6 HCl ® В2 Н6 ­ +3М gCl 2

Получается смесь бороводородов (боранов). Бораны известны газообразные, жидкие и твердые.

В2 Н6 – диборан – газ

В4 Н10 тетраборан – жидкость

В10 Н14 – твердый боран.

Они имеют неприятный запах и очень ядовиты. Большинство из них самовоспламеняются и разлагаются водой.

4 Н10 + 11 О2 = 4В2 О3 + 10 Н2 О

В2 Н6 + 6 Н2 О = 2Н3 ВО3 + 6Н2 ­

В молекулах бороводородов атомы бора связаны водородными «мостиками».

Бораны – особый вид соединений, в них образуется электроннодефицитная связь. В их молекулах электронов меньше, чем необходимо для образования двухэлектронных связей. Это так называемая «банановая связь», образуется в результате перекрывания двух sp3 -гибридных орбиталей атомов бора и одной s-орбитали атома водорода. Каждый мостиковый атом водорода образует с двумя атомами бора общую двухэлектронную трехцентровую связь В – Н – В.

Соединения с дефицитом электронов являются акцепторами электронов.

при температуре

4НВО2 = Н2 В4 О7 + Н2 О

Н2 В4 О7 = 2В2 О3 + Н2 О

H 2 B 4 O 7 ↔ 2 H + + B 4 O 7 2-

(кислых солей не образует)

В отличие от обычных кислот ортоборная кислота не отщепляет Н+, а вызывает смещение равновесия диссоциации воды, присоединяя за счет донорно-акцепторного взаимодействия OH-, выступает в роли одноосновной.

B(OH)3 + H2 O → B(OH)4 - + H+ Кд = 5,8 ·10-10

Координационное число бора по кислороду равно 3, поэтому кислородные соединения бора образуют полимерные соединения (полибораты).

Все кислоты превращаются в ортоборную:

HBO2 + H2 O → H3 BO3

H2 B4 O7 + 5H2 O → 4H3 BO3

Если ортоборная наиболее устойчивая кислота, то соли ее не существуют в обычных условиях по сравнению с солями мета- и тетраборной кислот. Так при действии на раствор борной кислоты гидроксидом натрия получается не ортоборат, а тетраборат натрия (при недостатке NaOH) или метаборат (в избытке NaOH):

2 NaOH нед + 4 H 3 BO 3 = Na 2 B 4 O 7 + 7 H 2 O

NaOH изб + H 3 BO 3 = NaBO 2 + 2 H 2 O

При избытке щелочи образующийся тетраборат натрия превращается в метаборат натрия:

Na 2 B 4 O 7 + 2 NaOH изб = 4 NaBO 2 + H 2 O

Кислотный гидролиз тетрабората натрия приводит к образованию ортоборной кислоты:

Na2 B4 O7 + 2HCl + 5 H2 O = 2NaCl + 4 H3 BO3

3. Алюминий

По содержанию в земной коре занимает первое место среди металлов и третье среди всех элементов, после кислорода и кремния.

Металлические свойства его выражены сильнее, чем у бора. Химические связи алюминия с другими металлами в основном ковалентного характера. Тип кристаллической структуры - ГПУ.

В отличие от бора атом алюминия имеет свободные d-подуровни на внешнем уровне. У Al3+ небольшой радиус и довольно высокий заряд, за счет чего он является комплексообразователем с координационным числом 4 или 6. Соединения Al более устойчивы, чем бора.

Получение алюминия

В промышленности Al получают электролизом расплава Al2 O3 в криолите (Na3 AlF6 )

Al2 O3 → Al+3 + AlO3 -3

K (-) Al+3 + 3e = Al0

A (+) 2 AlO 3 -3 – 6 e = Al 2 O 3 + O 2

Ga, In, Tl – рассеянные элементы, встречаются в оксидных и сульфидных рудах. В этом случае соответствующие соединения концентрируют и действуют восстановителями.

