Главная              Рефераты - Разное

Cистема Автоматизированного Управления процесса стерилизации биореактора - реферат

Приложение 3


Отказоустойчивое управления (системы ПАЗ) – TRICON (TRICONEX)


Отказоустойчивая система управления выявляет и компенсирует неисправные элементы и позволяет ремонтировать систему во время выполнения заданной задачи без прерывания процесса.

Системы управления высокой надежности, такие как TRICON, используются в технологических процессах с критическими условиями, которые предъявляют жесткие требования к безопасности и готовности.


TRICON - это современная отказоустойчивая система управления, основанная на архитектуре с тройным модульным резервированием (TMR). TMR использует три изолированные параллельные системы управления и диагностику, объединенные в единую систему. Система, использующая принцип мажоритарной выборки "два – из – трех", обеспечивает высокую надежность, безошибочность и безостановочное функционирование, и не имеет ни одного слабого звена.

Сигналы сенсоров во входном модуле разделяются и направляются по трем независимым и изолированным каналам к одному из трех главных процессоров.

Межпроцессорная шина TRIBUS выполняет мажоритарную выборку данных и корректирует любые расхождения входных сигналов. В результате этого гарантируется, что каждый главный процессор использует одни и те же

выбранные данные для выполнения прикладной программы.

Выходные параметры затем направляются по трем различным каналам к выходным модулям, где вновь проводится мажоритарная выборка для обеспечения надежности. Цифровая мажоритарная выборка выходного сигнала осуществляется с помощью запатентованной схемы учетверенной выборки, выборка аналогового сигнала осуществляется с помощью аналогового выходного селектора. Схема с обратными связями обеспечивает конечную оценку состояния выходного сигнала и диагностику скрытых ошибок.

Установка и запуск системы TRICON облегчается тем, что тройная система резервирования TMR с точки зрения пользователя, действует как одна система управления. Пользователь устанавливает и подсоединяет датчики и исполнительные механизмы к единой терминальной точке цепи и программирует TRICON с помощью одной прикладной программы.

Диагностика каждого независимого канала, каждого модульного компонента и каждой функциональной цепи позволяет обнаруживать ошибки

функционирования и сообщать о них. Все данные диагностики хранятся в качестве системных переменных, сообщения выводятся на соответствующие светодиодные индикаторы (LED) или на контакты тревожной сигнализации. Эта информация может быть использована в прикладной программе для изменения действий по управлению процессом или при техническом обслуживании. Все неисправные компоненты могут быть заменены в оперативном режиме без прерывания процесса! Эти особенности TRICON обеспечивают высочайшую надежность данной системы.

Основные особенности системы TRICON:

отсутствие слабых звеньев в системе;

  1. возможность функционирования с тремя, двумя или одним главными процессорами перед отключением;

  2. тройная система резервирования;

  3. всеобъемлющая система диагностики модулей;

  4. простой ремонт модулей в процессе работы.

Системы TRICON применяются в системах противоаварийной защиты (ESD) опасных производств на нефтехимических и химических заводах; в системах противопожарной безопасности плавучих платформ, котлов во многих обрабатывающих и перерабатывающих процессах; в управлении газовыми и паровыми турбинами.

Высокий уровень безопасности TRICON, обеспечиваемый применением специализированной архитектуры и средств внутренней диагностики, соответствует третьему уровню безопасного допуска SIL (Safety Integrity Level), определенному международным стандартом IEC 61508. Для уровня SIL 3 стандарта IEC 61508 определены:

  1. вероятность возникновения ошибки - от 1.000 до 10.000 лет;

  2. готовность - 99.90 - 99.99%.

Также система TRICON сертифицирована Ассоциацией Технического Надзора (Германия) (TUV) для использования в производствах требующих “German Safety Requirement Class 5 and 6”.


Приложение 4


Полевая шина - Fieldbus


Современная микроэлектроника предлагает разработчикам технических информационных систем возможность добиться высоких характеристик при относительно низкой цене, позволяет реализовать функции автоматики вне блока центрального процессора, например, в станках, агрегатах, датчиках и исполнительных механизмах [19].

Такое смещение функциональности в сторону периферийного технологического оборудования (децентрализация) выявило потребность в новых видах коммуникаций. Прежде передача и обработка сигналов осуществлялась за счет простого включения в автоматизируемый процесс некоторого вычислителя, однако сегодня интеллектуальные компоненты автоматизируемого процесса требуют специально разработанных видов связей, действующих в рамках их собственной функциональности. Появление цифрового интерфейса сделало переход к локальной сети почти неминуемым. Этот вид сети, функционирующей на нижнем уровне системы автоматизации непосредственно рядом с технологическим процессом, получил название fieldbus (полевая шина, или промышленная сеть).

