Главная              Рефераты - Производство

Технологический процесс изготовления ведомой шестерни четвертой передачи - курсовая работа

Введение

В Белоруссии тракторостроение одна из наиважнейших отраслей машиностроения. Серийное производство тракторов началось в 1950 году на минском тракторном заводе с модели МТЗ – 2, с 1961 года свет увидел МТЗ – 50, а с 1974 года – модели тракторов МТЗ – 80/82.

В 1972 году было создано производственное объединение «Минский тракторный завод», в состав которого вошли Бобруйский завод тракторных деталей и агрегатов, Витебский завод тракторных запасных частей, Минский завод специнструмента и технологической оснастки, Сморгоньский агрегатный завод. Кроме этих предприятий в последствии необходимые составляющие стали выпускать Минский моторный завод, Минский завод шестерен, Борисовский завод агрегатов, Борисовский завод тракторного оборудования и другие. До 2002 года производственное объединение «Минский тракторный завод» выпустил более 3 миллионов тракторов, из которых 600 тысяч поступило в различные страны ближнего и дальнего зарубежья.

На современном этапе производственное объединение «Минский тракторный завод» выпускает более 24 моделей тракторов мощностью от 50 до 150 л.с., 6 моделей малогабаритных тракторов мощностью от 20 до 25 л.с. («Беларусь – 321»), 9 моделей мотоблоков и минитракторов мощностью от 6 до 12 л.с., 15 моделей специальных машин («Беларусь – МЛ – 127С»; «Беларусь – 1802») для коммунальных, погрузочных, шахтных работ, для лесной промышленности.

Тракторы «Беларусь» совместимы в работе более с чем 550 машинами и приводами различного назначения.

Впервые, в настоящее время, на производственном объединении «Минский тракторный завод» создаются трактора мощностью от 155 до 260 л.с.

1. Описание объекта производства и назначение его в узле

Коробка передач предназначена для изменения передаточных чисел трансмиссии и получения различных скоростей и тяговых усилий трактора, а также для изменения направления движения. Кроме того, через коробку передач обеспечивается привод заднего о бокового ВОМ, ходоуменьшителя, переднего ведущего моста трактора МТЗ-82.

Коробка передач – механическая с десятью передачами переднего хода и двумя заднего хода, с понижающим редуктором, включение которого удваивает число передач.

В корпусе 5 коробки размещены соосные первичный 3 и вторичный 10 валы, параллельно им расположены промежуточный вал 2 и вал 58 пониженных передач и заднего хода, шестерни передач и двух ступеней редуктора, а также шестерни привода ходоуменьшителя и раздаточной коробки.

Рассматриваемая в курсовом проекте шестерня входит в состав механизма промежуточного вала 2. ОН пустотелый, внутри него проходит внутренний вал 33 привода ВОМ. Спереди промежуточный вал опирается на подшипник 45, установленный вместе со стаканом в расточку стенки коробки передач; задней опорой является бронзовая втулка 35, запрессованная в отверстие ступицы ведущей шестерни 36 второй ступени редуктора.

На шлицы передней части промежуточного вала между подшипником 45 и упорным кольцом неподвижно установлены ведомые шестерни 40 и 41 соответственно третей и четвертой передач и двухвенцовая шестерня 44, больший венец которой является ведомой шестерней пятой передачи, а меньший – шестерней заднего хода. Ступицы этих шестерен упираются друг в друга и стягиваются кернящийся гайкой 1

На ступицу шестерни 40 на роликовом подшипнике 39 установлена промежуточная шестерня 38, при помощи которой получают пониженные передачи и задний ход, а также привод ходоуменьшителя и бокового ВОМ. Промежуточная шестерня 38 постоянно зацеплена с шестерней 8 первичного вала.

Рассматриваемая ведомая шестерня четвертой передачи, работает в условиях постоянного воздействия на два зубчатых венца: внутренний и наружный. Зубья испытывают изгибающие нагрузки, частично ударные, а также износ по пятну контакта в процессе работы зацепления. Для необходимого ресурса работы шестерни ее изготавливают из стали 25ХГТ, с последующим упрочнением зубьев зацепления.

2. Анализ технологичности конструкции детали

Отработка конструкции на технологичность – комплекс мероприятий по обеспечению необходимого уровня технологичности конструкции изделия по установленным показателям. Она направлена на повышение производительности труда, снижение затрат и сокращение времени на изготовление изделия при обеспечении необходимого его качества. Виды и показатели технологичности конструкции приведены в ГОСТ 14.203-89, а правила отработки конструкции изделия и перечень обязательных показателей технологичности – в ГОСТ 14.201-83.

