Главная              Рефераты - Производство

Учебное пособие: Основы теории и технологии контактной точечной сварки

Министерство общего и профессионального образования

Российской Федерации

Сибирский государственный аэрокосмический университет

имени академика М. Ф. Решетнева

С. Н. Козловский

Основы теории и технологии контактной точечной сварки

Монография

Красноярск 2005

УДК 621.791.763

ББК

К 59

Рецензенты:

Печатается по решению Редакционно – издательского совета университета

Козловский С.Н.

К 59 Основы теории и технологии контактной точечной сварки: Монография / С. Н. Козловский; СибГАУ. — Красноярск:, 2003. — ??? с. ISBN

В монографии изложены основы теории и технологии контактной точечной сварки. Рассмотрены основные процессы, протекающие при контактной точечной сварке: деформирования свариваемых деталей при их сближении до соприкосновения; формирования механических и электрических контактов, электрической проводимости зоны сварки; нагрева металла в зоне сварки и методы количественной его оценки; объемные пластические деформация металла в зоне точечной сварки. Приведены математические модели основных термодеформационных процессов, протекающих в зоне сварки на стадии нагрева: равновесия силовой системы электрод–детали–электрод; теплового состояния зоны сварки; силового взаимодействия деталей в площади свариваемого контакта; пластической деформации металла в зоне точечной сварки. Описаны методики расчетного определения: размеров ядра и средних значений температуры в зоне сварки; среднего значения нормальных напряжений в площади контакта деталь–деталь; давления расплавленного металла в ядре; сопротивления пластической деформации металла в условиях формирования точечного соединения; определения степени и скорости пластической деформации металла в зоне сварки, его температуры; высоты уплотняющего пояска в свариваемом контакте. Описаны методики математического моделирования процессов формирования точечных сварных соединений. Показано изменение параметров основных термодеформационных процессов, протекающих в зоне сварки на стадии нагрева и влияние на них режимов сварки. Рассмотрены технологические аспекты повышения устойчивости процесса формирования точечных сварных соединений и их качества.

Монография предназначена для научных и инженерно-технических работников, занимающихся совершенствованием существующих и разработкой новых сварочных технологий контактной точечной сварки. Она может быть полезна аспирантам, студентам вузов и техникумов сварочных специальностей.

УДК 621.791.763

ББК

ISBN

© Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, 2005

© С.Н. Козловский


ВВЕДЕНИЕ

1. Сущность и технологии традиционных способов контактной
точечной сварки

1.1.

Двусторонняя точечная сварка, ее разновидности и основные параметры точечных сварных соединений

1.2.

Основные технологические приемы контактной точечной сварки

1.2.1.

Термодеформационные процессы, протекающие в зоне сварки и общая схема формирования точечного сварного соединения ....

1.2.2.

Технологические приемы традиционных способов контактной точечной сварки

1.2.3.

Контактная точеная сварка с обжатием периферийной зоны соединений

1.3.

Параметры режимов — факторы регулирования процесса точечной сварки

1.3.1

Время сварки

1.3.2

Сила сварочного тока

1.3.3

Усилие сжатия электродов

1.3.4

Форма и размеры рабочих поверхностей электродов

1.3.5

Критерии подобия для определения режимов сварки

2. Основные процессы, протекающие при контактной точечной
сварке

2.1

Сближение свариваемых деталей

2.1.1

Деформирование свариваемых деталей при их сближении ..

2.1.2.

Влияние деформирования деталей на усилие сжатия в свариваемом контакте

2.1.3.

Экспериментально-расчетный метод определения усилия
деформирования деталей при их сближении

2.2

Формирование контактов при сжатии деталей электродами

2.2.1

Формирование механических контактов

2.2.2

Формирование электрических контактов

2.3

Электрическая проводимость зоны сварки

2.3.1

Электрические сопротивления контактов при точечной сварке

2.3.2.

Электрические сопротивления собственно свариваемых
деталей

2.3.3

Общее электрические сопротивления зоны сварки

2.4.

Нагрев металла в зоне сварки и методы количественной его
оценки

2.4.1

Источники теплоты в зоне формирования сварного соединения..

2.4..

Температурное поле в зоне формирования соединения

2.4.3

Тепловой баланс в зоне сварки и расчет сварочного тока

2.5.

Объемная пластическая деформация металла в зоне формировании точечного сварного соединения

2.5.1.