К наиболее известным и применяемым в мире открытым промышленным сетям относятся: CAN, LON, PROFIBUS, Interbus-S, FIP, FF, DeviceNET, SDS, ASI, HART и некоторые другие. Каждая из перечисленных систем имеет свои особенности и области применения. Большие усилия направлены сегодня на разработку аппаратно-программных шлюзов (мостов) из одного протокола в другой. И эти решения составляют отдельный сегмент продуктов в области fieldbus-систем.


Метод квалиметрии


Vетод квилиметрии разработал видный русский математик, механик и кораблестроитель академик А.Н.Крылов. Название метода происходит от латинских слов qualis – какой по качеству и metreo – измерение, то есть измерение качества и обозначает отрасль науки, занимающейся и реализующая методы количественной оценки качества продукции. В настоящее время квалиметрия получила развитие и признание у специалистов. Квалиметрию можно рассматривать как часть исследования операций, объединяющую методы количественного обоснования решений, принимаемых в управлении и обеспечении качества как составной важной части эффективности продукции на всех этапах ее жизненного цикла –проектирования, производства и эксплуатации.

Основная суть квалиметрического метода оценки характеристик программируемых логических контроллеров состоит в следующем:

1. Строится дерево свойств, показывающее взаимосвязи между сложными, простыми и элементарными свойствами. Дерево свойств строится в соответствии с рядом правил: 1) признак деления на свойства должен быть один и должен отражать данные однородные свойства, то есть смешивать разнородные свойства в группе нельзя; 2) лишние, дублирующие свойства не должны включаться в дерево свойств; 3) в дерево свойств должно быть включено минимальное количество свойств; 4) допускается включать в дерево свойства, которые не имеют критерия в конкретном выражении, но важны для оценки данного объекта. Далее проводится экспертиза дерева свойств специалистами на предмет соответствия поставленной задачи квалимитрической оценке, а также на предмет правильности его построения. При этом все простые и элементарные свойства должны быть проверены в части наличия достоверных сопоставимых количественных показателей.

2. Определение коэффициентов весомости, которое проводится в соответствии по следующей схеме: 1) уяснение экспертами целевого предназначения машины в решаемой задаче (оперативное и тактическое назначение машины [10,27] и условия эксплуатации [10]); 2) составление индивидуальной анкеты для установления ненормируемых коэффициентов весомости по группам, которые комплектуются по дереву свойств; 3) назначение ненормированных коэффициентов весомости ( , - число экспертов) в группах при условии, что наивысшему по значимости свойству эксперт назначает коэффициент 10 балов, всем прочим устанавливаются меньшие значения коэффициентов в зависимости от снижения значимости; 4) согласование мнений экспертов путем обсуждений, где устраняются отклонения в оценке более 20% (если такие отклонения имеются, то назначается второй тур экспертного опроса по несогласованным оценкам или проведение согласования статистическими методами путем определения коэффициентов вариации ( ) и среднеквадратичного отклонения ( ), где - число групп оценок и соответствующее отсеивание больших отклонений); 5) составление сводной анкеты со значениями данных всех экспертов, по согласованным ненормированным коэффициентам; 6) по заполненной сводной анкете определяются нормированные коэффициенты весомости в следующей последовательности: 6.1) определение среднеарифметического значения групповых ненормированных коэффициентов ; 6.2) определение суммы всех средних групповых ненормированных коэффициентов в каждой группе ; 6.3) определение групповых нормированных коэффициентов , где ;
6.4) определение коэффициентов весомости простых и элементарных свойств в общей системе качеств, которые получаются перемножением групповых коэффициентов, составляющих ветвь дерева по горизонтали , где - число элементов по горизонтали в группе; 6.5) проверка правильности расчетов, согласно которой сумма всех коэффициентов весомости в каждом уровне должна быть равна единице .

3. Определение базовых и экстремальных абсолютных показателей свойств сводится к нахождению максимального (наилучшего – базового ) и минимального (наихудшего – экстремального ) значения оценочных показателей. Значения текущих оценочных показателей должны лежать в диапазоне .

