Главная              Рефераты - Производство

Исследование применения сплавов системы Al-Mg-Si для производства поршней гоночных автомобилей - реферат

ОГЛАВЛЕНИЕ

1. Введение

2. Литературный обзор по теме диплома

2.1. Сплавы системы Al – Si – Mg

2.2. Сплавы системы Al – Mg – Si

2.3. Жаропрочность поршневых литейных алюминиевых сплавов

2.3.1.Влияние легирующих элементов на жаропрочность поршневых сплавов

2.3.2. Жаропрочность высококремниевых легированных сплавов

2.4. Кратковременные испытания литейных алюминиевых сплавов при повышенных

температурах

2.4.1. Кратковременные испытания сплавов на растяжение по обычной методике

2.5. Диаграмма Al — Mg — Si

2.6. Быстрозакристаллизованные сплавы на основе алюминия и способы их получения

3. Экспериментальная часть

3.1 Обоснование выбора сплавов для исследования

3.2. Исследование гранулированных сплавов

3.3. Коэффициент линейного расширения исследуемых сплавов

3.4. Выводы

4. Экономика

4.1. Технико - экономическое обоснование НИР

4.2. Организация и планирование НИР

4.3. Индивидуальное производственное задание на выполнение НИР

4.4. Составление сметы затрат на дипломную НИР

5. Промышленная экология и безопасность производства

5.1. Общий анализ условий труда при проведении исследований

5.2. Разработка инженерных мероприятий по защите от ОПФ и ВПФ

5.3. Обеспечение пожарной безопасности при проведении исследований

5.4. Защита окружающей среды

6. Заключение

7. Литература

1. ВВЕДЕНИЕ

Приоритетные свойства материалов для поршней двигателей внутреннего сгорания и дизельных двигателей можно классифицировать следующим образом: низкий коэффициент линейного расширения, высокая прочность и жаропрочность, износостойкость и, соответственно, высокая технологичность и эффективность при производстве.

Очевидно, что особые эксплуатационные условия для двигателя современной гоночной машины предопределяют иной список приоритетов для поршневых материалов.

Целью данной исследовательской работы является разработка поршневого материала, имеющего особый комплекс свойств: низкая плотность, высокая жаропрочность и термостабильность, высокая теплопроводность и т.д.

Основными материалами, используемыми в двигателях Формулы-1, являются алюминиевые магниевые, титановые и стальные сплавы, хотя в отдельных случаях могут применяться и другие, например, керамика и углеволокно.

Алюминий - наиболее распространенный материал благодаря его жесткости. Поэтому из него делают главные элементы двигателя, например, головки цилиндров, блок цилиндров, поршни. Многие из этих компонентов производятся из специальных алюминиевых сплавов, например Metal Matrix Composite (MMC), который только начал появляться в Формуле-1. Дополнительным плюсом в использовании алюминия является его высокая теплопроводность. В результате этого тепло, создаваемое внутри двигателя, быстро отводится наружу и эффективно рассеивается.

Магний легче алюминия, но его жесткость ниже, так что он используется в таких частях как оболочки кулачков. Шатуны сделаны из титана. Хотя эти материалы тяжелее алюминия, но гораздо жестче. Из стали (в состав которой входят различные количества никеля и хрома) делают коленчатый вал, поскольку на этот узел воздействует огромная энергия, а значит, требуется высокий уровень прочности. Углеволокно (карбоновое волокно), широко применяемое при изготовлении шасси, в производстве двигателя почти не участвует. Но его все же можно увидеть например в качестве оболочки пружин. Низкий вес и изоляционные свойства керамики представляют широкий интерес для применения, однако недостаточная прочность пока ограничивают ее использование в двигателях Формулы-1. Некоторые производители применяют ее как покрытие впускных клапанов, чтобы предотвратить теплопередачу от выхлопных газов к головкам цилиндра. В некоторых командах из керамики сделаны выхлопные трубы. Сама система выхлопа сделана из инконеля, специального сплава никеля, цинка и хрома, который применяется в авиационных двигателях. Это очень тонкий и легкий металл, но выдерживающий высокие температуры, порядка 800-900 градусов. Он с легкостью выдерживает режимы быстрого нагрева и охлаждения, свойственные работе системы выхлопа болида Формулы-1.

В форсированных моторах применение кованых поршней если уж не обязательно, то во всяком случае желательно. Но прежде чем говорить об их преимуществах, внесем ясность в терминологию. Точное название процесса не ковка, а изотермическая штамповка, поскольку заготовку поршня получают из прутка выдавливанием без плавления – единственным ходом пресса при постоянной температуре 495±5°С.

Фотографии поршней гоночных болидов Formula–1 фирмы Mahle

По сравнению с литыми штампованные поршни легче и одновременно прочнее, их форма оптимальна для форсированных двигателей, склонность к прогоранию меньше. В подтверждение обратимся к цифрам. Твердость кованых поршней 120–130 ед. по Бриннелю против 80–90 ед. у обычных. Термоциклическая стойкость выше в 5–6 раз. Если литые до появления первых трещин выдерживают в среднем 400 испытательных циклов «нагрев–охлаждение», то штампованные – 2500.

В качестве предмета исследования в данной работе были выбраны сплавы на основе Al – Mg – Si, полученные методом высокоскоростной кристаллизации (распыление из перфорированного стакана) в виде гранул.

2. ЛИТЕРАТУРНЫЙ ОБЗОР ПО ТЕМЕ ДИПЛОМА

2.1 Сплавы системы Al Si Mg

Наиболее типичным сплавом силумин системы Al—Si—Mg, на­шедшим широкое применение, является сплав АЛ9 (6—8% Si, 0,25— 0,4% Mg, остальное Al). Сплав АЛ9 применяется как в закаленном (Т4), так и в частично состаренном состоянии (Т5).

Сплав АЛ9 разработан в середине тридцатых годов. В основном он предназначен для литья тонкостенных и сложных по конфигурации деталей, несущих средние по величине нагрузки (детали карбюраторов, корпуса помп и различной аппаратуры).

К преимуществам сплава АЛ9 следует отнести:

а) хорошие литейные свойства (высокая жидкотекучесть, мини­мальная линейная усадка), близкие к свойствам сплава АЛ2, что позволяет получать тонкостенные отливки сложной конфигурации;

б) малую склонность к образованию горячих трещин;

в) сравнительно высокую прочность и удовлетворительную пла­стичность;

г) по сравнению со сплавом АЛ4 менее сложную технологию литья деталей: не требуется применение автоклава для кристаллизации под давлением; модифицирование обычно производится тройным стандарт­ным модификатором, что экономичнее.

К недостаткам сплава АЛ9 относятся:

а) пониженная обрабатываемость резанием;

б) хотя с увеличением содержания магния прочность сплава повы­шается и обрабатываемость резанием улучшается, но пластичность сплава при этом понижается;

в) пониженная коррозионная стойкость к азотной кислоте;

г) пониженная жаропрочность, которую можно повысить, уве­личивая содержание кремния и магния, а также дополнительно легируя сплав медью.

Основная упрочняющая фаза тройных сплавов — фаза Mg2 Si, принадлежащая к дальтонидному типу с определенными химическим составом, свойствами и нормальной валентностью. Эта фаза имеет кубическую элементарную ячейку и не образует твердых растворов со своими компонентами, что характерно для ионных соединений в отличие от фаз бертоллидного типа (например, фазы Al3 Mg.: ).

Методом рентгеноструктурного анализа и металлографическими исследованиями процесса старения сплавов алюминия с кремнием

и магнием установлено, что процесс распада твердого раствора магния и кремния в алюминии осуществляется по следующей схеме:

1. Появляются ЗГП в кристаллической решетке твердого рас­твора, т. е. происходит перегруппировка в направлении сближения атомов кремния и магния для образования метастабильной фазы Mg2 Si. Эти процессы идут медленно при комнатной температуре и интенсивно при повышенной. Такая перегруппировка атомов сопро­вождается сильным искажением кристаллической решетки, что яв­ляется причиной упрочнения сплавов типа силумин при комнатной температуре и начального снижения жаропрочности при температу­рах старения (160—170 С и выше).

2. Образуются одномерные и двумерные зародыши метастабиль­ной фазы Р' (Mg2 Si), которая имеет гексагональную решетку. Счи­тается, что формирование фазы Mg.2 Si — основная причина упрочне­ния сплавов системы Al—Si—Mg, но с появлением стабильной фазы Mg,Si заметно снижается жаропрочность тройных сплавов. Это осо­бенно проявляется при 170—180° С в течение 25-ч выдержки.

3. Образуется стабильная фаза Mg.2 Si в закаленных сплавах типа силумин при 185—220° С в течение нескольких часов, а при 300о С — в течение 30 мин старения с резким снижением прочности сплава.

Применяя старение в интервале температур 180—225°С с малым временем выдержки, можно обеспечить сплаву АЛ9 высокую проч­ность и пониженную пластичность.

Жаропрочность этих сплавов можно значительно повысить двумя путями: упрочнить твердый раствор комплексным легированием и границы зерен устойчивыми фазами, кристаллизующимися в развет­вленной форме; свободный (элементарный) кремний связать в устой­чивые соединения (Al8 Si8 Mg3 Fe, Al4 Si2 Fe, Al5 SiFe и др.). При этом кремний не следует связывать в такие соединения, в которых второй компонент имеет повышенный коэффициент диффузии. Таким при­мером может служить фаза Mg2 Si, которая является упрочняющей фазой; она содержится в структуре большинства сплавов типа силу­мин (АЛ4, АЛ9 и др.).