Методики экспериментальных исследований макродеформаций металла в зоне сварки

2.5.2.

Характер пластических деформаций металла в зоне сварки на стадии нагрева

3. Математические модели основных термодеформационных
процессов, протекающих в зоне точечной сварки

3.1.

Термодеформационное равновесие силовой системы электрод–детали–электрод при традиционных способах сварки

3.2.

Термодеформационное равновесие силовой системы электрод–
–детали–электрод при контактной точечной сварке с обжатием периферийной зоны соединения

3.2.1

Способ контактной точечной сварки с обжатием периферийной зоны соединений вне контура уплотняющего пояска

3.2.2.

Математическая модель термодеформационного равновесия процесса контактной точечной сварки с обжатием периферийной зоны соединения

3.3

Оценка теплового состояния зоны сварки на стадии нагрева

3.3.1.

Экспериментально-расчетный метод оценки теплового
состояния зоны сварки на стадии нагрева

3.3.2.

Методики расчетного определения размеров ядра и средних значений температуры в зоне сварки

3.4.

Математические модели силового взаимодействия деталей в площади свариваемого контакта при формировании соединения

3.4.1.

Методика расчета среднего значения нормальных напряжений в площади контакта деталь–деталь

3.4.2.

Методика расчета давления расплавленного металла в ядре

3.5.

Методики определения параметров термодеформационных
процессов, протекающих в зоне точечной сварки

3.5.1.

Сопротивление пластической деформации металла в условиях деформирования при повышенных температурах

3.5.2.

Определение степени и скорости пластической деформации
металла в зоне точечной сварки

3.5.3.

Определение температуры металла в зоне пластических
деформаций

3.5.4.

Определение высоты уплотняющего пояска в свариваемом
контакте



4. Математическое моделирование процессов формирования
точечных сварных соединений

4.1.

Методики расчета изменения диаметра уплотняющего пояска в процессе контактной точечной сварки

4.1.1.

Методика расчета изменения диаметра уплотняющего пояска при традиционных способах контактной точечной сварки

4.1.2.

Методика расчета изменения диаметра уплотняющего пояска при точечной сварке с обжатием периферии соединения

4.2

Изменение термодеформационных процессов на стадии нагрева при традиционных способах точечной сварки

4.2.1

Изменение параметров термодеформационных процессов при традиционных способах точечной сварки

4.2.2.

Особенности термодеформационных процессов при точечной сварке с обжатием периферийной зоны соединения

4.2.3.

Влияние режимов сварки на параметры термодеформационных процессов, протекающих в зоне формирования соединения

4.3.

Критерий оценки режимов контактной точечной сварки

5. Технологические аспекты получения качественных сварных
соединений

5.1.

Дефекты сварных соединений, причины и механизмы их
образования

5.1.1.

Непровары

5.1.2.

Выплески

Устойчивость процесса контактной точечной сварки

5.3.1.

Методика определения устойчивости процесса точечной сварки

5.3.2.

Регулирование устойчивости процесса точечной сварки

Глава 6. Программированные режимы традиционных способов точечной сварки

7. Программированные режимы способов точечной сварки с обжатием периферийной зоны соединения


ВВЕДЕНИЕ

Контактная точечная сварка (КТС) — это один из способов контактной сварки, который наиболее широко применяется в машиностроении, в особенности в массовом производстве. Так, например, в автомобилестроении около 70 % объема сварочных работ выполняется именно этим способом. Значительное применение КТС получила и в других отраслях: в тракторном и сельскохозяйственном машиностроении, при производстве пассажирских и товарных вагонов и других отраслях промышленности и строительства. Этому способствовали положительные особенности процесса КТС: незначительные остаточные деформации, высокая производительность, высокий уровень механизации и автоматизации, гибкость и универсальность технологического процесса, отсутствие вспомогательных сварочных материалов, высокая экологичность и культура производства.

Вместе с тем, описанных выше достоинств КТС становилось недостаточно по мере расширения использования КТС для получения неразъемных соединений в изделиях ответственного назначения из современных конструкционных материалов: низко- и среднелегированных, коррозионностойких, теплостойких и жаропрочных сталей и сплавов, алюминиевых, магниевых, титановых и других сплавов, например, в авиационной и космической промышленности, которые работают при повышенных температурах, в агрессивных средах, при динамических нагрузках. В этих случаях к качеству точечных сварных соединений предъявляются повышенные требования по надёжности и стабильности прочностных характеристик, уровню остаточных деформаций, а также, в ряде случаев, по гарантированному уровню надёжности полного отсутствия таких дефектов, как непровары и выплески.