4. Оценка качества и анализ результатов производится на заключительном этапе по следующей схеме: 1) определяются относительные значения всех элементарных свойств по формуле ; 2) вычисляется интегральная оценка (интегральное качество), как . Объект сравнения, у которого интегральный показатель больше, считается лучшим. Автор работы [25] указывает, что по результатам расчета можно получить много количественной информации: во-первых, можно установить, какая машина лучше и насколько; во-вторых, можно определить показатели , по которым одна машина превосходит другую; в-третьих, насколько каждая машина уступает идеальной по техническому уровню машине, у которой общей показатель оценки абсолютно идеален.

Как замечает сам автор [25]: «…достоверность результатов расчетов квалиметрическим методом зависит во многом от компетентности лиц, решающих задачу, насколько глубоко и широко они знают теоретически и практически предмет, относящийся к решаемой задаче».


Методика выбора ПЛК


Учитывая специфику устройств, критерии оценки можно разделить на три группы, изображенные на дереве характеристик ПЛК (рис. 6.2):



Рис. 6.2. Дерево характеристик ПЛК

  • технические характеристики;

  • эксплуатационные характеристики;

  • потребительские свойства.

При этом критериями выбора считать потребительские свойства, т.е. соотношение показателей затраты/производительность/надежность, а технические и эксплуатационные характеристики ограничениями для процедуры выбора.

Кроме того, необходимо разделить характеристики на прямые (для которых положительным результатом является её увеличение) и обратные (для которых положительным результатом является её уменьшение).

Так как характеристики между собой конфликтны, т.е. улучшение одной характеристики почти всегда приводит к ухудшению другой, необходимо для каждой характеристики определить весовой коэффициент , учитывающий степень влияния данной характеристики на полезность устройства.

Терминология и состав критериев оценки ПЛК приведены в соответствии с основными положениями квалиметрии и стандартами качества (ГОСТ 15467-79).

Выбор аппаратуры производится в четыре этапа:

  • определение соответствия технических характеристик предъявленным требованиям;

  • определение соответствия эксплуатационных характеристик предъявленным требованиям;

  • оценка потребительских свойств выбираемой аппаратуры;

  • ранжирование изделий.

На первом этапе каждая техническая характеристика анализируемого изделия сравнивается с предъявленными к проектируемой системе требованиями, и если данная характеристика не удовлетворяет этим требованиям, изделие снимается с рассмотрения.

Такой же анализ проводится на втором этапе с эксплуатационными характеристиками, и только если технические и эксплуатационные характеристики соответствуют поставленной задаче и предъявленным требованиям, проводится оценка потребительских свойств ПЛК.

Для этого используется аддитивный метод оценки, когда суммарная оценка каждой группы свойств (затраты/производительность/надежность) вычисляется по следующей формуле:


,


где , - нормированные прямые и обратные характеристики выбираемого изделия (переход к относительным характеристикам);

- весовые коэффициенты характеристик;

l, n-l количество прямых и обратных характеристик.

Для прямой характеристики - наилучшие, - наихудшие значения оценочных характеристик. Для обратных характеристик наоборот. Значения текущих оценочных характеристик должны лежать в диапазоне .

Определение весовых коэффициентов для характеристик ПЛК является одной из самых ответственных задач, т.к. именно от их правильной величины зависит достоверность результатов анализа. Для нахождения усредненной оценки каждого коэффициента может быть рекомендована следующая методика экспертных оценок.

Составляется сводная анкета эксперты-коэффициенты (рис. 6.3), в которой проставляются полученные от каждого эксперта ненормированные коэффициенты весомости по шкале от 0 до 10.



Рис. 6.3. Сводная анкета эксперты-коэффициенты


Определяются среднеарифметические значения ненормированных коэффициентов для каждой группы характеристик:

, при

Определяются значения нормированных весовых коэффициентов по группам характеристик характеристик ПЛК:


Проверяем правильность расчетов, согласно которой сумма всех коэффициентов весомости в группе должна быть равна единице .

В результате анализа потребительских свойств аппаратуры составляется таблица изделия-потребительские свойства, которая содержит исходные данные для выбора ПЛК.

Ранжирование изделий, т.е. расположение их в порядке возрастания (или убывания) соотношения показателей затраты/производительность/надежность целесообразно проводить по формуле:


Приложение 3


Отказоустойчивое управления (системы ПАЗ) – TRICON (TRICONEX)


Отказоустойчивая система управления выявляет и компенсирует неисправные элементы и позволяет ремонтировать систему во время выполнения заданной задачи без прерывания процесса.

Системы управления высокой надежности, такие как TRICON, используются в технологических процессах с критическими условиями, которые предъявляют жесткие требования к безопасности и готовности.