Фаза Ai2 Si формируется через ряд фазовых превращений, сильно искажающих кристаллическую решетку матрицы, что обусловливает значительное упрочнение сплавов при комнатной температуре. Это достигается применением соответствующей термической обработки (закалки и старения). В тройных сплавах си­стемы А1—Si—Mg были впервые обнаружены в алюминиевой матрице зоны, характеризующие стадии предвыделения. Авторы работ, поль­зуясь в своих исследованиях методом рентгеноструктурного анализа, в сплавах, состаренных при комнатной температуре, не могли обна­ружить структуру зон, хотя механические свойства тронных сплавов повышались. Лишь только при температуре 150о С зоны скопления магния и кремния в матрице располагаются локально. С помощью вакансий (образовавшихся в процессе закалки) растворенные атомы вначале собираются в цепочки без какого-либо порядка, затем атомы легирующих элементов постепенно располагаются в определенном

Таблица 2.1

Изменение механических свойств сплава АЛ9 в зависимости от содержания кремния .и температуры испытаний (гагаринские образцы, вырезанные из кокильных заготовок)

Химический состав, % (остальное А1)

Тер­миче­ская обра­ботка

Температура испытании, °С

20

150

200

250

sb

кГ/мм2

d. %

sb

кГ/м.и-

d. %

sb

кг/мм-

d. %

sb

кГ/ мм2

d. %

Si

Mg

Fe

6,5

0,30

0,25

Т5

26,7

2,3

24,2

3,0

20,1

4,3

15,8

6,7

7,2

0,30

0,25

Т5

26,8

2,0

23,1

3,2

19,4

4,8

14,3

7,2

8,5

0,30

0,25

Т5

26,2

2,1

22,8

3,4

18,5

5,7

13,7 8,5

9,1

0,3

0,25

Т5

26,3

1,8

22,1

3,0

18,1

5,6

13,2

9,0

порядке и параметр (4,04 А) образующейся цепочки становится таким же, как у элементарной ячейки матрицы.

При повышенных температурах ряды атомов легирующих компо­нентов создают строение областей, несколько отличное от строения матрицы. В этом случае фаза B” постепенно превращается в фазу B’. Атомная перестройка сопровождается большим искажением кристаллической решетки матрицы, что является причиной значительного повышения механи­ческих свойств сплавов типа силумин. Однако такое напряженное состояние кристаллической решетки способствует понижению жаро­прочности сплавов. Это особенно убедительно проявляется в измене­нии структуры твердого раствора сплава типа АЛ9. И. Ф. Колобнев, Т. И. Решетник и В. К. Мостипан, исследуя тройные сплавы типа силумин электронномикроскопическим методом, показали, что при температуре старения 165о С процесс распада твердого раствора сплава типа АЛ9 (А1 + 8,9% Si + 0,46% Mg) протекает сравни­тельно быстро.

В процессе старения при температуре 135° С в течение 15 ч образовались скопления ультра­дисперсных частиц элементарного кремния. Форма скоплений таких частиц кремния аналогична форме скоплений таких же частиц крем­ния, полученных в работе Н. Н. Буйнова при старении двой­ного сплава Al—Si. Кроме скоплений ультрадисперсных частиц крем­ния, в структуре твердого раствора имеются атомные скопления в виде круглых (белых) точек, очевидно ЗГП2, или, как во многих работах принято обозначать «фазу» B”. Такие продукты распада твердого раствора, образующиеся в виде цепочек, в сплавах системы Al—Si—Mg характерны для начальной стадии старения. Структура сплава АЛ9, состаренного при темпера­туре 150° С в течение 15 ч, подтверждает это.

При более высоких температурах старения количество и величина ультрадисперсных частиц элементарного кремния, а также и белых точечных выделений сильно возрастают. Структура твердого раствора сплава АЛ9 после старения 15 и 25 ч при температуре 165° С характеризуется большим скоплением частиц, кремния и образованием частиц метастабильной фазы B', а также и стабильной Mg2 Si.

С повышением температуры распад твердого раствора протекает очень интенсивно и образуются скопле­ния частиц метастабильных фаз повышенной плотности за более короткое время. При этом размер частиц метастабильных фаз значи­тельно увеличивается с удлинением продолжительности старения. Особенно интенсивно твердый раствор распадается при температуре 175о С с выдержкой 10 ч. Частицы силицида магния (в виде белых тонких полос) расположены ориентированно. Распад твердого раствора в процессе старения при температуре 200°С практически заканчивается в течение 10 ч. По­этому и прочность сплава АЛ9 при температуре 200° С низка.

Данные табл. 1 и 2 позволяют сделать два вывода: для длитель­ной работы при высоких температурах сплав типа АЛ9 рекомендовать не следует; с увеличением содержания кремния в сплаве (модифициро­ванное состояние) прочность этих сплавов с повышением темпера­туры понижается. Дальнейшее повышение времени выдержки при температуре 300° С обусловливает рост частиц продуктов рас­пада твердого раствора.

Все указанные выше процессы протекали в неравновесных усло­виях.

Таблица 2.2

Изменение длительной прочности сплава АЛ9 в зависимости от температурь:. и приложенного напряжения (образцы диам. 10 мм, отлитые в песчаные формы)

Температура

испытания , о С

Длительность испытания до разрушения, ч

s = 9 кг/мм2

s = 6 кг/мм2

s = 3 кг/мм2

s = 1,5 кг/мм2

175

60

96

287

569

200

40

84

193

378

250

23

47

128

235

300

Разрушились при нагружении

56

100



Таблица 2.3.

Влияние легирующих элементов на жаропрочность сплава типа АЛ9, термически обработанного по режиму Т5

Химический состав, %(остальное А1)

Меха-

нические свойства при 20° С

Механические свойства при З00 о С

Si

Mg

Mn

Сu

Fe

sb

кГ/мм2

d%

sзоо

кГ/мм2

Время, ч

d* %

6

0,3

0,2

22

6,0

3

50

12,5

7

0,3

0,2

24

6,0

3

60

12

8

0,3

__

0,2

26

5,0

3

65

И

9

0,3

0,2

28

5,0

3

75

70,5

6

0,5

0,2

27

4,0

3

65

11

7

0.5

0,2

28

4,0

3

70

11

8

0,5

0,2

29

3,5

3

85

10

9

0,5

0,2

31

3,5

3

85

9

7

0,5

0,5

-

0,2

28

3,5

3

80

8

8

0,5

0,5

0,2

29

3,0

о

95

8

9

0,5

0,5

0,2

29

3,0

3

110

7

9

0,5

0,5

__

0,2

32

2,5

3

155

6

9

0,5

0,5

0,2

33

2,0

4

140

5

9

0,5

0,5

0,2

34

2,0

4

230

5

9

0,5

0,5

0,5

0,2

34

1,5

4,5

190

4

1,0

1,5

2,0

Сплавы испытывали в немодифицнрованном состоянии, поэтому пластичность их занижена.

При температуре 400° С растворимость Mg2 Si примерно в два раза выше растворимости кремния в твердом алюминии, тогда как в интер­вале температур закалки растворимости их практически одинаковы. Однако эффект термической обработки сплавов без магния и с магнием весьма различен. Это объясняется тем, что частицы фазы кремния формируются быстрее, чем частицы фазы Mg2 Si, имеющей более сложный состав. Очевидно, при этом увеличи­вается межатомная связь по сравнению с межатомной связью двой­ных твердых растворов магния в алюминии и кремния в алюминии.

Один и тот же упрочнитель, например Mg2 Si, неодинаково влияет на свойства сплавов. Так, содержание магния в сплаве АЛ9 на 30°о больше, чем в сплаве АЛ4, однако прочность последнего выше. Это можно объяснить более высоким содержанием кремния. Избыточное количество кремния не влияет на растворимость фазы Mg2 Si, но бла­гоприятно сказывается на форме ее выделения при старении. Оче­видно, этим можно объяснить более высокую (на 25%) прочность сплава АЛ4 по сравнению со сплавом АЛ9.

По химическому составу сплав ВАЛ5 отличается от сплава АЛ9 небольшими добавками бериллия и титана, незначительно влияю­щими на структуру твердого раствора. Поэтому его жаро­прочность близка к жаропрочности сплава АЛ9. Сплав ВАЛ5 имеет -следующий фазовый состав: a, Si, Mg2 Si, Al3 Ti, Be3 SiFe.

Диаграмма состояния системы Аl—Mg:

а — по Н. С. Курнакону п В. Н. Михеевой; б — по Мондольфо

Чем выше степень пересыщения твердого раствора сплавов си­стемы Al—Mg, тем более они склонны к естественному старению, что приводит к резкому снижению пластичности сплавов и коррозии их под напряжением.

Чтобы избежать последствий естественного старения, исследова­тели разных стран при создании новых сплавов ограничивали содержание магния в них 10%. В целях повышения коррозионной стойкости под напряжением в новые сплавы вводили небольшие добавки переходных элементов. Это способствует образо­ванию частиц соединений типа Al3 Ti, Al12 Mg2 Cr2 , Al10 Mg2 Mn, располагающихся по границам зерен прерывисто. Частицы соедине­ний по отношению к зерну твердого раствора являются катодами, что препятствует развитию процессов коррозионного растрески­вания под напряжением.

Следует заметить, что присутствие небольшого количества меди, железа и кремния в сплавах типа магналий также тормозит развитие процессов межзеренного растрескивания. Но такие добавки (или примеси) понижают общую коррозионную стойкость этих сплавов.

2.2 Сплавы системы Al Mg Si

Введение кремния в сплавы типа магналий способствует уменьше­нию чувствительности к образованию трещин, увеличению жидкоте-кучести и плотности литья, а также повышению жаропрочности. По­следнее объясняется сравнительно слабым взаимодействием а- твердого раствора с фазой Mg2 Si, присутствие которой в структуре понижает интенсивность диффузионных процессов.

Фаза Mg2 Si часто кристаллизуется в этих сплавах в разветвлен­ной (паукообразной) форме, способствующей снижению их механи­ческих свойств при комнатной температуре. Вместе с тем фаза Mg2 Si снижает пластичность сплавов, поэтому содержание кремния в спла­вах типа магналий не должно превышать 1,5 %.

Таблица 2.4

Влияние кремния на жискотекучесть сплавов типа магналий с содержанием железа 0,09—0,2% при температуре заливки 700" С [164]

Химический состав, % (остальное А1)

Средняя длина прутка при 700° С, мм

Химический состав, % (остальное А1)

Средняя дл и н а прутка при 700о С, мм

М g

Si

Mg

Si

4,8

0,15

168

11,0

0,15

260

4,8

1,15

183

10,6

0,67

306

4,8

1,62

216

11,2

1,21

375

5,4

1,60

250

11,8

1,68

307

5,4

2,18

140

13,0

0,15

321

9,0

0,15

195

13,4

0,71

369

8,8

0,73

288

13,0

1,25

393

8,7

1,21

329

13,3

1,70

315

9,0

1,73

276

Введение марганца в сплавы типа магналий повышает их жаро­прочность и улучшает коррозионную стойкость.