Оценка технологичности конструкции может быть двух видов: качественной и количественной. Качественная оценка характеризует технологичность конструкции обобщенно на основании опыта исполнителя и допускается на всех стадиях проектирования как предварительная. Количественная оценка технологичности изделия выражается числовыми показателями и оправдана в том случае, если они существенно влияют на технологичность рассматриваемой конструкции.

Качественная оценка технологичности конструкции

Анализируя технологичность конструкции шестерни первой передачи по применяемому материалу следует отметить, что она выполнена из стали 25ХГТ согласно ГОСТ 4543-89, имеющей достаточно высокую стоимость и трудно обрабатываемую, т.к. она содержит большое количество легирующих элементов. Однако использование в узле шестерни из стали другой марки, меньшей стоимости, не технологично, т.к. скажется на работоспособности всего узла в целом, приводит к быстрому выходу его из строя.

С точки зрения конструкции шестерня может характеризоваться с положительной стороны. Она имеет простую форму, в ней наличествует большое количество поверхностей, не требующих обработки резанием. Простые формы обрабатываемых поверхностей так же являются положительным фактором. Наличие сложнопрофильных поверхностей: зубчатого венца и центрального отверстия с эвольвентным профилем шлица компенсируется обработкой стандартным инструментом.

Шестерня не имеет конструктивных специфических элементов, в ней рационально расставлены размеры, заготовка получается оптимальным способом для действующего в заводских условиях технологического процесса.

В целом следует считать качественную оценку технологичности конструкции хорошей.

Химический состав и физико-механические свойства стали 25ХГТ приведены ниже в табл. 2.1 и 2.2.

Таблица 2.1 - Химический состав стали 25ХГТ

С, %

Si, %

Mn, %

Cr, %

S, %

P, %

0,22…0,28

0,17…0,37

0,50…0,80

0,80…1,10

‹ 0,004

‹ 0,003

Таблица 2.2 - Физико-механические свойства стали 25ХГТ

σВ , МПа

σТ , МПа

δ, %

Ψ, %

аН , %

НВ

› 100

› 80

› 9

› 50

› 8

240…300


Количественная оценка технологичности конструкции

Количественная оценка складывается из основных и дополнительных показателей. К основным показателям относятся: трудоемкость изготовления детали и технологическая себестоимость детали.

При оценке детали на технологичность обязательными являются следующие дополнительные показатели:

1. коэффициент унификации конструктивных элементов:

КУ.Э. = QУ.Э. / QЭ. ,

где QУ.Э. и QЭ. – соответственно число унифицированных конструктивных элементов детали и общее, шт.

КУ.Э. = 8 / 12 = 0,67;

2. коэффициент применяемости стандартизованных обрабатываемых поверхностей:

КП.СТ. = DО.С. / DМ.О. ,

где DО.С. и DМ.О. – соответственно число поверхностей детали, обрабатываемых стандартным инструментом, и всех, подвергаемых механической обработке поверхностей, шт.

КП.СТ. = 7 / 10 = 0,7;

3. коэффициент обработки поверхностей:

КП.О. = 1- DО.С. / QЭ. ,

КП.О. = 1- 10/ 12 = 0,17;

4. Коэффициент использования материала:


КИ.М. = q / Q,

где q и Q – соответственно масса детали и заготовки, кг.

КИ.М. = 5,714 / 8,8 = 0,65;

5. масса детали q = 5,714 кг.;

6. максимальное значение квалитета обработки IT 8;

7. минимальное значение параметра шероховатости обрабатываемых поверхностей Ra = 0,8 мкм.

3. Выбор типа и организационной формы производства

Тип производства по ГОСТ 3.1119-89 характеризуется коэффициентом закрепления операций: КЗ.О. = 1 – массовое, 1< КЗ.О. <10 – крупносерийное, 10< КЗ.О. <20 – среднесерийное, 20< КЗ.О. <40 – мелкосерийное производство. В единичном производстве КЗ.О. не регламентируется.

В соответствии с методическими указаниями РД 50-174-80, коэффициент закрепления операций для всех разновидностей серийного производства:

КЗ.О. = ΣПОi /(ΣРОi ), (3.1)

где ΣПОi – суммарное число различных операций за месяц по участку из расчета на одного сменного мастера, ΣРОi – явочное число рабочих участка, выполняющих различные операции при работе в одну смену.

Условное число однотипных операций рекомендуется определять:

ПОi = ηНЗ , (3.2)

Где ηН – планируемый нормативный коэффициент загрузки станка (ηН = 0,75), ηЗ – коэффициент загрузки станка проектируемой операции.


ηЗ = ТШК.-К. NМ /(60FМ kВ ), (3.3)

где ТШК.-К. – штучно-калькуляционное время, необходимое для выполнения операции, мин; NМ – месячная программа выпуска заданной детали в одну смену, шт.: NМ = NГ /24; NГ – годовой объем выпуска заданной детали, шт.; FМ = 4055/ 24 = 169 ч. – месячный фонд времени работы оборудования в одну смену, ч.; kВ – коэффициент выполнения норм, принимается равным 1,3.