TRICON - это современная отказоустойчивая система управления, основанная на архитектуре с тройным модульным резервированием (TMR). TMR использует три изолированные параллельные системы управления и диагностику, объединенные в единую систему. Система, использующая принцип мажоритарной выборки "два – из – трех", обеспечивает высокую надежность, безошибочность и безостановочное функционирование, и не имеет ни одного слабого звена.

Сигналы сенсоров во входном модуле разделяются и направляются по трем независимым и изолированным каналам к одному из трех главных процессоров.

Межпроцессорная шина TRIBUS выполняет мажоритарную выборку данных и корректирует любые расхождения входных сигналов. В результате этого гарантируется, что каждый главный процессор использует одни и те же

выбранные данные для выполнения прикладной программы.

Выходные параметры затем направляются по трем различным каналам к выходным модулям, где вновь проводится мажоритарная выборка для обеспечения надежности. Цифровая мажоритарная выборка выходного сигнала осуществляется с помощью запатентованной схемы учетверенной выборки, выборка аналогового сигнала осуществляется с помощью аналогового выходного селектора. Схема с обратными связями обеспечивает конечную оценку состояния выходного сигнала и диагностику скрытых ошибок.

Установка и запуск системы TRICON облегчается тем, что тройная система резервирования TMR с точки зрения пользователя, действует как одна система управления. Пользователь устанавливает и подсоединяет датчики и исполнительные механизмы к единой терминальной точке цепи и программирует TRICON с помощью одной прикладной программы.

Диагностика каждого независимого канала, каждого модульного компонента и каждой функциональной цепи позволяет обнаруживать ошибки

функционирования и сообщать о них. Все данные диагностики хранятся в качестве системных переменных, сообщения выводятся на соответствующие светодиодные индикаторы (LED) или на контакты тревожной сигнализации. Эта информация может быть использована в прикладной программе для изменения действий по управлению процессом или при техническом обслуживании. Все неисправные компоненты могут быть заменены в оперативном режиме без прерывания процесса! Эти особенности TRICON обеспечивают высочайшую надежность данной системы.

Основные особенности системы TRICON:

отсутствие слабых звеньев в системе;

  1. возможность функционирования с тремя, двумя или одним главными процессорами перед отключением;

  2. тройная система резервирования;

  3. всеобъемлющая система диагностики модулей;

  4. простой ремонт модулей в процессе работы.

Системы TRICON применяются в системах противоаварийной защиты (ESD) опасных производств на нефтехимических и химических заводах; в системах противопожарной безопасности плавучих платформ, котлов во многих обрабатывающих и перерабатывающих процессах; в управлении газовыми и паровыми турбинами.

Высокий уровень безопасности TRICON, обеспечиваемый применением специализированной архитектуры и средств внутренней диагностики, соответствует третьему уровню безопасного допуска SIL (Safety Integrity Level), определенному международным стандартом IEC 61508. Для уровня SIL 3 стандарта IEC 61508 определены:

  1. вероятность возникновения ошибки - от 1.000 до 10.000 лет;

  2. готовность - 99.90 - 99.99%.

Также система TRICON сертифицирована Ассоциацией Технического Надзора (Германия) (TUV) для использования в производствах требующих “German Safety Requirement Class 5 and 6”.


Приложение 4


Полевая шина - Fieldbus


Современная микроэлектроника предлагает разработчикам технических информационных систем возможность добиться высоких характеристик при относительно низкой цене, позволяет реализовать функции автоматики вне блока центрального процессора, например, в станках, агрегатах, датчиках и исполнительных механизмах [19].

Такое смещение функциональности в сторону периферийного технологического оборудования (децентрализация) выявило потребность в новых видах коммуникаций. Прежде передача и обработка сигналов осуществлялась за счет простого включения в автоматизируемый процесс некоторого вычислителя, однако сегодня интеллектуальные компоненты автоматизируемого процесса требуют специально разработанных видов связей, действующих в рамках их собственной функциональности. Появление цифрового интерфейса сделало переход к локальной сети почти неминуемым. Этот вид сети, функционирующей на нижнем уровне системы автоматизации непосредственно рядом с технологическим процессом, получил название fieldbus (полевая шина, или промышленная сеть).

К наиболее известным и применяемым в мире открытым промышленным сетям относятся: CAN, LON, PROFIBUS, Interbus-S, FIP, FF, DeviceNET, SDS, ASI, HART и некоторые другие. Каждая из перечисленных систем имеет свои особенности и области применения. Большие усилия направлены сегодня на разработку аппаратно-программных шлюзов (мостов) из одного протокола в другой. И эти решения составляют отдельный сегмент продуктов в области fieldbus-систем.