В табл. 4 приведены данные по жидкотекучести сплавов типа магналий в зависимости от содержания кремния. Максимальная вели­чина жидкотекучести у всех сплавов с содержанием 9, 11 и 13% Mg наблюдается при 1,2% Si. Для сплавов с 5% Mg максимум жидкотеку­чести смещается к 1,6% Si. Повышение жидкотекучести в сплавах при содержании в них 1,2% Si можно объяснить увеличением коли­чества тройной эвтектики: а + Mg2 Si + Р (Al3 Mg2 ), a последующее снижение жидкотекучести связано с увеличением количества первич­ных кристаллов фазы Mg2 Si в расплаве.

В табл. 5 приведены механические свойства сплавов системы Al—Mg—Si в зависимости от содержания в них магния и кремния при разных температурах, из которых видно, что сплав типа АЛ22 имеет преимущество перед другими сплавами.

В сороковых годах немецкие исследователи, особенно Мейер и Росслер, уделяли большое внимание изучению жаропрочности спла­вов типа магналий с кремнием и пытались применить их для изготов­ления поршней авиационных двигателей. При этом была поставлена цель уменьшить плотность до 2,5—2,6 г/см3 , повысить твердость и теплопроводность сплавов. Однако испытания показали, что этого достичь невозможно при использовании сплава типа магналий. Был предложен сплав алюминия с содержанием 5—7% Mg и 1,—1,5% Si, обладающий повышенной жаропрочностью. Этому сплаву была при­своена марка Hg51.

В Советском Союзе такой сплав известен под маркой АЛ13. Недо­статок его — сравнительно низкая прочность при комнатной темпе­ратуре.

В настоящее время нашли промышленное применение три сплава типа магналий с кремнием: АЛ13, АМгТЛ (АЛ29) . Соединение Mg2 Si образует двойную эвтектику с а -твердым раствором (8,25% Mg; 4,75% Si; остальное Al) с темпера­турой плавления 595° С. При малом содержании магния в сплаве эвтектика располагается по границам зерен твердого раствора (строе­ние ее грубеет с увеличением содержания магния в сплаве), такой характер расположения частиц фазы Mg2 Si повышает жаропрочность сплавов.

Растворимость фазы Mg2 Si в твердом алюминии во много раз меньше растворимости магния. Следовательно, все промыш­ленные тройные сплавы (АЛ 13, АЛ29, АЛ22) в закаленном состоя­нии имеют гетерогенную структуру. Поэтому у них не может быть высоких механических свойств, присущих закаленным двойным сплавам АЛ8, АЛ8М, АЛ27-1.

Один из путей повышения прочности сплава — увеличение ско­рости кристаллизации, которое может способствовать получению плотной мелкозернистой структуры и более дисперсных частиц фаз Mg2 Si. Al3 Fe, Al3 Ti. Поэтому при литье деталей из этого сплава в песчаные формы особенно желательно применять холодильники или отливать детали в металлические формы.

Исследование механических свойств литых термически не обра­ботанных сплавов (табл. 6) показывает, что предел прочности почти не зависит от содержания магния, а относительное удлинение по мере повышения содержания магния, особенно начиная с 9%, значительно снижается.

Т а б л и ц а 2.5

Механические свойства сплавов при повышенных температурах (образцы, отлитые в песчаные формы)

Химический состав,% (остальное Аl)

Температура испытания, °С

20

250

З00

350

Mg

Si

sb

кГ/мм2

d. %

sb

кГ/мм2

d. %

sb

кГ/мм2

d. %

sb

кГ/мм2

d. %

sb

кГ/мм2

d. %

5

0 2

15

6

12

8

23

10 11

18

17

23

5

1,2

13

4

11

10

18

8 10

16

16

22

9

0,2

16

3

12

12

2'?

9 13

16

6

19

25

9

1,2

16

2

13

10

14

10 12

15

б

18

23

10

0,2

20

0,8

12

11

25

7

21

18

4

46

36

11

0,2

18

1

12

5

25

8

9

__

5

44

55

11

1,2

16

2

14

3

11

10

8

14

6

15

26

12

0,2

19

0,7

12

12

26

6

23

20

3

48

38

13

0,2

15

0,5

12

2

27

7

-

5

50

78

13

1,3

16

1,5

14

4

8

12

15

7

21

28

Таблица 2.6

Механические свойства сплавов AlMg —Si в литом и закаленном состояниях (отдельно отлитые в песчаные формы образцы)

Химический состав, % (0.09—0,2) Fe, остальное А1)

В литом состоянии

После закалки

Mg

Si

sb

кГ/мм2

d. %

sb

кГ/мм2

d. %

4,80

0,15

18,0

4,0

20

4

5,40

0,70

19,0

3,8

21

4,5

8,70

1,20

19,0

1,0

22

4,5

10,60

0,60

19,0

1,0

28

5

11,00

0,15

17,0

0,5

34

12

11,00

0,75

17,0

0,0

30

6

11,00

1,25

20

1,0

22

2

11,80

1,25

20

0,5

23

3

13,40

0,70

18

0,0

25

5

13,00

1,25

16

0,0

23

3

13,30

1,70

17

0,0

22

15

Сплавы с содержанием более 9% Mg и 0,3% Si не рекомендуется при­менять без термической обработки.

В табл. 7 приведены сравнительные типичные механические и технологические свойства четырех сплавов. Коррозионная стойкость сплава АЛ22 в сравнении с коррозионной стойкостью других сплавов следующая. При испытании сплавов в течение 30 дней в пресной воде потеря в массе сплава АЛ22 составила 2,5, а сплава АЛ4 8,8 г/ж2 .

При испытании в течение 45 дней методом распыления 3%-ного. раствора NaCl потеря в массе сплава АЛ22 составила 4,9, сплава АЛЗ 16,9, а сплава АЛ1 24,7 г/л;2 . При испытании в течение 20 дней в особо жестких условиях (раствор 3% NaCl + 0,2% Н2 О2 ) потеря, в массе неанодированного сплава АЛ22 составила 1,5, а анодированного 0,1 г/л2 .

Из приведенных в табл. 6 и 7 данных видно, что для получения высокой прочности сплава АЛ22 содержание магния при шихтовке должно быть на верхнем пределе (до 11%), а кремния — на нижнем пределе (не больше 0,8%). Результаты сравнения жаропрочности сплавов АЛ8, АЛ13 и АЛ22 приведены в табл. 8. По жаропрочности сплавы распола­гаются в следующий восходящий ряд: АЛ8 —> АЛ 13 —> АЛ22. Сплав АЛ8 по жаропрочности очень сильно уступает сплавам АЛ13 и АЛ22 в связи с тем, что процессы распада твердого раствора протекают в нем наиболее сильно.

Таблица 2.7

Типичные свойства литейных алюминиевых сплавов, отлитых под давлением

Показатели

Ал13 (4, 5-5,5% Mg; 0,8—1,3% Si; 0,1—0,4% Mri, остальное Аl)

Сплавы

АЛ22 * (8-13,0% Mg; 0,8—1,25% Si; 0,03—0,05% Be; 0,03—0,07% Ti; остальное Al)

АЛ8 (9,5— ll,5%Mg)

АЛЗ 4,5-5,5% Si; 1,5—3,0% Cu; 0,6-0,9%Mn; 0,35-0,6% Mg)

Плотность, г/см3 ..... Жидкотекучесть при 700° С, мм ...........

Линейная усадка, % • • • Склонность к образованию горячих трещин в процессе кристаллизации и последую­щего охлаждения (ширина кольца, при которой обра­зуются трещины), мм • • • Давление, при котором по­является течь или разруше­ние, am ......... Условия ведения плавки •

2,68

2,50

2,60

2,75

322

470 490

418

470

1,3

370-390

1,2

318

1,4

370

1,2

15

12

22,5

12

118

130

118

Под

Без флюса

55

Под

100

Без флюса

флюсом

флюсом

Предел прочности, кГ/мм- Предел текучести, кГ/мм- Относительное удлинение, % Твердость НВ, кГ/мм2 • • Модуль упругости, кГ/мм2 Сопротивление срезу, кГ/мм- Предел прочности, кГ/мм", при кратковременных испы­таниях на растяжение после 100-ч стабилизации при тем­пературах, °С:

15—17

23—30

29—35

25—27

9—11

14—17

15—19

13—15

1,3

2—6

9—12

0,5—1,0

55—60

75—90

75—95

75-90

6700

7000

7000

7000

14—16

20—22

23—25

250

10 - 11

15 - 16

11- 13

15 -17

300 ..........

7—8

12—13

8—9

11 — 12

З50 ..........

5 -6

8— 10

5— 6

7—8

Для сложного литья под давлением содержание магния может быть понижено до 8%.

Таблица 2.8

Длительная прочность сплавов АЛЗ, АЛ 13 и АЛ22 при температуре 300о С

s

кГ/мм2

Длительность испытании, ч

АЛЗ

А Л 13

ал22

5

4

3

9

Разрушается при нагружении

0,5—1

10—20

60—80

0,5—3

15—30

85—120 250—300

0,5-2

10—20

95—150 300—350

В структуре сплава ВАЛ1 еще явное преобладание продук­тов зонной стадии распада твердого раствора. При дальнейшем повышении температуры на 25 град значительно изменяется структура сплава АЛ 19. Увеличиваются участки зерен твердого раствора без продуктов его распада, тогда как на других участках зерен твердого раствора наблюдается группировка продук­тов распада вокруг частиц стабильной фазы Т (А112 Мп.,Си). Фаза Т также коагулирует.

Изменение в структуре сплава А19 после З-ч выдержки при тем­пературе 300° С приводит к дальнейшему развитию процессов рас­творения мелких выделений фазы 0' и коагуляции частиц фазы Т, но в зернах твердого раствора еще частично хорошо видны скопления продуктов его распада. Увеличение длительности выдержки при 300о С до 10ч приводит к интенсивному процессу коагуляции частиц фазы Т и образования частиц стабильной фазы CuAl2 . В структуре твердого раствора сплава ВАЛ1, несмотря на дли­тельное (10 ч) старение при температуре 275° С, наблюдаются до­вольно мелкие, равномерно расположенные в виде цепочек. При этом частицы фазы Т несколько коагулируют.

