Главная              Рефераты - Разное

по дисциплине «технология/методология научных исследований» на тему «Метод Ньютона для функций одной переменной» - реферат

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОУВПО «Самарский государственный

архитектурно-строительный университет»

Факультет информационных систем и технологий

Кафедра прикладной математики и вычислительной техники

РЕФЕРАТ

по дисциплине

«ТЕХНОЛОГИЯ/МЕТОДОЛОГИЯ НАУЧНЫХ ИССЛЕДОВАНИЙ»

на тему

«Метод Ньютона для функций одной переменной»

III СЕМЕСТР 2КУРС

Научный руководитель: Пиявский Семён Авраамович

Проверили:

Выполнила: студентка ГИП 107

Сулковская А.С.

Общая оценка____________________

Методический руководитель Оценка Дата

2007 год


Введение

Суть метода заключается в том, чтобы вычислять производную лишь один раз, в точке начального приближения , а затем использовать это значение на каждой последующей итерации:

Достоинства метода Ньютона :

1) если минимизируемая функция является квадратической, то метод позволит найти минимум за один шаг;

2) если минимизируемая функция относится к классу поверхностей вращения (т.е. обладает симметрией), то метод также обеспечивает сходимость за один шаг (поскольку в точке минимума аргументы минимизируемой функции и ее квадратической аппроксимации совпадают);

3) если функция несимметрична, то метод не обеспечивает сходимость за конечное число шагов. Но для многих функций (даже очень сложных, например, для функции Розенброка, которая будет исследоваться Вами в ходе лабораторной работы) достигается гораздо более высокая скорость сходимости, чем при использовании других модификаций метода наискорейшего спуска.

Недостатки метода Ньютона связаны с необходимостью вычислений и (главное! ) обращения матриц вторых производных. При этом не только расходуется машинное время, но (это существеннее ) могут появиться значительные вычислительные погрешности, если матрица окажется плохо обусловленной (т.е. значение определителя этой матрицы будет близко к нулю).

Метод Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727), под именем которого и обрёл свою известность. Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Улучшением метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить нуль первой производной либо градиента в случае многомерного пространства.

Описание метода

Чтобы численно решить уравнение методом простой итерации, его необходимо привести к следующей форме: , где — сжимающее отображение.

Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Решение данного уравнения ищут в виде , тогда:

В предположении, что точка приближения «достаточно близка» к корню , и что заданная функция непрерывна , окончательная формула для такова:

С учётом этого функция определяется выражением:

Эта функция в окрестности корня осуществляет сжимающее отображение[1] , и алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

По теореме Банаха последовательность приближений стремится к корню уравнения .

Иллюстрация метода Ньютона (синим изображена функция , нуль которой необходимо найти, красным — касательная в точке очередного приближения ). Здесь мы можем увидеть, что последующее приближение лучше предыдущего .

[править] Геометрическая интерпретация

Основная идея метода заключается в следующем: задаётся начальное приближение вблизи предположительного корня, после чего строится касательная к исследуемой функции в точке приближения, для которой находится пересечение с осью абцисс. Эта точка и берётся в качестве следующего приближения. И так далее, пока не будет достигнута необходимая точность.

Пусть — определённая на отрезке [a , b ] и дифференцируемая на нём действительнозначная функция. Тогда формула итеративного исчисления приближений может быть выведена следующим образом:

,

где α — угол наклона касательной в точке .

Следовательно искомое выражение для имеет вид:

.

Итерационный процесс начинается с некого начального приближения x 0 (чем ближе к нулю, тем лучше, но если предположения о нахождении решения отсутствуют, методом проб и ошибок можно сузить область возможных значений, применив теорему о промежуточных значениях).