Технологии традиционных способов КТС (к ним относят способы точечной сварки, при осуществлении которых детали сжимают токопроводящими электродами и в периоды сжатия, действия импульса тока и проковки соединений параметры режима сварки, как правило, не изменяют) к началу 70-х годов ХХ века достигли своего совершенства и практически исчерпали возможности своего развития. Они вполне удовлетворяли требованиям массового производства, но во многих случаях не могли обеспечить требуемый уровень качества при сварке изделий ответственного назначения. Поэтому в этот период и стали развиваться способы КТС с программированным изменением параметров режима (сварочного тока, усилия сжатия электродов) в период формирования соединений, которые позволяют управлять термодеформационными процессами, протекающими в зоне сварки. Они открывали новые возможности повышения качества получаемых точечных соединений.

В данной работе сделана попытка обобщить теоретические и технологические разработки способов КТС с программированным воздействием на зону формирования точечных сварных соединений.

1. Сущность И технологии традиционных способов контактной точечной сварки

Технологии электрической контактной точечной сварки за более чем вековой период своего развития (привилегия (патент) из Департамента торговли и мануфактур России на изобретение точечной сварки выдана русскому инженеру Н. Н. Бенардосу в 1887 г.) достигли весьма высокого уровня совершенства и отличаются большим разнообразием способов их практического осуществления. Для создания наиболее оптимальных условий формирования точечных соединений при сварке конкретных деталей из различных материалов, отличающихся теплофизическими свойствами, применяют разные виды тока (переменный, постоянный, низкочастотный и др.) и разные циклы параметров режимов сварки, отличающиеся параметрами усилия сжатия электродов и сварочного тока в разные периоды процесса сварки. Ниже рассмотрены сущность и наиболее распространенные технологии двусторонней точечной сварки, общая схема формирования точечных сварных соединений и основные термодеформационные процессы, которые протекают в зоне сварки и наиболее значимо влияют на конечное качество получаемых сварных соединений.

1.1 . Двусторонняя точечная сварка, ее разновидности и основные параметры точечных сварных соединений


Электрическая контактная точечная сварка (КТС) — это способ контактной сварки (рис. 1.1), при котором свариваемые детали 1, расположенные перед сваркой внахлестку, сжимают токопроводящими электродами 2 и 3 сварочным усилием F СВ , а затем от источника питания ИП (например, трансформатора) пропускают импульс сварочного тока I СВ длительностью t СВ и таким образом сваривают их по отдельным участкам касания, называемым сварными точками 4 [1, 2].

При КТС для образования физического контакта между свариваемыми поверхностями и их активации в месте формирования соединения затрачивается тепловая и механическая энергия, которая подводится извне сжатием деталей электродами и пропусканием через зону сварки импульса сварочного тока [3, 4]. Наиболее надежным способом, который обеспечивает образование физического контакта и способствует возникновению межатомарных связей в зоне формирования соединений, является расплавление металла в приповерхностных слоях деталей с образованием общего его объема. Поэтому в технологии КТС, за редким исключением [5, 6], принято, что необходимым условием образования точечного сварного соединения является образование общей зоны расплавленного металла соединяемых деталей . В специальной литературе по сварке общую зону расплавленного металла свариваемых деталей обычно называют «литое ядро», «ядро расплавленного металла» или просто «ядро» [2...4, 7…17].

Параметрами, которые наиболее значимо влияют на процесс формирования точечного сварного соединения и различают между собой все многообразие известных способов двусторонней точечной сварки, являются род сварочного тока и форма его импульса. Это их различие (рис. 1.2) обусловлено в основном особенностями устройства силовых электрических контуров машин контактной точечной сварки [18, 19]. Поэтому способы КТС по роду сварочного тока и форме его импульса разделяют на следующие группы [2, 3, 15, 16]:

- контактная точечная сварка переменным током (рис. 1.2, а );

- низкочастотная контактная точечная сварка (током пониженной частоты монополярными или униполярными импульсами) (рис. 1.2, б );

- конденсаторная контактная точечная сварка (рис. 1.2, в );

- контактная точечная сварка постоянным током (рис. 1.2, г );

Каждая из этих групп способов КТС имеет свои особенности, преимущества и недостатки в технологическом и техническом аспектах. Кроме того, они различаются и экономической эффективностью [20, 21].