Подставляя в формулу (3.3) значения получим:

ηЗ = ТШК.-К. NМ /13182, (3.4)

Следовательно

ПОi = 13182ηН / ТШК.-К. NМ , (3.5)

Количество операций, выполняемых в течении месяца на участке определяется:

ΣПОi = ПО1О2О3 …+ПОn (3.6)

Необходимое число рабочих для обслуживания в течении одной смены одного станка, загруженного по плановому нормативному коэффициенту:

Рi = ПОi ТШК.-К. NМ /(60kВ Ф), (3.7)

Где Ф – месячный фонд времени рабочего, занятого в течении 22 рабочих дней в месяц Ф = 22´8 = 176 ч.

Явочное число рабочих участка определяется следующим образом:


ΣРi = Р123 …+Рn (3.8)

Таким образом, используя формулы (3.1)…(3.8) составляет таблицу для рассматриваемой детали:

Таблица 3.1 - Расчет типа производства

№ оп.

ТШК.-К. , мин.

ПОi

ηЗ

Рi

005

1,28

3,09

0,24

0,71

010

2,42

1,63

0,46

0,71

015

0,39

10,14

0,07

0,71

020

0,74

5,34

0,14

0,71

025

2,08

1,9

0,4

0,71

030

2,33

1,7

0,44

0,71

035

16,71

0,24

3,2

0,71

040

2,93

1,35

0,56

0,71

045

2,83

1,4

0,54

0,71

050

5,98

0,66

1,14

0,71

055

1,39

2,85

0,26

0,71

060

0,83

4,76

0,16

0,71

065

1,07

3,7

0,2

0,71

070

1,39

2,85

0,26

0,71

S

42,37

41,61

8,07

9,94

Подставляя получившиеся значения в формулу (3.1) получаем:

КЗ.О. = 41,61/9,94 = 4,2.

Рассчитанное КЗ.О. подчиняется неравенству 1< КЗ.О. <10 и следовательно можно сделать вывод, что тип производства при изготовлении шестерни – крупносерийный.

Формы организации технологических процессов в соответствии с ГОСТ 14.312-85 существуют двух видов: групповая и поточная. Решение о целесообразности применения той или иной формы принимаются после следующих расчетов:

Заданный суточный выпуск изделий:


NС = NГ /253,

где NГ – годовой объем выпуска изделий, шт; 235 – количество рабочих дней в году.

NС = 60000/253 = 237,2 шт.

Суточная производительность поточной линии:

QС = (FССР ) ηЗ ,

где FС – суточный фонд времени работы оборудования (960 мин.); ТСР – средняя станкоемкость одной операции, мин.; ηЗ – средний коэффициент загрузки оборудования.

ТСР = SТШК.-К.i /(nkВ ),

ТСР = 42,37/(14´1,3) = 2,33 мин,

QС = (960/2,33)´0,58 = 238,9 шт.

В связи с тем, что заданный суточный выпуск изделий меньше суточной производительности поточной линии, применение однономенглатурной поточной линии нецелесообразно.

При серийном производстве запуск изделий осуществляется партиями с определенной периодичностью. Количество деталей в партии для одновременного запуска определяется:

n1 = (FЭ.М. nО kВ )/(КЗ.О.i ); n2 = (FЭ.М. kВ )/(кМ.О.i )

где FЭ.М. – эффективный месячный фонд времени работы участка, равный 10560 мин; nО – число операций механической обработки по технологическому процессу;.SТi – суммарная трудоемкость технологического процесса, мин., кМ.О. – коэффициент, учитывающий затраты межоперационного времени (1,5).

n1 = (10560´14´1,3)/(4,2´42,37) = 1080 шт.;

n2 = (10560´1,3)/(1,5´42,37) = 216 шт.

Согласно теории n2 = 216 = nmin , а n1 = 1080 = nmах . Параметр nmin округляется в сторону увеличения до nmin ', кратного размеру партии на сборочной стадии nmin ' = 220 шт.

Определяем расчетную периодичность повторения партий деталей (дн.)

IН = 22 nmin '/ NМ

IН = 22´220/ 2500 = 1,94 дн.

Принимаем большее ближайшее значение согласно нормативам: IН = 2,5 дня.

Рассчитываем размер партии согласно условия:

n = IН NМ /22 = 2,5´2500/22 = 284 шт.

nmin '< n < nmах ,

220 < 284 < 1080,

т.к. неравенство выполняется, то искомый размер партии деталей равен 284 штуки.

4. Выбор метода получения заготовки с экономическим обоснованием проектируемого варианта

В базовом варианте изготовления заготовки шестерни осуществляется на КГШП в открытых штампах, что соответствует производственной необходимости предприятия.