Аннотация


В данном дипломном проекте в рамках разработки системы автоматизированного управления стадии стерилизации процесса биосинтеза эритромицина проведена работа в следующих направлениях:

Рассмотрена задача создания автоматизированной системы управления стадии стерилизации биореактора процесса биосинтеза.

Подтверждена актуальность данной задачи, произведен выбор метода автоматизации, обоснован выбор программно-технического комплекса и программного обеспечения для ее решения.

Создано программное обеспечение для автоматизированного рабочего места оператора с использованием LabVIEW 7 DSC.

Разработана программная реализация алгоритмической схемы переключений в процессе стерилизации биореактора на базе программного пакета LabVIEW 7 DSC.

Предложена модель системы сбора, обработки и передачи технологической информации на базе АРМ оператора с использованием программной реализация алгоритмической схемы переключений, компьютерной модели процесса стерилизации и технологии OPC.

В рамках САУ разработана программа управления измерителем температуры регулирующим «Дана-Терм» ИТР 2529 c функциями OPC сервера в программной среде LabVIEW 7 DSC.


ОГЛАВЛЕНИЕ


1. ВВЕДЕНИЕ 3

2. КРАТКОЕ ОПИСАНИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ЭРИТРОМИЦИНА 4

3. ЦЕЛИ, ЗАДАЧИ И ИСХОДНЫЕ ДАННЫЕ ДЛЯ СОЗДАНИЯ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ СТАДИИ СТЕРИЛИЗАЦИИ БИОРЕАКТОРА 7

4. СТРУКТУРА И ФУНКЦИОНИРОВАНИЕ ПРОГРАММНО-ТЕХНИЧЕСКОГО КОМПЛЕКСА (ПТК) РАЗРАБАТЫВАЕМОЙ САУ В СОСТАВЕ АСУТП БИОСИНТЕЗА ЭРИТРОМИЦИНА 10

5. АНАЛИЗ ФЕРМЕНТЕРА В КАЧЕСТВЕ ОБЪЕКТА УПРАВЛЕНИЯ САУ СТАДИИ СТЕРИЛИЗАЦИИ БИОРЕАКТОРА 13

6. ВЫБОР СРЕДСТВ ПРОГРАММНО-ТЕХНИЧЕСКОГО КОМПЛЕКСА 15

7 Программируемый логический контроллер (ПЛК) и сопутствующие технологии автоматизации 16

8 Сетевой комплекс контроллеров 18

9 Выбор контроллерных средств (ПЛК) 19

10 Выбор средств программирования контроллеров. 28

11 Выбор программного обеспечения верхнего уровня. SCADA системы 31

12. РАЗРАБОТКА СИСТЕМЫ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ СТАДИИ СТЕРИЛИЗАЦИИ БИОРЕАКТОРА 36

13 Автоматизированное рабочего место оператора. Интерфейс оператора 36

14 Компьютерная модель стадии стерилизации биореактора 53

15 Реализация программно-логического управления стадией стерилизации биореактора. 56

16. РАЗРАБОТКА ПРОГРАММЫ УПРАВЛЕНИЯ ИЗМЕРИТЕЛЕМ ТЕМПЕРАТУРЫ РЕГУЛИРУЮЩИМ «ДАНА-ТЕРМ» ИТР 2529 В ПРОГРАММНОЙ СРЕДЕ LABVIEW DSC. РЕАЛИЗАЦИЯ ФУНКЦИЙ OPC СЕРВЕРА 59

17 Описание программы управления измерителем температуры регулирующим «Дана-Терм» ИТР 2529 59

18 Работа с программой управления (2529.exe) 61

19 Файл конфигурации 69

20 Работа с программой просмотра “log” файлов регулятора температуры «Дана-Терм» ИТР 2529 (Log_view.exe) 70

21 Внедрение программы управления измерителем температуры регулирующим «Дана-Терм» ИТР 2529. 71

22. БЕЗОПАСНОСТЬ ПРОИЗВОДСТВА 74

23. СПЕЦИФИКАЦИЯ КИПиА 80

24. ПОДСЧЕТ СУММАРНОЙ СТОИМОСТИ ОБОРУДОВАНИЯ И ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ СОЗДАНИЯ САУ ПРОЦЕССА СТЕРИЛИЗАЦИИ БИОРЕКТОРА. 84

25. ЗАКЛЮЧЕНИЕ 85

26. СПИСОК ЛИТЕРАТУРЫ 86

27. ПРИЛОЖЕНИЯ 90


1.ВВЕДЕНИЕ


Процессы биосинтеза (ферментации) занимают важное место в медицинской, пищевой, микробиологической и других отраслях промышленности.

