Главная              Рефераты - Производство

Киль легкого самолета - курсовая работа

Курсовая работа по дисциплине:

Конструирование изделий из композиционных

материалов

Киль легкого самолета

Казань, 2008 г.


Содержание:

1. Назначение киля и требования к нему………………………………..………3

2. Техническое описание киля………………………………..………………….3

3.Конструктивно – силовая схема киля…………………………………….…..3

4.Нормирование нагрузок………………………………………….……………5

5.Проектировочные расчеты………………………………………………….....7

I. Построение эпюр……………………………………………………..…………7

II. Проектировочный расчет на прочность……………………………………10

Список используемой литературы……...……………………..……………….13


1. Назначение киля и требования к нему

К оперению самолета относятся горизонтальное и вертикальное оперение.

Горизонтальное оперение служит для обеспечения продольной, а вертикальное – путевой устойчивости и управляемости самолета.

К вертикальному оперению самолета предъявляются следующие основные требования:

- обеспечение путевой устойчивости и управляемости самолета на всех режимах полета, в том числе и на режимах, близких к αкр (посадка, штопор);

- наименьшее лобовое сопротивление;

- возможно меньшее затенение оперения крылом, фюзеляжем, гондолами двигателей, а также одной части оперения другой;

- исключение возможности возникновения вибраций;

- простота монтажа и демонтажа оперения на самолете.

2. Техническое описание киля

Киль летательного аппарата – часть хвостового оперения самолёта, расположенная в вертикальной (или наклонной) плоскости и предназначенная для обеспечения путевой устойчивости.

Киль представляет собой консольную балку. К задней кромке киля на шарнирах крепится руль направления полёта.

В конструкцию киля входят два лонжерона. Первый располагается позади носка киля, а второй перед передней кромкой руля направления. Первый лонжерон необходим для крепления киля к хвостовой части фюзеляжа, обычно здесь используются шарнирные узлы крепления, которые устанавливаются на поясах лонжеронов.

На заднем (втором) лонжероне расположены узлы навески руля направления.

3. Конструктивно – силовая схема киля

Конструктивно-силовая схема киля – двухлонжеронная.

Лонжероном воспринимаются изгибающий момент и перерезывающие силы. Пояса лонжерона берут осевые усилия от изгибающего момента, а стенки погонные касательные усилия от перерезывающей силы. Кроме этого в стенке лонжерона могут действовать погонные усилия от крутящего момента. Крутящий момент воспринимается только замкнутыми контурами.

Этот лонжерон целесообразно размещать в месте максимальной строительной высоты. Обычно это совпадает с местом положения оси вращения.

Лонжерон обычно представляет собой балку таврового или швеллерного типа. Стенка лонжерона изготовлена из трехслойного КМ (сотовый заполнитель). Причем несущие слои стенки выкладываются под углом ± 45˚, так как они работают на сдвиг. А пояса лонжерона выклеиваем из лент стеклоткани Т – 10, практически однонаправлены. Пояс будет работать на сжатие и не извернется, т.к. одну кромку будет держать стенка лонжерона, а другая кромка упирается в трехслойную обшивку и не выпадает оттуда. Несущие слои тоже укладываются под углом ± 45˚, это делается для того, что бы повысить жесткость агрегата (деформация в 3 раза меньше). Обшивку в носике целесообразно сделать однослойной, т.к. большая кривизна, нагрузку выдержит, а вся обшивка будет трехслойная.

Рис. 1.

4. Нормирование нагрузок

Исходные данные:

Самолет имеет двухкилевое ВО установленное симметрично относительно плоскости хорд крыла.

Рис. 2.

Общая площадь вертикального оперения:

Площадь одного вертикального оперения

.

Площадь крыла

.

Вес самолета

.

Максимально допустимая скорость полета

.

Максимально допустимый скоростной напор

.

f = 1,5; nЭ max = 4.