В проектном варианте в условиях крупносерийного производства предлагается получать заготовку шестерни на том же оборудовании (КГШП), но только в закрытых штампах. Особенностью получения заготовок в закрытых штампах является строгая дозация материала (из-за отсутствия возможности выхода излишков металла) и как следствие увеличение точности и уменьшение массы заготовки, уменьшение припусков под механическую обработку.

В базовом варианте точность заготовки следующая: класс точности Т5, группа стали М1, степень сложности С2 и исходный индекс 14. В проектном варианте соответственно – Т3, М1, С2 и 11.

Оптимальный метод получения заготовки определяется на основании технико-экономических расчетов технологической себестоимости обоих вариантов получения заготовки. Метод получения заготовки, обеспечивающий технологичность изготовления из нее детали при минимальной себестоимости последней, считается оптимальным.

Стоимость заготовок, получаемых горячей штамповкой на КГШП определяется по формуле:

SЗАГ. = ((Si /1000)QkТ kС kВ kМ kП ) – (Q – q)(SОТХ. /1000),

где Si – базовая стоимость 1 т. заготовок, руб., kТ, kС, kВ, kМ, kП – коэффициенты, зависящие соответственно от класса точности, группы сложности, массы, марки материала и объема производства заготовок, SОТХ. – заготовительные цены на стружку металлов.

Стоимость заготовки в базовом варианте согласно выше сказанного равна:

SЗАГ. БАЗ. = ((373/1000)´8,8´1,0´1,21´0,89´1,0´1,0) – (8,8 – 5,714)´(28,1/1000) = 3,45 руб.,

Стоимость заготовки в проектном варианте равна:


SЗАГ. ПР. = ((373/1000)´7,48´1,05´1,21´0,89´1,0´1,0) – (7,48 – 5,714)´(28,1/1000) = 3,11 руб.,

Экономический эффект для сопоставления способов получения заготовок, может быть определен по формуле:

ЭЗ = (SЗАГ. БАЗ. - SЗАГ. ПР. ) ´ NГ = (3,45 – 3,11) ´ 60000 = 20400 руб. (на цены 1984 г.).

5. Анализ базового варианта технологического процесса механической обработки

Предметом анализа является технологический процесс изготовления каретки из стальной штампованной заготовки.

Принятую в данном варианте технологическую последовательность обработки логически следует считать целесообразной, так как при этом соблюдаются принципы постепенности формирования свойств обрабатываемой детали.

Для анализа применяемого при обработки оборудования составляем табл. 5.1 и 5.2

Таблица 5.1 - Технологические возможности применяемого оборудования

№ оп.

Модель станка

Предельные размеры обрабатываемой заготовки, мм

Квалитет обработки

Шераховатость поверхности, Ra, мкм

Диаметр d

Длина l

Высота h

005

2А150

50

-

800

12

12,5

010

1П365

500

200

-

12

6,3

015

1К62

630

1400

-

12

6,3

020

1Б57

250

2000

-

11

3,2

025

1А730

500

320

-

11

3,2

030

1А730

500

320

-

11

3,2

035

3Б312

320

-

160

10

3,2

040

5Н580

320

-

160

10

3,2

045

5527

500

-

160

10

3,2

050

5702В

320

-

100

8

3,2

055

3К82

320

1000

400

8

1,6

060

3Т161

280

700

-

8

1,6

065

1Н713

400

500

-

8

1,6

070

5В913

320

-

500

7

0,8

Таблица 5.2 - Характеристика срока службы, стоимости, сложности, производительности и степени использования применяемого оборудования

№ оп.

Модель станка

Год изготовления

Цена станка, руб.

Категория ремонтной сложности

Кол-во станков на операции

Трудоемкость,

ТШК.-К. , мин.

Коэфф. загрузки станка

1

2

3

4

5

6

7

8

005

2А150

1980

2360

16

1

1,28

0,24

010

1П365

1981

3340

32

1

2,42

0,46

015

1К62

1981

5530

19

1

0,39

0,07

020

1Б57

1989

8700

24

1

0,74

0,14

025

1А730

1987

11200

35

1

2,08

0,4

1

2

3

4

5

6

7

8

030

1А730

1987

11200

35

1

2,33

0,44

035

3Б312

1992

9400

31

4

16,71

3,2

040

5Н580

1990

7000

17

1

2,93

0,56

045

5527

1994

1550

4

1

2,83

0,54

050

5702В

1993

9500

14

2

5,98

1,14

055

3К82

1982

16030

39

1

1,39

0,26

060

3Т161

1981

22600

30

1

0,83

0,16

065

1Н713

1980

6450

31

1

1,07

0,2

070

5В913

1980

11750

14

1

1,39

0,26


Для анализа автоматизации технологического процесса составляем таблицу 5.3

Таблица 5.3 - Автоматизация технологического процесса

Модель станка

Управление циклом станка

Вид загрузки заготовок

Межоперационное транспортное устройство

ТО , мин.