Несмотря на их большое разнообразие, процессам периодической ферментации принадлежит ведущая роль как наиболее изученным и гибким с точки зрения получения промежуточных и конечных продуктов требуемого качества. Значи­тельные капитальные и эксплуатационные вложения, которыми характеризуются системы ферментации, связанны с использованием дорогостоящего оборудования и значительными энергетическими затра­тами. Основное оборудование: биореакторы (ферментеры), емкостные аппараты, трубопроводы, запорно-регулирующая арматура, – необходимо изготавливать из высококачественной нержавеющей стали. Непрерывное обеспечение культуры в ферментере стерильным воздухом, поддержание стабильного теплового режима, большой расход пара во время стерилизации и т.д. требуют обеспечения высокой степени надежности оборудования, узлов и механизмов, систем управления точности их технологического проектирования.

К настоящему времени выполнено большое количество работ, посвящённых моделированию процессов ферментации и их оптимизации. В тоже время существенную часть времени ферментер работает в нестационарном режиме, который не является оптимальным (различные стадии подготовки, начала и завершения процесса ферментации). Одной из важнейших операций стадии подготовки является стерилизация оборудования и компонентов процесса, необходимая для обеспечения стерильных условий проведения процесса ферментации.

К сожалению, в АСУ ТП, как правило, отсутствуют функции управления подготовительными стадиями процесса ферментации, в том числе стадией стерилизации, того же уровня автоматизации, что и для стационарных ре­жимов. Между тем проведение сверхнормативных стадий стерилизации (после остановок производства по аварийным, организационным или конъюнк­турным причинам и т.п.) связано со значительными затратами, а производственные по­тери ценного сырья и энергоресурсов от них могут быть велики. Для крупнотоннажных производств эта обязательная подготовительная операция оказывает заметное влияние на многие стороны функционирования системы ферментации.

Низкий уровень автоматизации и неэффективная работа автомати­ки в период проведения подготовительных операций ведут к неоправданному износу технологического оборудования и нерациональному расходованию всех видов производственных ресурсов. Оказывают негативное психофизиологическое воздей­ствие на обслуживающий персонал ввиду того, что основная нагрузка по принятию решений о переключениях регулирующих органов, исполнительных механизмов, контроля за средствами КИПиА падает на операторов, существенно превышая обычный уровень, что может привести к ошибкам операторов, привести к потери стерильности и выводу оборудования из строя. Вместе с тем стадия стерилизации имеет весьма существенный резерв для повышения эффективности ферментации за счет оптимизации управления этой стадией. Возникает задача оптимизации режимов проведения стерилизации по следующим критериям:

  • минимизация времени проведения стадии;

  • уменьшение износа технологического оборудования и снижение потерь прибыли, связанных с неоптимальностью работы системы ферментации во время стерилизации и при смене технологического режима;

  • повышение качества (в данном случае качества стерилизации).

Отметим, что оптимальное управление стерилизацией и подготовительными стадиями вообще требует минимальных капиталовложений в материальное обеспечение, т.к. реализуется с использованием существующей системы управления.


2.КРАТКОЕ ОПИСАНИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ЭРИТРОМИЦИНА


Эритромицин принадлежит к группе антибиотиков и является органическим основанием, продуцируемым культурой Saccharopolyspora erythraea или другими родственными микроорганизмами и представляет собой кристаллический порошок белого цвета без запаха, с горьким вкусом и высокой гигроскопичностью [2, 3]. Химическая формула эритромицина C37H67NO13.

Эритромицин является антибиотиком широкого спектра действия. Хорошие показания получаются при воздействии эритромицина на крупные вирусы и микробактерии. Пневмококки, стрептококки и некоторые штаммы энтерококков чувствительны к эритромицину в концентрациях до 1 мкг/мл. Наибольший практический интерес представляет действие эритромицина в отношении клинических штаммов золотистого стафилококка, устойчивых к пенициллину, тетрациклину, стрептомицину и другим антибиотикам.

Биологический синтез эритромицина осуществляется с использованием штамма культуры Saccharopolyspora erythraea, в процессе ферментации в специальных аппаратах – биореакторах (ферментерах).