Э2 O 3 + 3 H 2 → 2Э + 3 H 2 O

Э2 O 3 + CO → 2Э + CO 2

Химические свойства алюминия

1. Не взаимодействует с Н2 .

2. Как активный металл реагирует почти со всеми неметаллами без нагревания, если снять оксидную пленку.

4Al + 3O2 → 2Al2 O3

2Al + 3Cl2 → 2AlCl3

Al + P → AlP

3. Реагирует с Н2 О:

Алюминий – активный металл с большим сродством к кислороду. На воздухе покрывается защитной пленкой оксида. Если пленку уничтожить, то алюминий активно взаимодействует с водой.

2Al + 6H2 O = 2Al(OH)3 + 3H2 ­

4. С разбавленными кислотами:

2 Al + 6 HCl → 2 AlCl 3 + 3 H 2

2Al + 3H2 SO4 → Al2 (SO4 )3 + 3H2

С концентрированными HNO3 и H2 SO4 при обычных условиях не реагирует, а только при нагревании.

5. Со щелочами:

2 Al + 2 NaOH 2 NaAlO 2 + 3 H 2

С водными растворами щелочей алюминий образует комплексы:

2Al + 2NaOH + 10 H2 O = 2Na+ [Al(OH)4 (H2 O)2 ]- + 3H2

или Na[Al(OH)4 ],

Na 3 [ Al ( OH )6 ], Na 2 [ Al ( OH )5 ] – гидроксоалюминаты. Продукт зависит от концентрации щелочи.

4 Al + 3 O 2 → 2 Al 2 O 3

Al2 O3 (глинозем) встречается в природе в виде минерала корунда (по твердости близок к алмазу). Драгоценные камни рубин и сапфир – тоже Al2 O3 , окрашенный примесями железа, хрома

Оксид алюминия – амфотерен. При сплавлении его со щелочами получаются соли метаалюминиевой кислоты HAlO2 . Например:

.

Также взаимодействует с кислотами

.

Белый студенистый осадок гидроксида алюминия растворяется как в кислотах

Al(OH)3 + 3HCl = AlCl3 + 3 H2 O,

так и в избытке растворов щелочей, проявляет амфотерность

Al(OH)3 + NaOH + 2H2 O = Na[Al(OH)4 (H2 O)2 ]

При сплавлении со щелочами гидроксид алюминия образует соли метаалюминиевой или ортоалюминиевой кислот

.

А l(OH)3 Al2 O3 + H2 O

Соли алюминия сильно гидролизуются. Соли алюминия и слабых кислот превращаются в основные соли или подвергаются полному гидролизу:

AlCl 3 + HOH AlOHCl 2 + HCl

Al +3 + HOH AlOH +2 + H + pH>7 протекает по I ступени, но при нагревании может протекать и по II ступени.

AlOHCl 2 + HOH Al ( OH )2 Cl + HCl

AlOH +2 + HOH Al ( OH )2 + + H +

При кипячении может протекать и III ступень

Al(OH)2 Cl + HOH ↔ Al(OH)3 + HCl

Al(OH)2 + + HOH ↔ Al(OH)3 + H+

.

Соли алюминия хорошо растворимы.

AlCl3 – хлорид алюминия является катализатором при переработке нефти и различных органических синтезах.

Al2 (SO4 )3 ×18H2 O – сульфат алюминия применяется для очистки воды от коллоидных частиц, захватываемых Al(OH)3 образовавшихся при гидролизе и снижении жесткости

Al2 (SO4 )3 + Ca(HCO3 )2 = Al(OH)3 + CO2 ↑ + CaSO4

В кожевенной промышленности служит протравой при крошении хлопчатобумажных тканей – KAl(SO4 )2 ×12H2 O –сульфат калия-алюминия (алюмокалиевые квасцы).

Основное применение алюминия – производство сплавов на его основе. Дюралюмин – сплав алюминия, меди, магния и марганца.