ТШК.-К. , мин.

d

Категория автоматизации

2А150

Автом.

Ручн.

Тара

0,98

1,28

0,77

4(большая)

1П365

Автом.

Ручн.

Тара

1,54

2,42

0,64

4(большая)

1К62

Автом.

Ручн.

Тара

0,18

0,39

0,46

3(средняя)

1Б57

Автом.

Ручн.

Тара

0,42

0,74

0,57

3(средняя)

1А730

Автом.

Ручн.

Тара

1,33

2,08

0,64

4(большая)

1А730

Автом.

Ручн.

Тара

1,45

2,33

0,62

4(большая)

3Б312

Автом.

Ручн.

Тара

15,24

16,71

0,91

6(высокая)

5Н580

Автом.

Ручн.

Тара

2,64

2,93

0,90

5(повышен.)

5527

Автом.

Ручн.

Тара

2,5

2,83

0,88

5(повышен.)

5702В

Автом.

Ручн.

Тара

5,6

5,98

0,94

6(высокая)

3К82

Автом.

Ручн.

Тара

1,0

1,39

0,72

4(большая)

3Т161

Автом.

Ручн.

Тара

0,51

0,83

0,61

4(большая)

1Н713

Автом.

Ручн.

Тара

0,88

1,07

0,82

5(повышен.)

5В913

Автом.

Ручн.

Тара

0,98

1,39

0,71

4(большая)

Для анализа и выявления причин возникновения брака составляем таблицу 5.4

Таблица 5.4 - Доля и причины брака

Номер операции

Доля брака на операции, %

Причины возникновения брака

005-030

3,2

Погрешность размеров заготовок, превышающие допуски; дефекты металла заготовок

035-070

0,3

Погрешность базирования, ошибки рабочего


Для оценки установочно-зажимных приспособлений, режущего и вспомогательного инструмента, средств технического контроля составляем таблицы 5.5…5.8

Таблица 5.5 - Установочно-зажимные приспособления

Номер операции

Наименование приспособления

Вид приспособления

Привод приспособления

Кол-во на станке

Время на установку и снятие заготовки, мин.

005

Патрон 3-х кул.

УНО

Пневматика

1

0,08

010, 015

Патрон 3-х кул.

УНО

Пневматика

1

0,08

020

Планшайба

УНО

Пневматика

1

0,038

025, 030

Оправка цанговая

УБО

Пневматика

1

0,1

035

Спец. приспос.

СНО

Гидравлика

1

0,11

040…050

Цанга зажимная

УБО

Пневматика

1

0,051

055, 060

Спец. приспос.

СНО

Пневматика

1

0,1

065, 070

Оправка цанговая

УБО

Пневматика

1

0,17

Таблица 5.6 - Режущие инструменты

№ оп.

Наименование инструмента

Вид инструмента

Материал реж. части

Стойкость, мин

СОЖ

Параметры резания

Метод настройки

V, м/мин

S,

мм/об

t,

мм

005

Зенкер

Станд.

Р6М5

60

СФ

22

0,62

4,5

1

010

Набор резцов

Станд.

Т15К6

180

СФ

97

0,25

1

1

015

Резец

Станд.

Т15К6

200

СФ

3

0,23

1

1

020

Протяжка

Спец.

Р6М5

260

СФ

94,23

-

-

1

025

Набор резцов

Станд.

Т15К6

180

СФ

80,1

3

0,25

1

030

Набор резцов

Станд.

Т15К6

180

СФ

78

1

0,2

1

035

Фреза

Станд.

Р6М5

300

ПМ

28,9

3,53

12,5

2

040

Фреза

Станд.

Р6М5

300

СФ

-

5,04

на зуб

4

2

045

Шлиф. круг

Станд.

24А25ПСТ В4

15

СФ

47

4 сек/зуб

-

2

050

Шевер

Станд.

МН 1800-61

100

СФ

39,6

0,35

0,04

2

055

Хон

Станд.

Р6М5

15

СФ

50

-

-

1

060

Шлиф. круг

Станд.

24А25ПСТ В4

15

СФ

35

-

0,1

2

065

Набор резцов

Станд.

Т15К6

180

СФ

85

0,08

0,1

2

070

Шевер

абразив.

Станд.

24А25ПСТ В4

15

СФ

-

-

-

2

Примечание: метод настройки на размер: 1- по промерам, 2- по эталону.

Таблица 5.7 - Вспомогательные инструменты

№ оп.

Наименование инструмента

Вид инструмента

Установка режущего инструмента во вспомогательный

Способ крепления

Время на смену, мин

010

Стойки для резцов

Спец.

Винтами по плоскости

2,5

015

Стойки для резцов

Станд.