Структура сплава ВАЛ1 после 10-ч выдержки при температуре 300° С резко отличается от структуры сплава АЛ19. В твердом растворе с высокой плотностью распределены точечные и мелкие пластинчатые продукты распада. Заторможенность распада твердого рас­твора и присутствие тугоплавких фаз Al6 Cu3 Ni и А112 Мп.2 Си обеспе­чивают сплаву ВАЛ1 высокую жаропрочность. С изменением тонкой структуры соответственно изменяются и механические свойства, поэтому жаропрочность сплава ВАЛ1 на 30% выше, чем у АЛ 19.

2 .3 Жаропрочность поршневых литейных

алюминиевых сплавов.

На поршни в различных двигателях действуют знакопеременные нагрузки при постоянном их контакте с агрессивными жидкими и газовыми средами. При этом нагрузки бывают очень большие (10 000—18 000 т) и температура пламени повышается до 800° С. Поэтому к сплавам для поршней предъявляются следующие требо­вания:

1. Пониженная плотность, снижающая нагрузку на шатун.

2. Пониженный коэффициент термического расширения, так как цилиндры двигателей стальные, коэффициент термического расширения которых в два раза меньше, чем у алюминия. При низком коэффициенте у алюминиевого поршня необходимо делать минималь­ный зазор между поршнем и цилиндром, что будет способствовать повышению мощности двигателя, меньшему расходу смазывающего вещества и горючего, а также увеличению срока эксплуатации цилиндров, поршневых колец и поршней. Таким образом, коэффи­циент термического расширения — одна из важнейших характери­стик поршня.

3. Повышенная теплопроводность, обеспечивающая быстрый отвод тепла от камеры сгорания двигателя.

4. Повышенная твердость. Это определяет износостойкость порш­ней.

5. Высокая плотность (проникновение газа в поры и микротре­щины приводит к быстрому разрушению поршней).

6. Стабильность структуры поршня. Структурные изменения могут привести к объемному изменению поршня (к явлениям «роста») к заклиниванию его и быстрому выходу из строя.

7. Коррозионная стойкость в среде горячих агрессивных газов. Воздействуя на днище поршня, газы могут привести его к быстрому разрушению.

До последнего времени поршни отечественных автомобильных и тракторных двигателей в большинстве своем отливали из вторич­ного алюминиевого сплава АЛ10В. Несмотря на лучшую, чем у других сплавов типа силумин, обрабатываемость резанием, сплав АЛ10В имеет ряд недостатков: повышенный коэффициент термического ; расширения, склонность к объемным изменениям в процессе эксплуатации и пониженную коррозионную стойкость. Это приводит к образованию на поршнях «задиров» и трещин.

В других странах для литья поршней широко применяют сплавы

типа Лоу-Экс или АЛ25 с 10—14% Si, a также сплавы с высоким содержанием кремния (до 26%), имеющие большие преимущества перед сплавом АЛ 10В (высокая жидкотекучесть, пониженная линейная усадка, малая склонность к образова­нию горячих трещин), что позволяет получать из них ажурные от­ливки с большой разностенностыо. Кроме того, высококремниевые сплавы более коррозионностойки, что позволяет увеличивать ре­сурс использования поршней и двигателя, работающих на различных видах топлива.

Чем выше содержание кремния в этих сплавах, тем ниже коэффи­циент термического расширения. С увеличением содержания кремния понижается пластичность сплавов и ухудшается их обрабатывае­мость резанием. Для устранения этих недостатков необходимо раз­работать более совершенные методы модифицирования сплавов.

Высококремниевые алюминиевые сплавы наиболее перспективны для изготовления поршней, поэтому в настоящей главе уделяется большое внимание подробному исследованию влияния легирующих элементов и примесей на жаропрочность этих сплавов.

2.3.1. Влияние легирующих элементов на

жаропрочность поршневых сплавов

Поршневые сплавы отличаются довольно сложным химическим составом, потому что для повышения жаро­прочности их обычно легируют медью, марганцем, никелем, хромом, кобальтом и другими элементами.

В литературе мало данных о влиянии основных легирующих элементов и примесей на жаропрочность сплавов типа силумин. Во всех случаях сплавы приготовляли по единой методике как из чистых металлов и лигатур, так и с добавкой 35—100% вторичных сплавов, чтобы выяснить сте­пень их влияния на жаропрочность исследуемых сплавов. Для выявления степени вредности цинка, олова и свинца в наиболее важные сплавы специально вводили металлические цинк и олово, а свинец — в виде хлористого свинца. С целью измель­чения первичных кристаллов кремния высококремниевые сплавы типа АЛ26 модифицировали фосфором в виде фосфористой меди [8—10% Сu3 Р], 1,5% которой вводили в алюминиево-кремниевую лигатуру.

Были определены механические свойства при растяжении, горячая твердость при температурах 200, 250, 300 и 350о С и длитель­ная прочность при 300° С.

Механические свойства сплавов при комнатной температуре опре­деляли на образцах диам. 12 мм, выточенных из кокильных загото­вок диам. 20 мм, и на отдельно отлитых в землю образцах диам. 10 мм с литейной коркой. Длительную прочность сплавов определяли по продолжительности испытания образцов до разрушения при опре­деленном напряжении на таких образцах. Горячую твердость спла­вов определяли с использованием шарика диам. 10 мм при нагрузке 100 кГ и продолжительности нагружения 30 мин. Образцы высотой 12 мм вырезали из кокильной заготовки диам. 20 мм.

и подвергали 100-ч стабилизации при температурах испытания. Кроме того, определяли так называемую остаточную твердость при комнатной температуре после определения горячей твердости.

Литые образцы всех сплавов испытывали после старения. Режим старения для сплавов типа АЛ25 и АЛ26: нагрев при 200° С в тече­ние 12 ч с последующим охлаждением на воздухе; для высококрем­ниевых сплавов: нагрев при 230' С в течение 12 ч с последующим охлаждением на воздухе. Режимы старения были выбраны на осно­вании данных, полученных В. М. Бусаровым при исследовании влияния различных режимов старения на твердость сплавов АЛ25 и АЛ26, а температура старения подобрана такая, которая обеспе­чивала получение необходимой твердости сплава ц снижала литейные напряжения.

В табл. 9 приведен химический состав исследуемых сплавов.

Примеси олова и свинца в указанных пределах заметно не влияют на механические свойства при комнатной температуре и длительную прочность при 300: сплавов типа ЖЛС (сплав 2) и АЛ10В. Следова­тельно, можно считать допустимыми примеси до 0,02% Sn и до 0,10% РЬ.

Изменение содержания кремния в пределах 10—14% существенно не влияет на свойства сплава.

Изменение содержания меди в пределах 0,5—4,5% мало отра­жается на прочности сплава при комнатной температуре, но повыше­ние содержания меди способствует повышению длительной прочно­сти при 300 С. Это объясняется тем, что медь при высоком содержа­нии участвует в повышении межатомной связи твердого раствора, содержащего марганец, магний и другие аналогичные элементы. Кроме того, при распаде твердого раствора сложного по составу сплава образуются дисперсные частицы, которые участвуют в создания микрогетерогенности внутри зерен твердого раствора, что затрудняет их деформацию. Избыточная медь участвует в образовании никельсодержащей фазы , которая кри­сталлизуется в разветвленной форме, ее частицы, располагаясь по границе зерен твердого раствора, блокируют их и тем самым обеспе­чивают значительное повышение жаропрочности сплава. Содержание меди в сплаве следует ограничить 3,0%, так как при ее избытке в структуре сплава появится фаза CuAl, способствующая охрупчиванию сплава, понижению коррозионной стойкости и повышению склонности к объемным изменениям («росту» поршней).

Введение магния повышает прочность сплава при комнатной температуре, но мало сказывается на жаропрочности. Оптимальные свойства сплав имеет при содержании магния 0,75—1,3%.

Таблица 2.9

Химический состав поршневых сплавов

Сплав

Содержание элементов, % (остальное А1)

Si

Сu

Mg

Ni

Мn

Ti

Fe

Zn

Sn

Pb

Сплавы типа ЖЛС

1

11,0

0,75

0,80

0,81

__

__

0,71

0,20

__

__

9

KS 1275

11,0

0,80

0,90

0,82

0,71

0,15

0,20

0,066

3

12,8

1,32

1,30

1,36

0,20

0,72

0,15

4

iCGX

11,8

1,08

1,07

1,42

0,39

0,56

5

42436

12,4

1,30

0,97

1,48

0,28

0,15

0,50

6

5АЕ 328

12,0

1,50

0,80

0,56

0,56

Сплав АЛ 10В

7

4,45

7,05

0,36

__

0,48

__

0,78

_

8

4,80

6,95

0,31

0,33

0,80

0,026

0,1

Сплав типа АЛ25 (ЖЛС1)

9

11,0

1,50

0,80

0,80

0,30

0,05

0,70

0,15

0,02

__

10

13,0

3,0

1,30

1,30

0,70

0,20

0,70

0,15

0,02

11

11,8

1,01

1,00

0,88

0,6

0,19

0,56

0,23

0,03

0,05

12

11,8

2,10

1,00

0,88

0,6

0,19

0,56

0,23

0,03

0,05

13

11,8

2.6

1,00

0,88

0,6

0,19

0,56

0,23

0,03

0,05

14

11,8

3,05

1,00

0,88

0,6

0,19

0,56

0,23

0,03

0,05

15

11,8

3,55

1,00

0,88

0,6

0,19

0,56

0,23

0,03

0,05

16

11,6

2,52

1,01

0,82

0,35

0,19

0,55

0,23

0,021

0,048

17

11,6

2,52

1,01

0,82

0,6

0,19

0,55

0,23

0,021

0,048

18

11,6

2,52

1,01

0,82

0,85

0,19

0,55

0,23

0,021

0,048

19

12,0

2,42

1,07

0,89

0,55

0,18

0,80

0,23

0,04

0,026

20

12,0

2,42

1,07

0,89

0,55

0,18

1,2

0,23

0,04

0,026

21

11,82

2,47

1,00

0,88

0,54

0,18

0,56

0,5

0,03

0,05

22

11,82

2,47

1,00

0,88

0,54

0,18

0,56

0,8

0,03

0,05

Введение 0,5—2,0% никеля мало изменяет механические свойства сплава при комнатной температуре, но заметно повышает его жаро­прочность. Это объясняется тем, что никельсодержащая фаза спо­собствует упрочнению границ зерен твердого раствора. В сплаве необходимо иметь 0,8—1,3% никеля.