Антибиотик, представляющий собой сложное органическое соединение, отличается высокой чувствительностью к внешним воздействиям, неустойчивостью в растворах. Существенное повышение температур, длительное пребывание антибиотика в щелочной или кислой среде, контакт с окислителем и т.д. приводят к химическим изменениям, превращающим антибиотик в биологически неактивное вещество.

Для производства антибиотика используется аппараты и трубопроводы, изготовленные из коррозионно-устойчивых, не загрязняющих продукт материалов (как правило, это высоколегированные нержавеющая сталь).

Процесс биосинтеза антибиотиков состоит из следующих стадий:

  1. подготовка оборудования (стерилизация) и питательной среды для процесса биосинтеза;

  2. подготовка посевного материала;

  3. загрузка питательной среды в ферментер;

  4. совместная стерилизация питательной среды и оборудования;

  5. загрузка посевного материала;

  6. процесс ферментации антибиотика;

  7. выгрузка и очистка продукта;

  8. складирование продукта.

Важной особенностью производства антибиотиков, на всех технологических стадиях, являются весьма высокие санитарные требования. Соблюдение высокой степени чистоты помещений и оборудования, систематическая промывка и дезинфекция представляют собой необходимую предпосылку получения продукта высокого качества.

Ферментация эритромицина, осуществляемая при интенсивной аэрации и перемешивании среды, проводится в специальном аппарате - ферментере, представляющим собой закрытый цилиндрический сосуд со сферическим днищем и крышкой, снабженный мешалкой, барботером для подачи воздуха, отбойниками, рубашкой или змеевиками для нагрева и охлаждения среды, а также запорной арматурой и контрольно-измерительными приборами. Ферментер должен быть прочен, корозионностоек, герметичен, надежен в эксплуатации.

Функциональная схема автоматизации стадии стерилизации биореактора представлена в приложении 1.

Аппарат Ф1 (ферментер) снабжен рубашкой (потребление пара, хладагента), барботером (потребление воздуха), мешалкой (потребление электроэнергии) и комплектом контрольно-измерительного оборудования.

В функциональную схему процесса ферментации эритромицина входят:

  1. емкость стерильных подпиток Е1;

  2. сборник стерильного пеногасителя Е2;

  3. сборник кислоты Е3;

  4. сборник щелочи Е4;

  5. воздушный фильтр ФВ;

  6. теплообменник Т1;

  7. насосы перистальтические НП1-4;

  8. трубопроводы;

  9. запорно-регулирующая арматура

Перед ведением процесса биосинтеза эритромицина аппарат Ф1 подвергается тщательному осмотру и производится серия проверок, определяющих степень его работоспособности. Перед каждой загрузкой питательной среды аппарат промывается горячей водой, проверяется работа мешалки и барботера, а также исправность контрольно-измерительного оборудования. Затем осуществляется проверка герметичности аппарата и прилегающих к нему коммуникаций давлением сжатого воздуха. При соблюдении требований к герметичности аппарата и прилегающим коммуникациям начинается стерилизация пустого аппарата.

Ферментер нагревается до 900C острым паром, подаваемым по трубопроводам через термозатворы, глухие штуцера и барботер. Во время нагрева ферментера до 900С один раз в 3 недели стерилизуют воздушный фильтр. Фильтр прогревается острым паром до 1300С и выдерживается 30 мин при этой температуре.

По окончании нагревания (что определяется достижением температуры конденсата 900С на выходе из ферментера) прекращается подача острого пара в аппарат через термозатворы и глухие штуцера. Далее начинается загрузка питательной среды из емкости подпиток при помощи насоса. При этом продолжается подача пара через барботер с небольшим расходом, для предотвращения забивания отверстий барботера частичками питательных веществ. Для доведения до необходимого объема питательной среды в ферментер заливается питьевая вода. По окончании загрузки питательной среды и вспомогательных операций питательную среду в ферментере нагревается до температуры стерилизации 1210С следующим образом:

  1. подается острый пар через термозатворы, глухие штуцера и барботер (с высоким расходом пара через барботер);

  2. подается пар в рубашку аппарата.

Механическое уплотнение ферментера стерилизуется одновременно с питательной средой.

По достижении в ферментере температуры 1210С останавливается подача острого пара через термозатворы на трубопроводах и глухие штуцера. Острый пар продолжает подаваться через барботер с низким расходом.

Затем ферментер выдерживается в течение 30 мин при t=1210C, P=0,2 МПа.

Температуру стерилизации поддерживается контролируемым расходом пара через рубашку ферментера.