Винтами по плоскости

2,5

020

Патрон рабочий

Станд.

По цилиндрической поверхности и хвостовику

0,05

025

Стойки для резцов

Спец.

Винтами по плоскости

2,5

030

Стойки для резцов

Спец.

Винтами по плоскости

2,5

035

Оправка фрезерная

Станд.

По цилиндрической поверхности и лыске на торце

2,8

045

Оправка для круга

Станд.

По цилиндрической поверхности и пазу на торце

3,1

060

Оправка для круга

Станд.

По цилиндрической поверхности и пазу на торце

2,8

065

Стойки для резцов

Спец.

Винтами по плоскости

2,5

Таблица 5.8 - Средства технического контроля

№ оп.

Наименование инструмента

Вид инструмента

Точность измерения, мм.

Допуск на измеряемый размер, мм.

Время на одно измерение, мин

005

Пробка

Спец.

0,02

+ 0,74

0,14

010

Набор скоб

Спец.

0,02

- 0,62

0,358

015

Шаблон

Спец.

0,1

- 0,5

0,16

020

Пробка шлицевая

Спец.

0,002

+ 0,046

0,054

025

Набор скоб

Спец.

0,02

- 0,62

0,191

030

Набор скоб

Спец.

0,02

0,34

0,567

035

МЦ-400Б

Станд.

0,01

0,02

0,36

040

Шаблон

Спец.

0,1

±1,2

0,16

050

МЦ-400Б

Станд.

0,01

0,04

0,55

055

Пробка

Спец.

0,001

+ 0,046

0,24

060

Скоба

Спец.

0,002

+ 0,004

0,11

065

Скоба

Спец.

0,02

- 0,34

0,08

070

МЦ-400Б

Станд.

0,04

0,04

0,55

Действующий технологический процесс можно совершенствовать следующим образом:

1. Заменить станки на операциях 005…030 на токарный восьмишпиндельный вертикальный полуавтомат с двойной индексацией.

2. Экономически обосновать замену на проектируемых операциях.

3. Упрознить операцию 065 вследствие уменьшения припусков под механическую обработку и увеличения точности изготовления.

4. Автоматизировать процесс загрузки-разгрузки станков и межоперационное транспортирование обрабатываемых деталей.

5. Уменьшить погрешность базирования на проектируемой 005 операции.

6. Применить средства активного контроля на шлифовальных операциях

7. Заменить станки на операциях 020, 055, 060 и 070 на более современные согласно новому технологическому процессу.

6. Проектирование улучшенного варианта технологического процесса

Проектируемый вариант технологического процесса обработки шестерни первой передачи будет иметь следующий вид:

1. 005 – Автоматно-токарная – 1К282;

2. 010 – Вертикально-протяжная – 1Б67;

3. 015 – Зубофрезерная – 5Б312;

4. 020 – Зубозакругляющая – 5Н580;

5. 025 – Зубофасочная – 5527;

6. 030 – Зубошевеинговальная – 5702;

7. Термообработка

8. 035 – Хонинговальная – 3М82П;

9. 040 – Плоскошлифовальная – 3П722;

10. 045 – Зубохонинговальная – 5А913;

11. Контроль.

Прежде чем принять решение о методах и последовательности обработки отдельных поверхностей детали и составить технологический маршрут ее изготовления, необходимо определить себестоимость обработки по отдельным вариантам и выбрать наиболее рациональный из них для данных условий производства. Критерием оптимальности является минимум приведенных затрат на единицу продукции.

Часовые приведенные затраты (коп/ч) можно определить по формуле:

SП.З. = SЗ. + SЧ.З. + ЕН.С. + КЗ. ),

где SЗ. – основная и дополнительная зарплаты с начислениями, коп/ч., SЧ.З. – часовые затраты на эксплуатацию рабочего места, коп/ч., ЕН. – нормативный коэффициент экономической эффективности капитальных вложений (0,15); КС., КЗ. – удельные часовые капитальные вложения соответственно в станок и здание, коп/ч.

Основная и дополнительная зарплаты с начислениями и учетом многостаночного обслуживания (коп/ч.):

SЗ = εСТ.Ф. ky,


Где ε – коэффициент к часовой тарифной ставке (2,66); СТ.Ф. – часовая тарифная ставка станочника сдельщика соответствующего разряда, коп/ч., k – коэффициент, учитывающий зарплату наладчика; у – коэффициент, штучного времени, учитывающий оплату труда рабочего, при многостаночном обслуживании.

Часовые затраты на эксплуатацию рабочего места (коп/ч):

SЧ.З = SЧ.З Б.П. kМ ,

где SЧ.З Б.П. – практические часовые затраты на базовом рабочем месте, коп/ч., kМ – коэффициент, показывающий, во сколько раз затраты, связанные с работой данного станка, больше, чем аналогичные расходы, связанные с работой базового станка.