Точечное сварное соединение (рис. 1.3), поскольку сварку в подавляющем числе случаев осуществляют электродами с цилиндрической рабочей частью, обычно считают осесимметричным. Такое соединение (сварную точку (рис. 1.3, а )) приято характеризовать геометрическими параметрами в плоскости оси электродов, которые называют «конструктивными элементами соединения ». Кроме того, геометрическими параметрами характеризуют также и рабочие части электродов (рис. 1.3, б ). Основными из них, наиболее часто используемыми и в большинстве случаев регламентируемыми, являются параметры, которые описывают ядро расплавленного металла (диаметр и высота ядра, проплавление деталей), остаточные деформации деталей (глубина вмятин от электродов), а также рабочие поверхности электродов (диаметр плоской и радиус сферической).

Ядро расплавленного металла (рис. 1.3, а , б ) в большинстве случаев характеризуют его размерами: диаметром d Я в плоскости контакта


деталь-деталь (свариваемого контакта), а также его высотой h Я или проплавлением деталей А1 и А3 .. Последние определяют отдельно для каждой детали как отношение к толщине деталей s 1 и s 2 расстояний h 1 и h 2 от плоскости свариваемого контакта до границы зоны расплавленного металла
(см. рис. 1.1) и выражают обычно в процентах [2, 3, 14…16]:

%, %. (1.1)

При точечной сварке деталей одноточечные соединения применяют относительно редко. В подавляющем числе случаев точечной сварки осуществляют многоточечные соединения деталей (рис. 1.4). Последние выполняют в виде одного (рис. 1.4, а ) или нескольких (рис. 1.4, б ) рядов сварных точек, расположенных вдоль нахлестки деталей.


К основным конструктивным элементам, характеризующим многоточечные соединения, относят: ширину нахлёстки В , расстояние (шаг) между точками t Ш в ряду (в шве), расстояниями между осями швов b , а также расстоянием u между крайними осями швов и кромками листов.

Перечисленные выше конструктивные элементы сварных соединений существенно влияют как на процесс их формирования при КТС, так и на показатели качества готовых сварных соединений. Поэтому их допускаемые значения в подавляющем большинстве случаев регламентируются как в зарубежной [22], так и отечественной практике КТС, например, в ГОСТах [23], ОСТах, отраслевых технологических рекомендациях, стандартах предприятий [14].

Размеры ядра (его диаметр dЯ и высота h Я , а также проплавление деталей А1 и А2 ) наиболее значимо влияют на свойства точечного соединения, в первую очередь, на прочностные. Поэтому получение оптимальных значений этих параметров, которые должны находиться в пределах между минимальными и максимальными допускаемыми их значениями, и является основной задачей технологии точечной сварки.

Минимально допускаемые значения диаметра ядра определяются влиянием целого ряда факторов точечной сварки, например, таких как прочность сварных соединений и стабильность ее значений, устойчивость процесса КТС против образования выплесков, непроваров и др. Их значения зависят от толщины s свариваемых деталей [3, 10, 23]:

, (1.2)

. (1.3)

Они регламентированы ГОСТ 15878 – 79 (табл. 1.1). Эти табличные значения диаметров ядра выработаны многолетней практикой КТС.

Таблица 1.1

Минимально допускаемые значения диаметра ядра для соединений
группы А по ГОСТ 15878 – 79.

Толщина деталей,
s = s1

Минимальный диаметр ядра,
dЯ

Минимальная ширина нахлестки, В

Минимальный шаг между точками, tШ

алюминиевые, магниевые, медные сплавы

стали, титановые сплавы

алюминиевые, магниевые, медные сплавы

стали,

0,5

1,0

1,2

1,5

2,0

2,5

3,0

4,0

5,0

6,0

3

4

5

6

7

8

9

12

14

16

10

14

16

18

20

22

16

32

40

50

8

11

13

14

17

19

21

28

34

42

10

15

17

20

25

30

35

45

55

65

Величина проплавления деталей А1 и А2 в большинстве случаев должна находиться в пределах 20…80 % от толщины деталей. На титановых сплавах верхний предел увеличивают до 95 %, а на магниевых — уменьшают до 70 %.

Минимально допускаемое расстояние между осями швов b устанавливают из условия отсутствия влияния шунтирования тока на процесс КТС. Его выбирают таким, чтобы расстояние до соседних точек в любом направлении, например t 1 , было не меньше минимально допускаемого шага между точками t Ш .