Примесь олова (до 0,08%) заметно не отразилась на изменении механических свойств. Однако содержание его следует ограничить 0,02%, так как в массивных сечениях отливок возможно скопление легкоплавкой эвтектики (Al + Sn), резко снижающей жаропрочность сплава.

Введение свинца (до 0,15%) не сказалось на свойствах сплава, но содержание его следует ограничить 0,1% вследствие повышенной склонности к ликвации, которая способствует снижению жаропроч­ности сплава.

Таким образом, содержание легирующих элементов и примесей в сплаве АЛ25 (ЖЛС1) установлено следующее: 11,0—13,0% Si, 1,5—3,0% Си, 0,8—1,3% Mg, 0,8—1,3% Ni, 0,3—0,6% Mn, 0,05— 0,2% Ti, до 0,8% Fe, до 0,5% Zn, до 0,02% Sn, до 0,1% Pb, осталь­ное — алюминий.

2.3.2 . Жаропрочность высококремниевых

легированных сплавов

Для исследования были изготовлены высококремнневые сплавы типа KS280 с кобальтом (условная марка АК21), типа KS280 с хромом (условная марка АЛ26) и другие сплавы.

Испытания проводились на отдельно отлитых (в песчаные формы) образцах диам. 10 мм с литейной коркой. Сплавы АК21 и АЛ26 имеют практически одинаковые механические свойства при комнатной температуре и длительную прочность при 300о С.

Исследования показали, что комплексное легирование медью, никелем и марганцем (или кобальтом) значительно повышает жаро­прочность сплавов типа силумин (АЛ25 и АЛ26). По жаропрочности сплав АЛ25 превосходит сплав АЛ10В, жаропрочность сплава АЛ26 еще выше. Повышенная жаропрочность сплава АЛ26 обеспечивается увеличением степени легирования твердого раствора элементами с низким коэффициентом диффузии, а также упрочнением границ зерен твердого раствора частицами вторых фаз которые до 300о С мало взаимодействуют с а -твердым раствором. Кроме того, мелких частиц кремния, склонных к коагу­ляции, в сплаве АЛ26 меньше. Сплавы АЛ25 и АЛ26 отличаются меньшим (в два раза) содержанием меди по сравнению со сплавом АЛ10В, поэтому они имеют небольшие величины коэффициента термического расширения, объемного изме­нения во время работы поршней и более высокие жаропрочность и литейные свойства. Следовательно, можно давать меньший зазор между поршнем из новых сплавов и цилин­дром. Этот фактор играет важную роль в снижении расхода масла и горючего.

Были установлены верхние пределы при­месей олова и свинца, что позволяет при­готовлять сплавы АЛ25 и АЛ26 с приме­нением большего количества вторичных ме­таллов.

К недостаткам сплава АЛ26 следует от­нести грубокристаллическую структуру (со­держание большого количества крупных первичных кристаллов кремния), что снижает относительное удлине­ние до 0,2% . Повысить эту величину можно модифицированием. Суще­ствующие в настоящее время способы модифицирования заэвтектических (особенно, содержащих более 20% Si) силуминов весьма разнообразны. Модифицирование осуществляют фосфористой медью, красным фосфором, различными неорганическими соединениями фосфора, термитными смесями и т. д. За рубежом для модифицирова­ния заэвтектических силуминов применяют сложные препараты, содержащие фтортитанат и фторцирконат калия и другие вещества.

Однако имеющиеся в настоящее время модификаторы не позво­ляют получить нужные структуру и механические свойства заэвтек­тических силуминов. Общий недостаток всех известных модифика­торов — это то, что при измельчении кристаллов первичного крем­ния огрубляется структура эвтектики a – Al3 Si, вследствие чего относительное удлинение даже хорошо модифицированных сплавов, содержащих более 22% кремния, очень низкое (не превышает 0,5%). С целью устранения этого недостатка И. Ф. Колобневым и В. А. Ро-тенбергом для заэвтектических силуминов предложены комбиниро­ванные модификаторы, содержащие фосфор и углерод (в виде фосфорорганнческих соединений).

Эксперименты по модифицированию заэвтектических силуминов трифениловым эфиром ортофосфорной кислоты (трифенилфосфатом) (С10 Н3 О3 ) РО, хлорофосом С4 Н8 О4 РС19 и другими фосфорорганическими соединениями показали, что введение фосфора и углерода (в виде фосфорорганического соединения) в расплав позволяет резко измельчить кристаллы первичного кремния и одновременно модифи­цировать эвтектику, тогда как существующие в настоящее время модификаторы измельчают первичный кремний, но при этом способствуют огрублению эвтектики.

Исследованный сплав имел следующий химический состав: 21,75% Si; 2,93% Си; 2,04% Ni; 0,52% Мп; 0,38% Сг; 0,24% Ti; 0,68% Mg-0,1% Zr; 0,56% Fe.

Предел прочности при растяжении и относительное удлинение заэвтектических силуминов, модифицированных фосфорорганическими соединениями (в частности, хлорофосом и трифинилфосфатом), выше этих же характеристик сплавов, модифицированных другими способами, в среднем соответственно на 10—15% и на 40—50%. Интересно отметить, что относительное удлинение модифицирован­ных фосфорорганическими соединениями сплавов достигало на целом ряде образцов 2,0—2,5%.

Механизм модифицирования заэвтектических силуминов фосфор-органическими соединениями можно представить следующим обра­зом. Как было показано прямыми экспериментами по фильтрации расплавов, при введении в заэвтектические силумины фосфора обра­зуется фосфид алюминия, параметры кристаллической решетки которого (структурный тип сфалерита ZnS) очень близки к параметрам кристаллической решетки кремния (тот же структурный тип). Вследствие этого, согласно принципу структурного и размерного соответствия, мельчайшие частицы фосфида алюминия служат за­родышами для кристаллов кремния. Вместе с тем при введении угле­рода в расплаве, по-видимому, образуются частицы карбида кремния и карбидов других металлов (TiC, ZrC и др.), которые являются готовой кристаллической подкладкой для кристаллизующегося из расплава первичного кремния. Таким образом, измельчение кристал­лов первичного кремния связано с увеличением числа центров кри­сталлизации.

Проведенные эксперименты показали более высокую эффектив­ность комбинированных фосфорорганических модификаторов по сравнению с другими известными в настоящее время модификато­рами, в том числе зарубежными препаратами «Alphosit», «Phoral» и др. Помимо наиболее важного достоинства фосфорорганических модификаторов — одновременное измельчение и кристаллов пер­вичного кремния и эвтектики, эти модификаторы имеют еще следу­ющие достоинства. Операция модифицирования не связана с изменением состава сплава и не требует высокого перегрева расплава.

Введение в расплав правильно подобранных фосфорорганических соединений не сопровождается пироэффектами и выбросами металла, часто происходит при модифицировании заэвтектических силуминов термитными смесями.

2.4. Кратковременные испытания литейных

алюминиевых сплавов при

повышенных температурах

Литые детали из алюминиевых сплавов широко применяются в конструкциях разового назначения, претерпевающих воздействие высоких температур и напряжений. Для таких условий работы требуются не столько жаропрочные сплавы, сколько сплавы с высо­кой исходной прочностью, так как литые детали можно кратковре­менно нагревать до высоких температур без существенных измене­ний их свойств.

В литературе имеется много данных, характеризующих жаро­прочность литейных алюминиевых сплавов, однако о сплавах, пред­назначенных для деталей разовых назначений, сведений не имеется. Поэтому в этой главе приводятся результаты кратковре­менных испытаний на разрыв (от 10 сек до 60 мин) при температурах 100, 200, 300, 400о С. Эти данные имеют исключительно важное значение для конструкторов и технологов, создающих изделия разового назначения.

2.4.1. Кратковременные испытания сплавов на

растяжение по обычной методике

Данные исследования механических свойств сплавов АЛ4, АЛ5, АЛ7, АЛ9, АЛ20 и АЛ24 в зависимости от условий испытания заим­ствованы из работы О. Б. Лотаревой и Л. И. Локтионовой. Испыта­ния при повышенных температурах разделялись на кратковременные и длительные и проводились на образцах диам. 10 мм с литейной коркой. Перед испытанием сплавы подвергали термической обра­ботке по обычно применяемым в промышленности режимам. Сплав АЛ24 испытывали в литом состоянии. Кратковременные испытания проводили при температурах 100, 150, 175, 200 и 250' С по обще­принятой методике, заключающейся в прогреве образца без нагрузки в течение 30 мин и в постепенном его нагружении до разрушения.

Полученные результаты показали, что при тем­пературе 100° С предел прочности сплавов АЛ5 и АЛ7 (Т5) практи­чески не изменился, а у сплава АЛ7 (Т4) прочность снизилась. Некоторое повышение предела прочности при этой температуре можно отметить у сплава АЛ24, очевидно, за счет склонности этого сплава к старению. Снижение предела прочности остальных сплавов началось с температуры 100: С. Относительное удлинение всех сплавов до 200е С повышается незначительно, но при более высоких температурах оно резко увеличивается. Результаты испытания сплава АЛ7 (Т5) показывают, что предел прочности можно повысить за счет старения.

Ряд деталей, изготовляемых литьем под давлением, из сплавов АЛ22, АЛ20 и АЛ5 работает при повышенных температурах. На квазибинарном разрезе Al—Mg3 Sb2 имеется эвтектика, содержащая примерно 0,5% Mg3 Sb2 (0,38% Sb и 0,12% Mg), с температурой плавления 658°С [3]. Максимальная растворимость в твердом состоянии составляет порядка 14% Mg, растворимость сурьмы в алюминии пренебрежимо мала (менее 0,0 *%Sb). Высокотемпературная форма, по-видимому, кубическая.

Параметр решетки твердого раствора сплавов, богатых алюминием, зависит главным образом от содержания магния. Добавка сурьмы уменьшает поверхностное натяжение на границе раздела жидкость — газ сплавов системы Al—Mg; сурьма способствует улучшению коррозион­ной стойкости в морской воде. Подробности приведены в ч. II.

2.5. Диаграмма Al Mg Si

Эта простая по строению диаграмма состояния тщательно изучена. Хо­роший обзор по системе А1—Mg—Si выполнен авторами работ. В рав­новесии с алюминиевым твердым раствором находится соединение Mg2 Si. Оно лежит на квазибинарном разрезе Аl—Mg2 Si, отвечающем отношению концентраций Mg: Si=l,73. В табл. 10 приведены двойные и тройные нонвариантные реакции в области, богатой алюминием.