По окончании интервала выдерживания останавливается подача пара в рубашку и подача острого пара через барботер. Начинается подача охлаждающей воды через рубашку ферментера для снижения температуры в ферментере с 1210С до 280С, совместно с этим для компенсации давления через барботер подается стерильный сжатый воздух.

После охлаждения ферментера производится ввод посевной культуры через засевной лючок.

После засева посевной культуры в аппарате устанавливают оптимальные для ферментации параметры. В ходе процесса осуществляется непрерывная подача стерильного воздуха через воздушный фильтр ФВ, pH статирование подачей растворов кислоты из емкости Е3 или щелочи из Е4, уровень пены регулируется подачей пеногасителя из Е1, при необходимости производятся

подпитки из емкости E1, температуру культивирования поддерживают подачей в


рубашку охлаждающей воды, давления внутри ферментера поддерживается за счет регулирования расхода отходящих газов [3, 4].

Продолжительность биосинтеза эритромицина при посеве из колбы составляет ~240 ч. По истечению этого срока готовая культуральная жидкость выгружается и передаётся на фильтрацию.


3.ЦЕЛИ, ЗАДАЧИ И ИСХОДНЫЕ ДАННЫЕ ДЛЯ СОЗДАНИЯ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ СТАДИИ СТЕРИЛИЗАЦИИ БИОРЕАКТОРА


Ознакомление с существующей системой управления биосинтеза антибиотиков


Долгое время автоматизация процесса биосинтеза определялась наличием системы автоматизированного управления основной стадии этого производства - ферментации антибиотика. Причем уровень автоматизации позволял вести непрерывный контроль параметров процесса (измерение, сигнализация) и осуществлять автоматическое регулирование параметров процесса, но не обеспечивал автоматическую смену отдельных стадий производства (переключение операций). Проведение вспомогательных операций и переключение между ними осуществлялось вручную операторами-технологами, так как считалось, что эти операции автоматизировать нецелесообразно.

С развитием вычислительной техники и повышением надежности средств автоматизации стало возможным и экономически выгодным автоматизировать различные вспомогательные операции.

    Данная работа посвящена созданию системы автоматизированного управления стадии стерилизации биореактора.


Цели и задачи, решаемые при создании системы автоматизированного управления стадией стерилизации биореактора


    В соответствии с заданием на дипломное проектирование необходимо разработать систему автоматизированного управления (САУ) стадии стерилизации как составляющую АСУТП биосинтеза эритромицина.

    Разработка САУ стадии стерилизации включает следующие этапа разработки:

  1. определение исходных данных;

  2. проектирование САУ;

  3. реализация САУ;

  4. апробирование САУ

  5. сдача в эксплуатацию;

    Основным направлением является

    В данной дипломной работе планируется осуществить проектирование и реализацию отдельных элементов САУ. При этом необходимо решить следующие задачи:

  1. Выбор программно-технического комплекса для реализации системы автоматизированного управления стадией стерилизации биореактора, включающий следующие разделы:

    • Определение структуры программно-технического комплекса (ПТК) САУ;

    • Выбор аппаратных и программных компонентов ПТК;

  2. Разработка элементов системы автоматизированного управления:

    • Написание программного обеспечения для элементов ПТК;

    • Сборка узлов САУ, моделирование процесса, написание алгоритмов;

    • Проверка функционирования разработанных элементов ПТК и САУ с использованием моделей (процесса, алгоритмов управления);

    • Проверка функционирования САУ;


Система управления (здесь и далее термин «система управления» относится к системе, состоящей из САУ стадии стерилизации, если нет другого указания) на этапе создания системы автоматизированного управления стадией стерилизации должна охватывать следующие основные технологические агрегаты:

  1. ферментер Ф1;

  2. фильтр воздушный;

  3. трубопроводы;

  4. запорно-регулирующая арматура.

Система управления должна быть спроектирована таким образом, чтобы в дальнейшем интеграция с другими (автоматизированными и неавтоматизированными) стадиями процесса биосинтеза, а также включение в систему управления технологических аппаратов, не автоматизируемых на этом этапе, не представляло трудностей.

Система управления предназначена для реализации следующих групп функций:

  1. оперативный контроль и автоматическое управление установкой с экранов рабочих станций и операторских панелей, с помощью реализованных в цветном исполнении фрагментов мнемосхем технологического процесса, панелей контроля и регулирования;

  2. предупредительная и аварийная сигнализация при выходе технологических параметров за нижние и верхние пределы установленных технологических и аварийных границ;

  3. представление информации операторам-технологам в виде мнемосхем, панелей контроля и регулирования, графиков, протоколов событий, таблиц, текстовых