Минимальную ширину нахлестки В , а также минимальное расстояние от центра точки или оси шва до края нахлестки u устанавливают по условию отсутствия объемных пластических деформаций металла на краю нахлестки. Причем минимальные значения и должны быть не менее 0,5В .

Глубина вмятин от электродов с1 и с2 не должна превышать 20 % от толщины деталей, поскольку они ухудшают внешний вид соединений и обычно уменьшают их прочность. Только при сварке деталей неравных толщин или в труднодоступных местах её допускают увеличивать до 30 % [2, 3, 15, 16].

Широкое применение в современном машиностроении точечных сварных соединений вместо клепаных, в том числе при изготовлении узлов летательных аппаратов, обусловлено не только преимуществами их технико-экономических показателей [22, 23], но и конкурентной способностью эксплуатационных свойств [2, 3, 9, 11, 15, 17]. Прежде всего, это относится к их прочности, которую в основном определяют размеры ядра расплавленного металла в совокупности с другими конструктивными элементами сварных соединений, причем в первую очередь — к прочности динамической [24...29]. Именно поэтому соответствие полученных при КТС размеров ядра заданным оптимальным значениям, в первую очередь его диаметра и проплавления деталей, является одним из основных критериев качества и надёжности соединений деталей, выполненных контактной точечной сваркой [10, 11, 14, 15].

1.2 . Основные технологические приемы контактной точечной сварки

При КТС энергетическое воздействие на металл зоны формирования соединения осуществляют импульсом тока, а силовое – сжатием деталей электродными устройствами в месте сварки. Количественно это воздействие характеризуют параметрами режима сварки и представляют обычно в виде циклограмм их изменения во времени. Значения параметров тока и усилия сжатия электродов, характер их изменения в отдельные периоды цикла сварки определяют параметры термодеформационных процессов, протекающих в зоне сварки, и таким образом влияют на устойчивость процесса формирования соединения, в частности против образования непроваров и выплесков, на размеры ядра, местные и общие остаточные деформации и, в конечном итоге, на эксплуатационные свойства сварного соединения. Этим в основном и различаются отдельные способы точечной сварки, наиболее распространенные из которых рассмотрены ниже.

1.2.1. Термодеформационные процессы, протекающие в зоне сварки и общая схема формирования точечного сварного соединения

В общем случае для формирования сварных соединении деталей, в том числе и при контактной точечной сварке, необходимо образование физического контакта между соединяемыми их поверхностями, химических связей в нем и развитие релаксационных процессов в объемах металла зоны сварки. В каждой элементарной точке эти процессы идут последовательно, а по отношению ко всей соединяемой поверхности могут протекать одновременно. При КТС их зарождение и развитие обеспечивается комплексным тепловым и силовым воздействием на металл зоны формирования соединения [2, 3, 16, 30, 31].

Термодеформационные процессы, протекающие в зоне формирования точечного сварного соединения, в соответствии со значимостью их влияния на конечный результат сварки принято условно разделять на основные процессы и процессы сопутствующие [2, 3, 16].

К основным термодеформационным процессам относят процессы, без протекания которых формирование точечного сварного соединения в принципе невозможно. К ним относят, в частности, следующие:

- нагрев и расплавление металла проходящим током;

- образование общей зоны расплавленного металла (ядра) и его кристаллизацию на последней стадии формирования соединений;

- микроскопические деформации металла в контактах и макроскопические в зоне формирования соединения.

К сопутствующим термодеформационным процессам сварки относят процессы, которые не только не обязательны для формирования сварного соединения, но некоторые из них и нежелательны, так как ухудшают условия формирования соединения и конечные результаты сварки. При КТС они являются неизбежным следствием протекания в зоне сварки процессов основных. В частности, к сопутствующим процессам относят следующие:

- дилатацию металла в зоне формирования соединений;

- перемешивание жидкого металла в ядре и удаление окисных
пленок;

- воздействие термодеформационного цикла сварки на свойства металла в зоне сварки и прилегающей к ней области;

- образование остаточных напряжений и деформаций в деталях;

- массоперенос в контактах электрод – деталь.