Часовые затраты на эксплуатацию рабочего места в случае пониженной загрузки станка (менее 60%) должны быть скорректированы с помощью коэффициента j, если станок не может быть дозагружен, как например, в массовом производстве. В этом случае скорректированные часовые затраты (коп/ч.):

SЧ.З К. = SЧ.З j /1,14,

где j - поправочный коэффициент:

j = 1 + a(1 - hЗ. )/hЗ. ,

где a - удельный вес постоянных затрат в часовых затратах на рабочем месте, hЗ. – коэффициент загрузки станка.

Капитальные вложения в станок и здание (коп/ч.) определяются по формулам:


КС. = 100Ц/(FЭ. hЗ. ); КЗ. = 100ЦПЛ.ЗД. А/(FЭ. hЗ. ),

где FЭ – эффективный годовой фонд времени работы станка, ч., 100ЦПЛ.ЗД. – стоимость 1 м2 площади механического цеха, руб., А – производственная площадь занимаемая станком, с учетом проходов, м2 (А = аkА , где а – площадь станка в плане, м2 , kА – коэффициент учитывающий дополнительную производственную площадь).

Технологическая себестоимость операций механической обработки (коп.):

СО. = SП.З. ТШК.-К /60kВ ,

где ТШК.-К – штучно-калькуляционное время на операцию, мин; kВ – коэффициент выполнения норм (1,3).

Для простоты и наглядности результатов расчетов составляем таблицы 6.1 и 6.2, которые будут отображать результаты расчетов по базовому и проектному технологическому процессу механической обработки соответственно.

Согласно полученных результатов приведенная годовая экономия (руб.) составит:

ЭГ. = ((СО. ' – СО. '') NГ )/100,

где СО. ' - технологическая себестоимость операций механической обработки базового варианта; СО. ''- технологическая себестоимость операций механической обработки проектного варианта.

ЭГ. = ((231,5 – 191,1) 60000)/100 = 24240 руб. (на цены 1984г.)


Таблица 6.1 - Расчет технологической себестоимости операций механической обработки базового варианта технологического процесса

оп.

Ц,

руб.

ηЗ

КС. , коп/ч.

А, м2

КЗ. , коп/ч.

SЧ.З. , коп/ч

j

SЧ.З К. , коп/ч

SЗ. , коп/ч

SП.З. , коп/ч

ТШК.-К. , мин.

СО. , коп/ч

005

2360

0,24

242,5

4,52

60,38

35,7

1,95

69,6

177,3

292,3

1,28

4,8

010

3340

0,46

179,1

15,24

106,2

84,7

1,52

126,7

177,3

348,8

2,42

10,8

015

5530

0,07

1948,2

19,7

902,2

75,8

6,05

458,6

177,3

1063,5

0,39

4,9

020

8700

0,14

1532,5

32,43

742,6

147,2

2,59

381,2

177,3

899,8

0,74

8,5

025

11200

0,4

690,5

18,95

151,9

102,6

1,59

163,1

177,3

466,8

2,08

12,4

030

11200

0,44

627,7

18,95

138,1

102,6

1,49

152,9

177,3

445,1

2,33

13,3

035

9400

3,2/0,8

1159,2/289,8

9,1

145,9/36,5

107,0

-

-

69,2

371,9

16,71

79,7

040

7000

0,56

297,6

8,16

45,1

107,0

1,23

131,6

177,3

360,3

2,93

13,6

045

1550

0,54

70,8

2,2

13,1

107,0

1,27

135,9

177,3

325,8

2,83

12,8

050

9500

1,14/0,57

822,0/411,0

11,1

124,9/62,4

111,5

1,45

161,7

115,3

421,7

5,98

32,3

055

16030

0,26

1520,4

11,2

136,9

80,3

2,17

174,3

177,3

600,2

1,39

10,7

060

22600

0,16

3483,4

35,1

703,3

89,2

2,52

224,8

177,3

1030,1

0,83

10,9

065

6450

0,2

795,3

18,95

303,8

102,6

2,56

262,7

177,3

604,9

1,07

8,3

070

11750

0,26

1114,5

12,11

149,3

80,3

1,39

111,6

177,3

478,5

1,39

8,5

S

231,5

Таблица 6.2 - Расчет технологической себестоимости операций механической обработки проектного варианта технологического процесса

оп.

Ц,

руб.

ηЗ

КС. , коп/ч.

А, м2

КЗ. , коп/ч.

SЧ.З. , коп/ч

j

SЧ.З К. , коп/ч

SЗ. , коп/ч

SП.З. , коп/ч

ТШК.-К. , мин.