Силумин – алюминий и кремний.

Основное их достоинство – малая плотность, удовлетворительная стойкость против атмосферной коррозии. Из алюминиевых сплавов изготавливают корпуса искусственных спутников Земли и космических кораблей.

Используется алюминий как восстановитель при выплавке металлов (алюминотермия)

Cr2 O3 + 2 Al t = 2Cr + Al2 O3 .

Также применяют для термитной сварки металлических изделий (смесь алюминия и оксида железа Fe3 O4 ) называемая термитом дает температуру около 3000°С.

При движении от Ga к Tl кислотные свойства оксидов ослабевают, а основные усиливаются. В связи с этим Тl2 O3 не взаимодействует со щелочами. Устойчивость оксидов сверху вниз падает. Тl2 O3 при небольшом нагревании разлагается. Тl2 O растворяется в H2 O.

Т l 2 O + H 2 O → 2 TlOH TlOH – щелочь

По размерам ион Тl+1 близок к иону К+ , отсюда близость свойств этих соединений. Получают их из оксидов восстановлением H2 (CO). У Ga как и у алюминия амфотерные свойства.

Ga + NaOH + H2 O → Na[Ga(OH)4 ] + H2

Могут реагировать с галогенами:

Tl + Cl 2 TlCl

Tl + Cl2 → TlCl3

Ga + Cl2 → GaCl3

Соединения Ga, In, Tl – ядовиты.

4. Биогенная роль элементов III A группы

Все элементы III-А группы относятся к примесным микроэлементам. Массовая доля их в организме человека приблизительно 10-5 %. Биологическое действие их недостаточно изучено. Бор концентрируется в легких (0,34 мг), щитовидной железе (0,3 мг), селезенке (0,26 мг), печени, мозге (0,22 мг), почках, сердечной мышце. Имеются данные, что бор снижает активность адреналина.

Алюминий концентрируется в сыворотке крови, легких, печени, почках, костях, ногтях, волосах. Al +3 замещает Са+2 , Mg+2 . (У них одинаковые координационные числа, равные 6, радиус атома и энергия ионизации). Избыток Al в организме тормозит синтез гемоглобина.

Tl – весьма токсичный элемент, так как подавляет активность ферментов, содержащих тиогруппы -SH, наблюдается выпадение волос. Ионы Тl+ и К+ являются синергистами (совместно действующий в одном направлении).

Борная кислота применяется в медицине как дезинфицирующее средство, Бура Na 2 B 4 O 7 × 10 H 2 O применяется при спаивании металлов. Бура в расплавленном состоянии растворяет оксиды металлов, при соприкосновении наколенного паяльника с бурой, оксиды металлов растворяются в ней (поверхность очищается) и припой хорошо пристает к поверхности металла.

Бор – микроэлемент, оказывает специфическое влияние на углеводный обмен в растениях, необходим для нормального роста и деления клеток, образования семян.

Болотные и подзолистые почвы бедны бором. При борном голодании растения не образуют семян или их мало. Внесение борных удобрений повышает урожай сахарной свеклы, бобовых и овощных культур, менее реагируют на борные удобрения злаковые культуры.

Подкормку ведут через почву или опрыскиванием (внекорневая подкормка), эффективна предпосевная подкормка семян водными растворами борной кислоты. Применяют: бораты магния, бородатолитовое удобрение, боросуперфосфат, бородвойной суперфосфат, термические бораты.

Н3 ВО3 – антисептическое средство, высокая растворимость борной кислоты в липидах обеспечивает быстрое проникновение ее в клетки через липидные мембраны. В результате происходит свертывание белков (денатурация) цитоплазмы микроорганизмов и их гибель. Как антисептик применяют буру Na2 В4 О7 ×10Н2 О. Фармакологическое действие препарата обусловлено гидролизом соли с выделением Н3 ВО3 .