Во всех случаях нагружения распределение нагрузок по размаху оперения принимается пропорционально хордам, а нагрузки параллельные хордам, из-за малой величины не учитываются.

Расчетный случай: маневренная нагрузка.

Нагрузка вертикального оперения, возникающая при маневре в горизонтальной плоскости, мо­жет быть определена по формуле

где S B.0. - площадь вертикального оперения.

, Н.

В соответствии с АП23 п.23.445 «Разнесенное (двухкилевое) вертикальное оперение» 65% вычисленной нагрузки приходиться на один киль.

, Н.

Удельная нагрузка на вертикальное оперение (нагрузка на единицу площади) равна:

, Н.

В соответствии с "Нормами прочности спортивных планеров" эксплуатационная удельная нагрузка меньше 800н/м2 не берется.

Расчетная удельная нагрузка прикладывается «к части ВО, находящейся выше горизонтального, а 80% этой нагрузки - к части находящейся ниже».

Расчетная удельная нагрузка прикладывается «к части ВО, находящейся ниже горизонтального, а 80% этой нагрузки - к части находящейся выше».

Нагрузка ки­ля рассчитывается пропорционально его площади:

, Н,

где - площадь киля.

, Н.

Нагрузка по размаху (высоте) киля распределяется пропорционально его хорде:

, Н,

где b к – хорда киля в сечении, тогда

, Н.

Распределение нагрузки по хорде вертикального оперения в случае маневренной нагрузки и остановки двигателей произво­дится так, как показано на рисунке:

Рис. 3.

5. Проектировочные расчеты

I . Построение эпюр

Киль представляет собой консольную балку. Расчетная схема киля – за­щемленная балка, нагруженная распределенной нагрузкойq и реакци­ями от руля Rt , приложенными в узлах его навески. За ось z прини­маем ось жесткости. В проектировочном расчете делаем допущение, что перерезывающая сила воспринимается стенками лонжеронов, рас­пределяясь между ними пропорционально квадратам их высот, а крутя­щий момент воспринимается замкнутым контуром, образованным обшив­кой и стенкой заднего лонжерона.

Для киля центр давления

Рис. 4.

Определение изгибающих моментов и перерезывающих сил киля.

Рис. 5.

, Н/м

Расчет ведем с концов киля. Для левого участка (рис. 5.) имеем:

Для правого участка (рис. 5.) имеем:

zр м. 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,65 0,65 0,60 0,50 0,40 0,30 0,20 0,10 0,00
z м. 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,65 0,65 0,70 0,80 0,90 1,00 1,10 1,20 1,30
Q н. 91 137 189 248 314 386 465 506 -398 -365 -302 -244 -192 -145 -103 -66
Mи н*м. 0 11 28 49 77 112 155 179 139 120 87 59 37 21 8 0

Рис. 6.

Определение крутящих моментов киля.

Расчет ведем с концов киля.

Погонный крутящий момент

Для левого участка (рис. 5.):

Для правого участка (рис. 5.):

zр м. 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,65 0,65 0,60 0,50 0,40 0,30 0,20 0,10 0,00
z м. 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,65 0,65 0,70 0,80 0,90 1,00 1,10 1,20 1,30
b м 0,30 0,35 0,39 0,44 0,48 0,53 0,58 0,60 0,60 0,58 0,53 0,48 0,44 0,39 0,35 0,30
q н*м. 426 492 557 623 689 754 820 853 682 656 603 551 498 446 394 341
хц.д. м 0,15 0,17 0,20 0,22 0,24 0,27 0,29 0,30 0,30 0,29 0,27 0,24 0,22 0,20 0,17 0,15
xж м 0,17 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,33 0,32 0,29 0,27 0,24 0,22 0,19 0,2
m н 6,39 8,5 11 14 17 20 24 26 20,5 18,9 16 13,3 10,9 8,75 6,81 5,12
кр 0,00 0,7 0,97 1,23 1,52 1,84 2,18 1,23 0,98 1,75 1,47 1,21 0,98 0,78 0,60 0,00
Mкр (m) 0,00 0,75 1,72 2,95 4,46 6,30 8,48 9,71 7,77 6,79 5,04 3,57 2,36 1,37 0,60 0,00
Mкр (P) -16 -18 -20 -22 -23 -25 -27 -28 -20 -20 -18 -17 -16 -14 -13 -12
Mкр н*м -16 -17 -18 -19 -19 -19 -19 -18 -13 -13 -13 -13 -13 -13 -12 -12

Рис. 7.