Таблица 2.10

НОНВАРИАНТНЫЕ РЕАКЦИИ В АЛЮМИНИЕВОМ УГЛУ ДИАГРАММЫ Al-Mg-Si

Точки реакций на диаграмме

Реакция

Содержание элементов, %

t, о C

жидкость

А1

Мg

Si

Мg

Si

A

Ж - AI+Si

12,5

1,65

577

B

Ж - А1 + Мg5 Аl8

34,0

17,4

450

C

Ж - AI +Mg2 Si

8,15

7,75

1,17

0,68

595

D

Ж - Al + Mg2 Si + Si

4,96

12,95

0,85

1,10

555

Е

Ж - А1 + Мg2 Si+ Мg5 Аl8

32,2

0,37

15,3

0,05

449

Химический состав фаз Si, Мg5 Аl8 и Mg2 Si, участвующих в реакциях по-видимому, незначительно отличается от стехиометрического. Атомы магния и кремния в алюминиевом твер­дом растворе стремятся к образованию «молекул» Mg2 Si. Раствори­мость Mg2 Si в твердом алюминии в твердом состоянии несколько уменьшается, если содержание кремния превышает отношение концентраций Mg : Si=l,73



Алюминиевый угол диаграммы Аl—Mg—Si:

а — проекция поверхности ликвидус; б — распределение фазовых областей в твердом состоянии. Концентрации, отвечающие точкам А, В, С, D и Е, приведены в табл. 11 — линия квази-бинарного разреза

Соединение Mg2 Si (63,2% Mg и 36,8% Si) обладает кубической решет­кой (12 атомов в элементарной ячейке) с параметром а = 6,35н-6,40 А. Оно изоморфно фазам Mgs Ge, Mg2 Pb, MgsSri, но имеет очень узкую область существования. Его температура плавления составляет 1087°С, плотность - 1,88 г/см3 .

Таблица 2.11

ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ АЛЮМИНИЕВОГО ТВЕРДОГО РАСТВОРА, В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ

t. °c

A, Mg

B

C

D

E, Si

Mg

Si

Mg

Si

Mg

Si

595

-----

-----

-----

1,17

0,68

----

__

__

577

___

-----

____

1,10

0,63

-----

1,65

552

___

-----

____

1,00

0,57

0",83

1,06

1,30

527

___

__

____

0,83

0,47

0,6

0,8

502

___

__

___

0,70

0,40

0,5

0,65

0,80

452

17,4

15,3

0,1

0,48

0,27

0,3

0,45

0,48

402

13,5

11

0,0x

0,33

0,19

0 22

0,3

0,29

302

6,7

5

0,0x

0,19

0,11

0,1

0,15

0,06


В неравновесных условиях (после кристаллизации с большой скоростью охлаждения) появляется тенденция к локальной ликвации. При этом кри­сталлы кремния могут появляться в сплавах, где кремний должен входить в соединение Mg2 Si. Благода­ря ликвации соединение Mg2 Si или Mg5 Al8 может присутствовать в спла­вах, которые в равновесном состоя­нии являются однофазными. Однако при получении материалов в пол­ностью неравновесных условиях зна­чительное различие в структуре от­сутствует.

Поверхностное натяжение трой­ных сплавов уменьшается при введе­нии магния и кремния. Магний увеличивает, а кремний уменьшает па­раметр решетки алюминия. Значение параметра решетки твердого раствора магния и кремния в алюминии меньше расчетного значения, полученного сум­мированием эффектов от раздельного введения магния и кремния. По данным работы, параметр решетки уменьшается в процессе старения. Однако это противоречит общепризнанным сведениям. Изучено изменение параметра решетки при деформации. Термический коэффициент линейного расширения сплавов, близких по составу к разрезу Al—Mg2 Si, практически не отличается от алюминия. При большем содержании магния коэффициент несколько возрастает, при увеличении концентрации кремния снижается, но эти колебания незначительны. При отношении концентраций Mg: Si = 1,73 обнаруживается аномалия электросопротивления. Электросопротивление сплавов, содержащих l%Mg+Si, при 447°С составляет порядка 8,6—8,8 x 10-8 Ом-м, а в сплавах с отношением Mg:Si=l,73 оно падает ниже 8,5 x 10-10 Ом-м. При комнатной температуре электросопротивление сравнительно невелико: 3—3,2-10-8 Ом-м у сплавов с 1—1,5% Mg2 Si в полностью состаренном состоянии и 2,8—2,9x10-8 Ом-м — после отжига. Избыток кремния увели­чивает, а избыток магния уменьшает электросопротивление;

Температурный коэффициент электросопротивления составляет 3,6—3,8- 10-12 Ом-м/°С . Сплавы переходят в сверхпроводящее состояние при

-271,9°С (1,3 К), но после старения до максималь­ной прочности температура перехода снижается до -272,5°С (0,7 К) .

Увеличение количества фазы Mg2 Si незначительно влияет на модуль упругости алюминия; при избытке кремния он повышается, а при избытке магния— несколько снижается. Скорость распространения ультразвука в алюминии слегка возрастает при увеличении концентраций силицида магния ; этот эффект более ощутим в присутствии избытка кремния. Электродный потенциал (относительно каломельного электрода) фазы Mg2 Si меняется в зависимости от поляризации в интервале 0,7—1,5 В, а потенциал алюминиевого твердого раствора мало меняется при растворе­нии или выделении фазы Mg2 Si. Поэтому при правильном соотношении концентраций магния и кремния сплавы системы Al—Mg—Si обладают очень хорошей коррозионной стойкостью: в термически обрабо­танном состоянии сплавы не чувствительны к межкристаллитной коррозии; к коррозии под напряжением. Межкристаллитная коррозия может воз­никнуть, если на границах зерен образуется сплошная прослойка выделений Mg2 Si . Избыток магния мало влияет на коррозионную стойкость. При избытке кремния формируется обедненная приграничная зона с электроот­рицательным потенциалом по отношению к остальному материалу. Это может вызвать определенную склонность к межкристаллитной коррозии. Сплавы с большим избытком магния имеют несколько более низкую коррозионную стойкость, чем соответствующие композиции системы Al—Mg . Основным фактором, определяющим коррозионное поведение сплавов, богатых кремнием, является пара : алюминиевый твердый раствор — кремний, а малые добавки Mg2 Si обычно оказывают очень слабое влияние.

Скорость диффузии магния и кремния из сплавов, содержащих Mg2 Si (с избытком или без избытка кремния), в алюминий уменьшается при сов­местном присутствии этих двух элементов, оставаясь пропорцио­нальной градиенту концентрации. В случае направленной кристаллизации квазибинарной эвтектики фаза Mg2 Si имеет такие же ориентационные соотношения с матрицей , как и при выделении из твердого раствора. Процесс выделения при старении начинается с образования сферических зон. На очень ранней стадии старения они удлиняются в на­правлении матрицы и приобретают иглообразную форму. Диаметр частиц на этой стадии составляет 15—60 А, длина 160—2000 А, а плотность рас­пределения 2-1012 мм-3 или 3-1015 мм-3 . Образование частиц приводит к возникновению в матрице сжимающих напряжений, ве­личина которых может достигать предела текучести.

Игольчатые выделения растут, приобретая сначала стержневидную, а затем пластинчатую форму фазы MgsSi (рис. приведён ниже). Максимум твердости отвечает моменту старения, предшествующему образованию пластинчатых частиц. Наибольший размер выделений перед началом разупрочнения составляет 0,03 мкм, что в 10 раз меньше, чем в других сплавах, упрочняемых при старении. Промежуточная фаза обладает частичной когерентностью с матрицей.



Рис. 110. Микроструктура сплава Аl — 0,9% Mg – 0.6% Si:

а — медленное охлаждение при закалке и старение при 177°С, 5 ч; грубые частицы (5-фазы, образовавшиеся в про­цессе охлаждения, мелкие выделения В-фазы, возникшие при старении, и зона, свободная от выделений вокруг частиц В’-фазы, х8000; б — закалка в воде и старение при 177°С, 5 ч; присут­ствует только В’-фаза, х40000 (данные Research Laboratory, Granges, Essem. Швеция): в — закалка в воде и старе­ние при 302°С. 1 ч, крупные квадратные пластинки В-фазы, х25000 (данные-Bnnbury Research Center, Alcan Int. Ltd.)

Избыток кремния, увеличивая пересыщение матрицы, приводит к повышению плотности распределения зон. При этом эффект упрочнения при старении возрастает. Скорость старения в условиях приложения высокого давления уменьшается .

Влияние факторов, определяющих процесс старения носит обычный характер. Наибольшие скорость старения и максимум упрочнения отвечают содержанию Mg2 Si, несколько превышающему предельную растворимость в твердом состоянии. Холодная деформация ускоряет старение и уменьшает эффект упрочнения, но при достаточно большой степени деформации упрочнение превышает снижение эффекта дисперсионного отвердения. Холодная деформация после старения может привести к уменьшению прочности. На механические свойства состаренного материала существенно влияет также текстура. Закалка с очень высокой скоростью охлаждения способствует образованию весьма дисперсных выделений, поэтому для получения максимальных прочностных свойств требуется возможно большая скорость закалки. Закалка на воздухе уменьшает упрочнение при старении. Особенно это относится к сплавам с содержанием Mg2 Si, отвечающим предельной растворимости. Сплавы с меньшей концентрацией можно закаливать на воздухе, особенно в случае применения последующего искусственного старения для повышения прочностных свойств. Закалка в среде с температурой старения может улучшить или ухудшить механические свойства в зависимости от температуры старения. Большое влияние на свойства оказывает перерыв между закалкой и искусственным старением. Если низкотемпературное старение происходит до образования зон определенного размера, то при последующем искусственном старении зоны растворяются не полностью, а максимум на изотермах прочностных свойств уменьшается и носит размытый характер. Эффект тем

значительнее, чем ниже температура старения и выше содержание Mg2 Si. Это явление возникает уже через 1 ч старения при комнатной температуре. Нагрев до 227—277°С приводит лишь к частичному возврату в сплавах, состаренных при 127—177°С. Но путем использования специальной обработки возможно многократное получение эффекта возврата. Кратковременное предварительное старение (в течение нескольких минут при температуре выше комнатной) сразу после закалки подавляет старение при комнатной температуре. Небольшое повышение прочностных свойств, обусловленное интенсификацией процесса образования зародышей, возможно в результате кратковременной низкотемпературной (—33°С) обработки; при проведении всех этих обработок требуется очень точное соблюдение режима. Добавки меди, хрома, марганца и золота также влияют на эффект перерыва между закалкой и старением. Термомеханическая обработка с низко-, а затем высокотемпературным старением и пластической деформацией между этими ступенями старения улучшает свойства, но если содержание Mg2 Si превышает 1% (ат.), кратковременное предварительное старение приводит к ухудшению механических свойств . Циклическое нагружение вызывает растворение и повторное образование зон ГП в течение каждого цикла


2.6. Быстрозакристаллизованные сплавы на основе алюминия и способы их получения

Способы обеспечения быстрой кристаллизации расплава, разработанные в нашей стране и за рубежом открыли возможность получения совершенно нового класса сплавов, свойства которых значительно превосходят свойства сплавов, изготовляемых по традиционной технологии, через слиток. В зависимости от способа отвода тепла из металлического расплава методы быстрой кристаллизации можно разделить на две группы:

1) с конвективной теплопередачей;

2) с контактным охлаждением.