СО. , коп/ч

005

18500

0,56

814,7

22,6

124,4

272,3

1,46

348,7

177,3

666,9

1,46

12,5

010

8200

0,14

1444,4

20,6

453,6

119,8

2,59

272,2

177,3

734,2

0,74

6,9

015

9400

3,2/0,8

1159,2/289,8

9,1

145,9/36,5

107,0

-

-

69,2

371,9

16,71

79,7

020

7000

0,56

297,6

8,16

45,1

107,0

1,23

131,6

177,3

360,3

2,93

13,6

025

1550

0,54

70,8

2,2

13,1

107,0

1,27

135,9

177,3

325,8

2,83

12,8

030

9500

1,14/0,57

822,0/411,0

11,1

124,9/62,4

111,5

1,45

161,7

115,3

421,7

5,98

32,3

035

16000

0,26

1517,6

21,2

251,6

65,3

2,17

124,3

177,3

567

1,39

10,1

040

21500

0,35

1514,8

20,4

179,7

127,1

1,69

188,4

177,3

620

1,83

14,5

045

12000

0,26

1138,2

8,4

99,6

65,3

2,17

124,3

177,3

487,3

1,39

8,7

S

35,26

191,1

При выполнении курсового проекта припуски на механическую обработку определяются расчетно-аналитическим способом. Расчет и назначение их по таблицам ГОСТов производится после отработки конструкции детали и заготовки на технологичность и технико-экономического обоснования метода получения заготовки.


7. Расчет припусков под механическую обработку

Назначение припусков ведется согласно ГОСТа 7505-89, рисунка 7.1 и результаты заносятся в сводную таблицу 7.1

Таблица 7.1 - Припуски под механическую обработку

Номер поверхности

Размер, мм.

Припуск, мм.

Допуск, мм.

1

Ø 137,5–0,6

2´2,5

+2,4/–1,2

2

6,4–0,15

2´2,5

+1,6/–0,9

3

22–0,084

2´2,5

+1,6/–0,9

4

85–0,54

2´2,5

+1,8/–1,0

5

Ø68,1+0,12

2´2,5

+1,0/–1,2

Рис. 7.1

8. Назначение режимов резания

Методика расчетов режимов резания представлена в справочной и учебной литературе. В процессе разработки операционной технологии необходимо рассчитать режимы резания на один из технологических переходов, а на остальные переходы и операции определить по нормативным данным режимы

Рассмотрим подробно назначение режимов резания для автоматно-токарной операции 005, переход 3, производимой на станке 1К282, зенкерование отверстия.

1. Рассчитываем длину рабочего хода:

LР.Х. = LР. + LДОП. + y,

где LР. – длина резания, мм.; LДОП. – дополнительная величина, хода вызванная особенностями наладки и конфигурации детали, мм.; y – длина подвода, врезания и перебега инструмента.

LР.Х. = 65 + 2 + 5 = 72 мм.

2. Назначаем подачу суппортов на оборот шпинделя SО , мм/об:

SО = 1,1 мм/об.

3. Определяем стойкость инструмента ТР. , мин.:

ТР. = λ ´ ТМ. ,

где λ – коэффициент резания, λ = LР. /LР.Х. = 65/72 = 0,9; ТМ – табличное значение стойкости инструмента, мин.

Так как λ > 0,7,то ТР. » ТМ = 110 мин.

4. Определяем скорость резания по формуле, м/мин.:

V = VТАБЛ. ´К1 ´К2 ´К3 ,

где VТАБЛ. – табличное значение скорости резания, м/мин., К1 , К2 , К3 – коэффициенты учитывающие твердость обрабатываемого материала.

5. Определяем частоту вращения шпинделя, об./мин.:


n = (1000V)/(πD),

где D – диаметр обработки, мм.

n = (1000 ´ 21)/(3,14 ´ 54) = 123,8 об./мин.

6. Назначаем частоту вращения по паспорту станка n = 125 об./мин.

7. Скорректируем значение скорости:

V = nπD/1000,

V = (125 ´ 3,14 ´ 54)/1000 = 21,195 ≈ 21,2 м/мин.

8. Определяем минутную подачу, мм/мин:

Sm = SО ´ n = 1,1 ´ 125 = 137, 5 мм/мин.

9. Рассчитываем основное время на обработку, мин.:

ТО = LР.Х. / Sm = 72/137,5 = 0,52 мин.

Остальные режимы резания рассчитываются по приведенной выше методике и сводятся в таблицу 8.1

Таблица 8.1 - Сводная таблица по режимам резания механической обработки

оп.

t, мм.

LР. /LР.Х. , мм

λ

ТМ / ТР. , мин

SО , мм/об.

nР / nПР ,

об./

мин.

VР /VПР , м/мин.

Sm, мм/

мин

ТО , мин.

005.3

4,5

65/72

0,9

110

1,1

123/125

21/21,2

137,5

0,52

005.4

2,2

37/65