Несмотря на изменение значимости влияния каждого из перечисленных выше основных термодеформационных процессов, в процессе сварки общая схема формирования соединения происходит по единой схеме. Поэтому цикл сварки во временной последовательности условно разделяют на отдельные этапы, в соответствии со значимостью влияния какого-либо из основных факторов в их период [3, 16]. По-видимому, цикл сварки во временной последовательности целесообразно разделить на следующие четыре этапа (рис. 1.5), которые отличаются не только значимостью влияния какого-либо из основных факторов на процесс формирования соединения, но и основными технологическими задачами, выполняемыми сочетанием параметров режима в этот период:

1-й этап — от начала сжатия деталей электродами усилием F Э до начала импульса тока IСВ ;

2-й этап — от начала импульса тока IСВ до начала расплавления металла в контакте деталь – деталь (до начала формирования ядра);

3-й этап — от начала формирования ядра диаметром dЯ в контакте деталь – деталь до окончания импульса сварочного тока IСВ ;


4-й этап — от окончания импульса сварочного тока IСВ до снятия усилия F Э сжатия деталей электродами.

На первом этапе сжатие деталей электродами вызывает микропластические деформации в контактах деталь-деталь и электрод-деталь, следствием которых является формирование механических и электрических контактов. Главная задача на этом этапе — это обеспечение стабильности параметров контактов, что является исходным условием устойчивого течения процесса сварки и получения стабильных размеров ядра.

На втором этапе включение тока приводит к нагреву металла в зоне сварки, который интенсифицирует процессы микропластических деформаций, разрушения окисных пленок, формирования механических и электрических контактов. Нагретый металл зоны сварки расширяется, деформируется преимущественно в зазор между деталями, вследствие чего в контакте деталь – деталь образуется рельеф (уплотняющий поясок). Это приводит к расхождению электродов Δ . Динамика увеличения уплотняющего пояска на этом этапе определяет изменение плотности тока в зоне сварки и скорость тепловыделения в ней. Главная задача на этом этапе — это обеспечение оптимальной скорости нагрева металла в зоне сварки.

На третьем этапе происходит расплавление металла в области контакта деталь-деталь, образование ядра и уплотняющего пояска вокруг него, который предотвращает выброс расплавленного металла. По мере прохождения тока продолжается нагрев металла в зоне сварки, ядро растет по диаметру и высоте, происходит перемешивание металла, удаление поверхностных пленок и образование металлических связей в жидкой фазе. Продолжаются процессы теплового расширения металла в зоне сварки и его пластической деформации. Главная задача на этом этапе — это обеспечение оптимальной степени макродеформаций металла в зоне сварки, которая бы обеспечивала оптимальную скорость нагрева металла в зоне сварки и предотвращала выброс расплавленного металла.

На четвёртом этапе происходит охлаждение металла в зоне сварки и его кристаллизация в ядре, параметры которого определяют эксплуатационные свойства точечного сварного соединения. При охлаждении металла уменьшается его объем, вследствие чего возникают остаточные напряжения и деформации. Главная задача на этом этапе — это обеспечение степени макродеформаций металла в зоне сварки, достаточной для компенсации усадки металла.

1.2.2. Технологические приемы традиционных способов контактной точечной сварки

Среди циклов традиционных способов КТС (рис. 1.6), по-видимому, наиболее распространенным является цикл изменения параметров режима (рис. 1.6, а ), предложенный еще Н. Н. Бенардосом. При сварке по этому циклу детали сжимают токопроводящими электродами (см. рис. 1.1) неизменным усилием F СВ и через определенное время сжатия t СЖ пропускают импульс сварочного тока заданной силы I СВ и длительности t СВ , а затем через определенное время проковки t ПР , достаточное для кристаллизации и охлаждения зоны сварки, усилие сжатия электродов снимают. Его технологические возможности до настоящего времени удовлетворяют требованиям практики КТС не только сварки деталей из малоуглеродистых сталей в автомобиле- и сельхозмашиностроении [10, 17], но и сварки некоторых специальных сталей и сплавов [9, 15].

С целью предотвращения образования в ядре дефектов усадочного характера (трещин, пор) при сварке деталей из материалов, склонных к их образованию, например, относительно толстых деталей или деталей, склонных к закалке, а также деталей из высокопрочных материалов, применяют цикл (рис. 1.6, б ), в котором при кристаллизации расплавленного металла в ядре и охлаждения зоны сварки (в период t ПР проковки) усилие сжатия электродов увеличивают (прикладывают ковочное усилие F К ). Этим увеличивают в ней степень пластической деформации металла, компенсирующей его усадку при кристаллизации и охлаждении.