1. Кристаллизация с конвективной теплопередачей:

Основным процессом получения сплавов с конвективной передачей тепла при кристаллизации частицы, является метод распыления. Этот способ заключается в том, что струя расправленного металла подается в форсунку и дробится струей газа или воды высокого давления. Образующиеся при этом мельчайшие капельки затвердевают налету. Скорость охлаждения частиц зависит от размера капель, сечения и скорости струи металла, теплопроводности и давления распыляющего газа или жидкости. Ее величина может меняться от 1*102 до 1*107 град/с. Размер частиц от 50 до 500 мкм. Одной из разновидностей процесса распыления является ультразвуковое газовое распыление, заключающееся в дополнительном воздействии на струю металла ультразвуковых колебаний. При этом удалось получить порошок с размером основной фракции 50 мкм. Скорость охлаждения при этом составляла 105 град/с.

Кроме способа газового распыления, достоинством которого является высокая производительность процесса, достаточно широко опробуются и другие способы получения частиц.

- Способ распыления с вращающимся диском

Расплав механически измельчается посредством быстро вращающегося диска, имеющего на поверхности острые кромки и охлаждается с помощью газа . Скорость охлаждения для частиц 70-80 мкм – 105 град/с и 107 град/с для частиц диаметром 10 мкм.

- Способ распыления с вращающимся электродом

Вращающаяся заготовка - электрод расплавляется электрической дугой и капли жидкого металла кристаллизуются в полете. Размер частиц 200 мкм (100-600 мкм), скорость охлаждения – 103 град/с и 101 град/с . Расплавление заготовки может осуществляться также электронным лучом, лазером, плазмой.

- Распыление из перфорированного стакана

Жидкий металл, попадая во вращающийся со скоростью 1000 ... 10000 1/мин стакан с отверстиями на образующей поверхности цилиндра, выбрасывается из отверстий в виде иглообразных частиц, длина которых зависит от скорости вращения стакана. Скорость охлаждения при этом составляет 102 - 103 град/с. Достоинством этого метода по сравнению с предыдущим является взрывобезопасностъ частиц.

2. Процессы с контактным охлаждением

В этих процессах теплопередача осуществляется посредством контакта с материалом, имеющим высокую теплопроводность. Как правило, это медные барабаны или шайбы с водяным охлаждением.

К способам быстрой кристаллизации с контактным охлаждение можно отнести следующие:

- Способ расплющивания капель о барабан

Капли расплавленного металла направляются струей газа на периферию вращающегося барабана - подложки. Каждая капля кристал­лизуется отдельно и удаляется с барабана прежде, чем другая кап­ля попадает на ее место. Чешуйки обычно получаются диаметром 1-3 мм и толщиной 100 мкм и меньше. Скорость охлаждения 103 -I05 град/с .

- Двуроликовое дробление

Это способ получения металлического порошка распылением струи жидкого металла, направленного между двумя роликами, вращающимися с большой скоростью. Теплопередача к роликам строго контролирует­ся. Регулируя процесс, можно получить чешуйки удлиненной формы толщиной до 200 мкм при скорости охлаждения 105 - 106 град/с. Изме­нением зазора между роликами и скорости вращения роликов, можно получить частицы неправильной и сферической формы, в виде чешуек или игл при толщине 60-100 мкм.

- Способ распыления ударной волной Дувеца

Небольшое количество расплава, менее 500 мг, расплавляется индукционным методом в тигле. Под действием ударной волны, созда­ваемой давлением газа в 2-3 МПа или взрывом малого заряда, жидкий металл выстреливается, и капли при этом вылетают со скоростью не­скольких сотен метров в секунду. При ударе об охлаждаемую подлож­ку, частицы сплава превращаются в очень тонкие фольги неодинако­вой толщины в пределах 0,1-10 мкм. Этим способом можно достичь высоких скоростей порядка 109 град/с, но из-за малой производи­тельности этот метод применим лишь для лабораторных исследований.

- Способы "поршня и наковальни", "молота и наковальни",

"двух поршней"

Общий принцип этой технологии состоит в том, что капли жидкого металла обжимаются двумя поверхностями с высокой теплопроводностью. В методах поршня и наковальни и двухпоршневом способе соответственно расплавленная капля металла (меньше 1 г) падает между неподвижной "наковальней" и движущимся "поршнем" или между двумя движущимися поршнями. Общим для всех механизмом является пересечение падающей каплей луча фотоэлемента, что вызывает срабатывание привода поршня (поршней), который может быть пневматическим, электрическим или механическим.

В способе молота и наковальни порция металла помещается на горизонтальную металлическую "наковальню" и расплавляется электрической дугой, плазмой или потоком электронов. На расплавленную каплю падает "молот". Преимущество технологии двух поршней состоит в том, что кристаллизация осуществляется равномерно с двух сторон капли. Фольги получаются круглыми по форме, диаметром 25 мм и толщиной 5-30 мкм (60-120 мкм ). Скорость кристаллизации 104 - 106 град/с в зависимости от толщины. Метод применяется для изготовления единичных фольг в качестве лабораторных образцов.

- "Намораживание" пластинок электронным лучом

Пучок электронов фокусируется на нижнем конце вертикально расположенного прутка, расплавляя его. Капли металла, падая, ударяются о медный диск, вращающийся вокруг вертикальной оси под прутком. Центробежная сила и угловая скорость вытягивает каплю в тонкую продолговатую пластинку, которая после затвердевания отскакивает от диска. Размер пластинки и скорость подачи металла контролируются силой тока. Толщина пластинок и, следовательно, скорость охлаждения зависят от скорости вращения медного диска. Процесс необходимо проводить в вакууме.

- "Намораживание" на холодную подложку

Жидкий металл выдавливается через отверстие в дне тигля. Намораживание происходит при ударе жидкой струи о вращающуюся холодную подложку (или о периферию вращающегося ролика). При условии жесткого контроля стабильности струи жидкого металла, по­лучаются ленточки шириной до 3 мм и толщиной 10 мкм. Можно изго­тавливать чешуйки и порошок. Скорости охлаждения при "намораживании" находятся в пределах 105 – 107 град/с. Этот способ широко применяется в лабораторных исследованиях и доведен до промышлен­ного состояния.

Для получения более широкой ленты (> 3 мм) разработаны другие способы, такие как литье плоской струей и наволакивание расплава .

Экстракция расплава

Этот способ имеет два варианта: экстракция расплава из тиг­ля и экстракция расплава из висящей капли, отличающиеся принци­пом подачи жидкого металла на охлажденную подложку. Металл сцеп­ляется на короткое время с кромкой диска, затем затвердевает, от­деляется от нее и падает в виде волокна. Изменив кромку диска, можно получать отдельные волокна, которые можно обрабатывать как порошок. Скорости охлаждения такие же, как в способе наморажива­ния на холодную подложку.

В процессе экстракции расплава из висящей капли отсутствует проблема тигля, а при экстракции расплава из тигля для исключена реакции между тиглем и расплавом можно применять гарнисажную плавку. Оба способа можно рекомендовать для химически активных металлов.

Толщина волокон равна, как правило, 10-20 мкм и зависит от сплава и скорости охлаждения.

В процессе экстракции расплава при помощи водоохлаадаемого вращащегося диска с зубчатой кромкой достигается скорость охлаж­дения 104 - 106 град/с.

Подобный способ сравнительно дешев, надежен и может быть усовершенствован для большинства сплавов.

Сплавы, полученные способом экстракции из расплава, превра­щают в компакт, используя различные способы деформации. Первона­чальный компакт может быть изготовлен непосредственно из спрес­сованных «вхолодную» частиц, либо частицы измельчаются до нужного гранулометрического размера.

В целом, анализируя материалы по получению быстрозаристалли-зованных частиц, можно сделать вывод, что при использовании мето­дов распыления достигается скорость охлаждения при кристаллизации порядка 104 ...106 град/с. Для получения более высокой скорости необходимо уменьшить размер порошка до 20...30 мкм, что делает его очень взрывоопасным. Для достижения более высоких скоростей охлаждения необходимо осуществлять охлаждение на подложке. Для чешуек или пластинок толщиной 0,1-1,0 мкм достигнуты скорости кристаллизации 108 –109 град/с. В печати сообщалось о скорости кристаллизации 1010 град/с, которую следует считать максимальной для данного способа охлаждения чешуек и пластинок.

3.ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1 Обоснование выбора сплавов для

исследования

Сплавы системы Al – Si широко используются для производства поршней. Как правило, они классифицируются как:

1) доэвтектические (содержание Si 6…9 %)

2) эвтектические (10…12 %)

3) заэвтектические сплавы (17…21 %)

Например: Mahle124, АК 12 D, Mahle 138,1379 и т.д.

Также используются поршни из сплавов системы Al – Cu – Mg – Fe – Ni (RR 58, АК 4-1 и т.д.). Эти сплавы обеспечивают повышенную жаропрочность при высоких температурах 200…250 o C, но по сравнению со сплавами системы Al – Si имеют более высокий коэффициент линейного расширения и более низкую износостойкость.

Для производства поршней используются различные технологические методы: литьё, штамповка, твёрдо – жидкая штамповка и т.д.

Существует ярко выраженная тенденция улучшения свойств, характеристик поршневых материалов путём использования гранулируемых сплавов (RSR/PM) и композиционных материалов с металлической матрицей (MMC).