II. Проектировочный расчет на прочность

Расчет лонжерона.

Площадь поясов лонжеронов определяют по их изгибающим моментам. В проектировочном расчете изгибающий момент распределяем между лонжеронами, как и перерезывающую силу пропорционально квадратам их высот:

;

Максимальные изгибающие моменты по расчетному случаю маневренная нагрузка Н*м, Н*м.

В зоне максимального изгибающего момента в лонжероне имеем расстояние между ц.т. полок лонжерона 51мм.

В двух-трех наиболее нагруженных сечениях определяем площа­ди поясов лонжерона, толщину его стенки и толщину обшивки. Площадь сечения поясов лонжерона (рис. 8.) опре­деляется по формуле

где М – изгибающий момент;

Нр - расстояние между центрами тяжести сечений поясов;

sразр - разрушающее напряжение.

Принимаем для стеклоткани Т-10 допустимые напряжения

.

Тогда площадь сечения равна:

.

Усилие в полке равно:

, Н.

Рис. 8.

По технологическим соображениям минимальный размер полки лонжерона (2 слоя стеклоткани шириной 10мм) равен , это почти в два раза превосходит требуемое значение.

Расчетное напряжение в полке лонжерона равно:

.

Критическое напряжение местной потери устойчивости при сжатии равно:

.

Расчетное напряжение не превосходит критических значений, следовательно, прочность обеспечивается.

Толщина стенки лонжерона определяется по формуле

где Q - перерезывающая сила;

Н - высота лонжерона;

τразр - разру­шающее касательное напряжение.

Максимальная перерезывающая сила равна:

Тогда толщина стенки лонжерона будет

Расчетное напряжение в стенке (2 слоя стеклоткани) равно:

Предполагая, что трехслойная стенка работает без потери устойчивости, допустимые напряжения сдвига равны . Расчетное напряжение сдвига не превосходит допустимых напряжений, следовательно, прочность обеспечивается.

Максимальный крутящий момент, соответствующий случаю маневренной нагрузки:

В проектировочном расчете считаем, что крутящий момент воспринимается обшивкой и стенкой заднего лонжерона. Тогда погонное сдвигающее усилие от кручения будет равно

где Мкр - крутящий момент;

ω - площадь замкнутого контура.

По величине qкp определяем толщину обшивки, тогда δ = 0,3 мм – толщина обшивки работающей на кручение

Толщина обшивки определяется из условия восприятия ею крутя­щего момента. При этом делается допущение, что крутящий момент воспринимается внешним замкну­тым контуром, образованным об­шивкой.

Напряжения определяются по формуле Бредта:

Здесь ω – площадь контура работающего на кручение = 9333 мм 2 ;

δ – толщина обшивки работающей на кручение = 0,3 мм (2слоя ткани СВМ).

Предполагая, что трехслойная стенка работает без потери устойчивости, допустимые напряжения сдвига равны . Расчетное напряжение сдвига обшивки не превосходит допустимых напряжений, следовательно, прочность обеспечивается.

Список используемой литературы

1. Авиационные правила: часть 23 Нормы летной годности гражданских легких самолетов. М.: Межгосударственный авиационный комитет, 1993.

2. Нормы прочности спортивных планеров. СибНИА, 1968.

3. Справочная книга по расчету самолета на прочность/М.Ф. Астахов, А.В.Караваев, С.Я.Макаров, Я.Я. Суздальцев. М.: Оборонгиз, 1954. 702 с.