К Al ( SO 4 )2 × 12 H 2 O – алюмокалиевые квасцы. К Al ( SO 4 )2 – жженые квасцы применяют для полосканий, промываний и примочек при воспалительных процессах слизистых оболочек и кожи, применяют как кровоостанавливающее средство при порезах.

Жженые квасцы – в виде присыпок как вяжущее и высушивающее средство при потливости ног. Осушающее действие связано с тем, что жженые квасцы медленно поглощают воду.

Al – почвообразующий элемент. Наибольшее его количество стимулирует прорастание семян; избыток – снижает интенсивность фотосинтеза, нарушает фосфорный обмен, задерживает рост корневой системы.

Присутствие Al+3 в почве обуславливает вредную для растений обменную кислотность почвенного раствора. Ионы Al+3 поглощаются почвенными коллоидами, но под действием солей (KCl) вытесняются из почвы

Полученная соль AlCl3 гидролизуется по уравнению

Al 3+ + HOH AlOH 2+ + H + ,

и в результате гидролиза повышается концентрация ионов Н+ (понижается pH).

ЛЕКЦИЯ 4

Тема: р - Элементы IV группы

1. Общая характеристика группы

В IV-A группе находятся р - элементы C, Si, Ge, Sn, Pb. Конфигурация атома в невозбужденном состоянии ns22 , в возбужденном состоянии ns13 , все 4 электрона неспаренные.

2s

2p

С 2s2 2p2

­¯

­

­

(+2)

С* 2s1 2p3

­

­

­

­

( -4, +4)

Радиусы атомов закономерно растут с увеличением порядкового номера, ионизационный потенциал соответственно уменьшается.

В большинстве неорганических соединений углерод и кремний проявляют степень окисления +4. Но от германия к свинцу прочность соединений со степенью окисления +4 уменьшается, более стабильна низкая степень окисления +2. Могут проявлять степени окисления - 4 в гидридах.

Углерод стоит в середине 2-го периода, он одинаково может притягивать и отдавать электроны, промежуточное значение электроотрицательности приводит к тому, что углерод образует ковалентные связи со всеми реакционноспособными элементами периодической системы, стоящими от него слева (в том числе Н), справа (О, N, галогены) и снизу (Si,Ge, Sn, Pb).

Li Be B C N O F

ОЭО 1 1,5 2 2,5 3 3,5 4

Невозможность донорно - акцепторного взаимодействия в возбужденном состоянии обусловливает примерно одинаковую прочность одинарных связей с водородом. Четырехвалентность углерода предоставляет широкие возможности для разветвлений цепей углеродных атомов и образования циклических структур.

C - типичный неметалл

Si - типичный неметалл

Ge - есть металлические свойства

Sn - металлические свойства преобладают над неметаллическими

Pb - металлические свойства преобладают над неметаллическими

Увеличение восстано-вительных свойств, уменьшение устойчивости молекул

Гидроксидов не образуют

Увеличение основных свойств и устойчивости молекул.

Нерастворимы в воде

уменьшение устойчивости молекул

Кремний по распространенности в земной коре занимает второе место (после кислорода). Если углерод – основа жизни, то кремний – основа земной коры. Он встречается в громадном многообразии силикатов и алюмосиликатов, песка. Германий, олово, свинец достаточно редкие элементы. Аморфный уголь (сажа) черного цвета, аморфный кремний – порошок бурого цвета. Кристаллический кремний – полупроводник. Важные сорта аморфного угля – кокс, древесный уголь. Германий как и кремний, полупроводник, имеет алмазоподобную решетку, по внешнему виду типичный металл серебристо-белого цвета. Олово имеет модификации белое (b-модификация устойчива выше 286 К серебристо-белый металл, серая - a-модификация (серое олово) имеет алмазоподобную решетку. Свинец – темно-серый металл.

2. Химия углерода

Углерод встречается в природе в свободном виде и в соединениях. Его аллотропные видоизменения – алмаз, графит, карбин, фуллерен.