Например, гранулируемый сплав RSR/PM 1379 (17…19 % Si) выпускается в российской промышленности.

Этот сплав имеет коэффициент линейного расширения ~ 17…18 ppm/o C , плотность 2,70 г/см3 , теплопроводность около 120…130 W/mo C, очень высокую износостойкость и высокую размерную стабильность.

Уменьшение плотности алюминиевого сплава может способствовать его легированию элементами, имеющими меньшую по сравнению с алюминием плотность, например, Mg.

Магний хорошо растворим в твёрдом растворе и понижает теплопроводность и жаропрочность. Для сохранения положительного влияния Mg на плотность и удаления негативного влияния на теплопроводность, он должен находиться во всех фазах в виде соединений, например, Mg2 Si. Растворимость Mg2 Si в алюминии намного ниже, чем у Mg.

Разработка сплава с высоким содержанием Mg2 Si фазы является главной идеей дальнейшего исследования.

Соединение сплавов системы Al – Mg с Si способствует повышению жаропрочности серии алюминиевых сплавов, что достигается в результате плохого взаимодействия a - твердого раствора с Mg2 Si фазой. Это понижает интенсивность процесса диффузии. В то же время, Mg2 Si фаза уменьшает вязкость сплавов и, согласно литературным данным, содержание Si в Mg2 Si сплавах не должно превышать 1,5…2 %.

В 40-х годах немецкие учёные Майер и Росслер изучали Al – Mg – Si сплавы и пытались применить их для производства поршней для авиадвигателя. Задача заключалась в понижении плотности до 2,5 – 2,6 г/см3 и повышении жесткости и теплопроводности. Тем не менее, согласно результатам исследований, они не достигли такого уровня. Был разработан сплав: 5-7% Mg и 1,0 – 1,5 % Si. Этот сплав получил название Mg 51. Позднее был разработан сплав Magsimal 59 (~ 5% Mg, 2% Si) для производства автомобильных деталей путём литья и реокастинга. Промышленные сплавы типа AD 31 (по зарубежным стандартам серия 6000) содержат Mg и Si не более 1,5 %. В этом случае всё количество фазы Mg2 Si во время охлаждения оказывается в растворённом виде (пропитка раствором) и, после искусственного старения, выпавшие в осадок фазы укрепляли сплав. Соотношение Mg к Si в Mg2 Si составляет 1,73. Растворимость Mg2 Si при 520о С около 2%.

3.2 Исследование гранулированных сплавов

Одним из главных эффектов высокоскоростной кристаллизации является уменьшенный размер всех структурных компонентов сплава, включая нерастворимые в матрице интерметаллиды (первичные кристаллы, эвтектики). Следовательно, существует возможность трансформировать избыточные кристаллы Mg 2 Si в дисперсные фазы. Это должно упрочнить сплав.

Выбор сплавов для исследования был сделан согласно квази – бинарному сечению равновесной диаграммы Al Mg Si (рис.1). Для исследования были выбраны сплавы с фазовыми составами Al - Mg 2 Si и Al - Mg 2 Si - Si (таблица 1).

Таблица 3.1. Химические составы выбранных гранулируемых сплавов.

Сплав №

Mg

Si

Fe

Ni

Zr

Al

Mg2 Si

Mg

Si

STM

1R

10-12

11,1

19-21

21,5

1,3-1,7

2,0

1,8-2,2

1,5

0,8-2,2

0,49

63,4

17,5

-

15

4

2R

8-8 ,5

9,1

4,8-5,2

4,65

1,3-1,7

1,9

1,8-2,2

2,1

0,7-0,9

0,8

81,45

12,7

1,05

-

4,8

3R

10-10,5

12,0

6-6,4

6,65

1,3-1,7

2,0

1,8-2,2

2,1

0,7-0,9

0,7

76,65

18,15

0,5

-

4,8

4R

15-15,5

17,3

8,8-9,2

9,3

1,3-1,7

1,9

1,8-2,2

1,8

0,7-0,9

0,62

69,1

26,1

1,2

-

4,3

5R

8-8,5

8,25

12-12,5

11,1

1,3-1,7

1,9

1,8-2,2

1,6

0,7-0,9

0,9

76,25

13

-

6,35

4,4

6R

4-4,5

5,35

18-19

19,5

1,3-1,7

1,97

1,8-2,2

1,6

0,7-0,9

0,6

70,95

8,45

-

16,4

4,5


Рис.1 Квази-бинарное сечение равновесной диаграммы Al – Mg – Si

· - расположение исследуемых сплавов

Сплавы Al – Mg2 Si – Si были выбраны в попытке улучшить свойства благодаря измельчению Mg2 Si и первичных кристаллов Si. Сплавы были созданы методом высокоскоростной кристаллизации расплава. Скорость охлаждения во время кристаллизации была 103 …104 K/c. Гранулы были помещены в технологические контейнеры, подвергнуты вакуумной дегазации и компактированию. Затем уплотнённые гранулы подверглись прессованию в прутки. Предварительные результаты показали, что твёрдость всех сплавов достаточно высока в прессованном состоянии (Таблица 2).

Таблица 3.2. Твёрдость исследуемых сплавов до и после термообработки

Сплав №

После прессования

525о С, вода + 175о С в течение 12 ч

1R

95,5

-

1R (чешуйки)

178

-

2R

91

120

3R

83

150

4R

98,3

157

5R

89,7

152

6R

101

162

Высокая твёрдость при таком прессовании (без термообработки) очень важна, потому что она сохранилась неизменённой после 100 часов выдержки при температуре 350о С. Микроструктурный анализ сплава 1R показал, что уровень охлаждения недостаточно высок для формирования псевдоэвтектической структуры. Первичные кристаллы Si достигали размеров около 3…5 мкм. Сплав 1R в целом имеет хороший комплекс свойств (таблица 3), но вязкость и теплопроводность сплава очень низки. Для улучшения свойств сплава 1R уровень охлаждения во время затвердевания был поднят до 106 …107 К/с. Сплав был сделан в виде чешуек толщиной около 20 мкм, которые были получены путём кристаллизации на медном диске. Более быстрая кристаллизация упрочнила сплав.

Таблица 3.3. Прочностные характеристики сплава 1R в зависимости от способа получения.

Сплав

Температура исследования, о С

20

250

300

1R (гранулы)

UTS, MPa

320

155

117

YS, MPa

278

138

96

d, %

0,5

1,0

2,0

s 20

110

1R (чешуйки)

UTS, MPa

530

211

135

YS, MPa

503

170

105

d, %

0,5

1,5

2,5

В микроструктуре сплава первичных кристаллов не наблюдалось. При увеличении х1600 на сером фоне наблюдались отдельные кристаллы Mg2 Si звездообразной формы.

Наиболее важные физические свойства (твёрдость, сопротивление текучести, прочность при комнатной и высокой температуре) сплава 1R намного выше, чем сплав фирмы Mahle – мирового лидера в области изготовления поршней гоночных автомобилей (RR 58, Mahle 124 – в российской номенклатуре АК4-1 и АК 12 D соответственно).

Однако теплопроводность повысилась незначительно. Очевидно, для повышения теплопроводности требуется увеличить объём a-твёрдого раствора, что можно достичь путём снижения содержания легирующих элементов. Анализ остаточной твёрдости показал, что все сплавы систем Al – Mg2 Si и Al - Mg2 Si – Si обладают более высокой твёрдостью после воздействия высоких температур (300, 350о С), чем АК4-1(таблица 4).

Таблица 3.4. Остаточная твёрдость исследуемых сплавов после 100 часов выдержки

при разных температурах.

Сплав №

Состояние

Температура, о С

После прессования

После «старения»

150

200

250

300

350

1R (гранулы)

92,8…98,3

-

89,7…95.0

88,7…93,3

88,7…98,3

93,9…97,2

91,7;95,0

1R (чешуйки)

178

-

150;159;164

155;157;161

159;166;177

166;169;

171

150;159;

171

2R

91,7

120

121;123;129

102;110;123

86,8;89,7;

92,8

81,3;84,9;

88,7

81,3;84,9;

85,8

3R

83,0

150

136;138;142

97,2;98,3;

101

75,5;80,4;

81,3

73,2;78,7;

79,6

77,1;77,9;

80,4

4R

98,3

157

146;148;152

108;111;111

90,7;92,8;

93,9

90,7;91,7;

91,7

84,0;92,8;

93,9

5R

89,7

152

144;144;146

95,0;96,1;

98,3

80,4;85,8;

85,8

77,9;80,4;

80,4

77,9;79,6;

83,0

6R

101

162

146;150;152

115;117;117

95,0;98,3;

98,3

88,7;93,9;

95,0

91,7;92,8;

93,9

Исследование сплавов №№ 2R – 6R было проведено, главным образом, в условиях высоких температур: искусственное старение.

По этой причине все сплавы, кроме № 2R, обладают высокой твёрдостью – HB ~ 150…160 МПа (таблица 4). После нагрева да 150 и 200о С твёрдость понизилась в результате распада твёрдого раствора.

Структура сплавов при высокой температуре очень стабильна – остаточная твёрдость после 250, 300 и 350о С почти такая же, как в состоянии после прессования. Высокая жаропрочность сплавов подтвердилась результатами исследования «длительной прочности» (таблица 5).

Таблица 3.5. Длительная прочность сплавов, в течение 20 часов при температуре

250о С

Сплав №

s 20 , МПа

1R (гранулы)

110

2R

110

3R

100

4R

105

5R

100

6R

110

Таблица 3.6. Прочностные свойства прутков, полученных путём прессования

исследуемых гранулированных сплавов.

Сплав №

Комнатная температура

250о С

300о С

350о С

1R

UTS, MPa

320

155

135

-

YS, MPa

278

138

105

-

d, %

0,5

1,0

2,5

2R

UTS, MPa

358

324

2,6

185

176

17,2

130

122

20,8

77

75

28,4

YS, MPa

d, %

3R

UTS, MPa

378

185

119

-

YS, MPa

359

173

115

-

d, %

1,0

2,0

1,2

-

4R

UTS, MPa

383

195

132

-

YS, MPa

372

189

129

-

d, %

0,4

3,4

2,4

-

5R

UTS, MPa

345

215

133

80

YS, MPa

326

203

110

70

d, %

2,8

2,8

9,6

18,4

6R

UTS, MPa

393