Алмаз – самое твердое вещество в природе. Твердость по шкале Маоса -10, тем не менее он хрупок. Ограненный алмаз имеет более 20 граней и называется бриллиантом, используется в ювелирной промышленности. Масса бриллианта измеряется в каратах (1 карат = 0,2 г). Существенные различия в свойствах алмаза и графита обусловлены особенностями строения их кристаллов.

1. Кристаллическая решетка алмаза атомная. Каждый атом углерода расположен в центре тетраэдра, четыре вершины которого заняты другими атомами углерода. Все атомы находятся на одинаковых расстояниях друг от друга. Кристалл алмаза (диэлектрик) – имеет плотную упаковку с высокой компактностью и твердостью. Атомы углерода в sp 3 -гибридизации.

2. В кристаллах графита атомы углерода расположены в углах правильных шестиугольников, находящихся в параллельных плоскостях. Под внешним воздействием такой кристалл легко расслаивается на чешуйки. Графит в отличие от алмаза очень мягок.

Атомы углерода в графите в sp 2 -гибридизации.

3. Карбин – твердое кристаллическое вещество.

Это линейный полимер углерода, в котором чередуются одинарные и тройные связи.

Атомы углерода в карбине в sp -гибридизации .

a- карбин (полиин)

= b- карбин (поликумулен)

Карбин – наиболее стабильная форма углерода, a- карбин обладает полупроводниковыми свойствами.

4. Фуллерен – четвертая аллотропная модификация углерода. Его молекулы имеют четное число атомов углерода и имеют состав С60 , С70 , С80 и т.д. Молекула С60 имеет вид футбольного мяча, построенного из пяти- и шестигранных углеродных циклов с общими ребрами.

Водородные соединения углерода – углеводороды являются объектом изучения в органической химии.

К неорганическим соединениям углерода относятся СО и СО2 .

С + О2 ® СО2

С + О2 ® СО

С + Н2 ® СН4

С + S 2 ® CS 2 (сероуглерод)

С + F 2 ® С F 4

Из галогенидов СГаl самое большое значение имеет СCl4 – бесцветная, достаточно токсичная жидкость. В обычных условиях СCl4 химически инертен. Применяют как невоспламеняющийся и негорючий растворитель смол, лаков, жиров и для получения фреона CF2 Cl2 .

CF4 газ ; CCl4 жидкий ; CBr4 твердый .

С + H2 SO4 конц ® СО 2 + SO2 + H2 O

С + HNO3 конц ® СО 2 + NO2 + H2 O

Химическая связь в молекуле СО.

Распределение электронов в возбужденном атоме углерода и в кислороде таково, что между ними возможно образование двух химических связей – в атоме кислорода имеются 2 неспаренных электрона. Однако при переходе одного электрона от кислорода к углероду в образовавшихся ионах С- и О+ будет по 3 неспаренных электрона, аналогично электронной конфигурации азота. При соединении этих ионов образуется тройная связь, аналогичная молекуле N2 , поэтому свойства СО и N2 очень близки.

СО

С-

­¯

¯

¯

¯

О+

­¯

­

­

­

С 2s2 2p2 С +1е = С-

О 2s2 2p4 О -1е = О+

Возможно иное объяснение образования тройной связи в молекуле СО.

С 2s2 2p2

­¯

¯

¯

О 2s2 2p4

­¯

­¯

­

­

Невозбужденный атом углерода имеет 2 неспаренных электрона, которые могут образовать 2 общие электронные пары с 2-мя неспаренными электронами атома кислорода (по обменному механизму). Однако имеющиеся в атоме кислорода 2 спаренные р -электрона могут образовывать тройную химическую связь, поскольку в атоме углерода имеется одна незаполненная ячейка, которая может принять эту пару электронов.

Тройная связь образуется по донорно-акцепторному механизму, направление стрелки от донора кислорода к акцептору – углероду.

Подобно N2 - СО обладает высокой энергией диссоциации (1069 кДж), плохо растворим в воде, инертен в химическом отношении. СО – газ без цвета и запаха, безразличный несолеобразующий, не взаимодействует с кислотными щелочами и водой при обычных условиях. Ядовит, т.к. взаимодействует с железом, входящим в состав гемоглобина. При повышении температуры или облучении проявляет свойства восстановителя.

Получение:

в промышленности

в лаборатории:

;

.

В реакции СО вступает лишь при высоких температурах.

Молекула СО имеет большое сродство к кислороду, горит образуя СО2 :

СО + 1/2О2 = СО2 + 282 кДж/моль.

Из-за большого сродства к кислороду СО используется как восстановитель оксидов многих тяжелых металлов (Fe, Co, Pb и др.).

С O + Cl 2 = COCl 2 (фосген)

Наибольший интерес представляют карбонилы металлов (используются для получения чистых металлов). Химическая связь по донорно-акцепторному механизму, имеет место p-перекрывание по дативному механихму.

(пентакарбонил железа)

Все карбонилы – диамагнитные вещества, характеризуются невысокой прочностью, при нагревании карбонилы разлагаются

[Ni(CO)4 ] → 4CO + Ni (карбонил никеля).

Как и СО карбонилы металлов – токсичны.

Химическая связь в молекуле СО2

В молекуле СО2 sp - гибридизация атома углерода. Две sp-гибридные орбитали образуют 2 s-связи с атомами кислорода, а оставшиеся негибридизованными р-орбитали углерода дают с двумя р-орбиталями атомов кислорода p-связи, которые располагаются в плоскостях перпендикулярных друг другу.

О ═ С ═ О

Под давлением 60 атм. и комнатной температуре СО2 сгущается в бесцветную жидкость. При сильном охлаждении жидкая СО2 застывает в белую снегоподобную массу, возгоняющуюся при Р = 1 атм и t = 195К(-78°). Спрессованная твердая масса называется сухим льдом, СО2 не поддерживает горения. В нем горят лишь вещества, у которых сродство к кислороду выше чем у углерода: например,

2 Mg + CO 2 ® 2 MgO + C .

СО2 реагирует с NH 3 :

( карбамид мочевина )

2 СО 2 + 2Na2 O2 ® 2Na2 CO3 +O2

Мочевина разлагается водой:

CO ( NH 2 )2 + 2 H 2 O ® ( NH 4 )2 CO 3 → 2NH3 + СО 2

фотосинтез

.

СО 2 получают в технике:

из кокса

В лаборатории (в аппарате Киппа):

.

Угольная кислота и ее соли

Растворяясь в воде, углекислый газ частично взаимодействует с ней, образуя угольную кислоту H2 CO3 ; при этом устанавливаются равновесия:

К1 = 4×10-7 К2 = 4,8×10-11 – слабая, неустойчивая, кислородсодержащая, двухосновная кислота. Гидрокарбонаты растворимы в Н2 О. Карбонаты нерастворимы в воде, кроме карбонатов щелочных металлов, Li2 CO3 и (NH4 )2 CO3 . Кислые соли угольной кислоты получают, пропуская избыток СО2 в водный раствор карбоната:

,

либо постепенным (по каплям) добавлением сильной кислоты в избыток водного раствора карбоната:

Na2 CO3 + HNO3 ® NaHCO3 + NaNO3

При взаимодействии со щелочами или нагревании (прокаливании) кислые соли переходят в средние:

Соли гидролизуются по уравнению:

I ступень

Из-за полного гидролиза из водных растворов нельзя выделить карбонаты Gr3+ , Al3+ , Ti4+ , Zr4+ и др.

Практическое значение имеют соли - Na2 CO3 (сода), CaCO3 (мел, мрамор, известняк), K2 CO3 (поташ), NaHCO3 (питьевая сода), Са(НСО3 )2 и Mg(HCO3 )2 обусловливают карбонатную жесткость воды.

Сероуглерод ( CS 2 )