Величину ковочного усилия F К [3]:

, (1.4)

и момент его приложения t К ( ) задают с учетом термодеформационных процессов, протекающих в зоне сварки, и увеличивают обычно монотонно с заданной скоростью, но иногда и ступенчато. И все же достичь поставленной цели только приложением F К не всегда удается, поскольку его величина ограничивается прочностью электродов и техническими возможностями машин точечной сварки [14...19, 32...37].

В технологии КТС известны и циклы (рис. 1.6, в ), при осуществлении которых в период проковки соединения t ПР усилие сжатия электродов не только не увеличивают, но даже и уменьшают [38]. Например, при сварке свинцовых деталей со стальными.

При сварке деталей из углеродистых и низколегированных сталей с целью предотвращения образования в соединении закалочных структур и трещин путем уменьшения скорости его охлаждения применяют цикл
(рис. 1.6, г ), в котором сжатие деталей электродами вообще прекращают одновременно с окончанием импульса сварочного тока [39]. Для решения этой же задачи, а также с целью улучшения условий проковки соединений и уменьшения требуемой величины ковочного усилия, а иногда для термообработки соединения в сварочных электродах применяют цикл, в котором после окончания импульса сварочного тока I СВ в период проковки соединения t ПР пропускают дополнительный подогревающий импульс тока I Д (рис. 1.6, д ). Дополнительный подогревающий импульс тока I Д , уменьшающий сопротивление деформации металла в зоне сварки, может применяться в сочетании с любой циклограммой изменения усилия сжатия электродов. Подогревающий ток пропускают обычно в виде отдельного дополнительного импульса I Д , но иногда и как модулированное продолжение импульса сварочного [3, 11, 15, 16, 40…46].

Для получения оптимальных значений начальных электрических сопротивлений в контактах, в особенности при сварке деталей из высокопрочных материалов или деталей с относительно невысоким качеством подготовки поверхностей, в практике точечной сварки применяют цикл (рис 1.6, е ), в котором перед импульсом сварочного тока в период сжатия деталей t СЖ производят их обжатие повышенным усилием сжатия электродов F 0 (усилием обжатия). Этот технологический прием используют и для предупреждения наружных и внутренних начальных выплесков, а также для вытеснения пластичных прослоек грунта, клея [3, 9, 11, 15, 16]. Величину усилия предварительного обжатия деталей обычно принимают равной величине ковочного усилия [3]:

. (1.5)

Причем, применение при КТС равных усилий обжатия и проковки соединения упрощает конструкцию приводов сварочных машин.

Однако в ряде случаев только предварительным обжатием деталей не удаётся получить оптимальные значения начальных электрических сопротивлений в контактах. В этом случае применяют цикл (рис 1.6, ж ), в котором металл в зоне сварки предварительно, перед сварочным импульсом I СВ , подогревают отдельным либо совмещенным со сварочным дополнительным подогревающим I П импульсом тока [3, 14, 15, 47…49].

Последние исследования процессов КТС показывают, что во многих случаях точечной сварки стабилизировать процесс формирования соединения можно интенсификацией микро- и макропластических деформаций металла в зоне сварки путем уменьшения его сопротивления пластической деформации на стадиях сжатия и проковки соединения. В таких случаях одном цикле рационально использовать и предварительный, и дополнительный подогревающие импульсы тока, в частности, даже при сварке деталей из легких сплавов [3, 50]. Подогревающие импульсы тока I П и I Д можно использовать в сочетании с любой циклограммой изменения усилия сжатия электродов (рис 1.6, з ). Для достижения указанных выше целей иногда используют цикл (рис. 1.6, и ), в котором до импульса сварочного тока и после его окончания, осуществляют колебания электродов с инфразвуковой, звуковой [51], или ультразвуковой [52, 53] частотой.

В ряде случаев, например, при сварке деталей из жаропрочных материалом, рационально применять даже цикл (рис 1.6, к ), в котором усилие сжатия электродов F Э во время t СВ действия импульса сварочного тока уменьшают по определенной программе [54].

Кроме того, программированное изменение усилия сжатия электродов во время импульса сварочного тока позволяет повысить и энергетическую эффективность процесса КТС, а также его устойчивость против образования непроваров. Для достижения этих целей применяют циклы, в которых усилие сжатия электродов в процессе сварки изменяют. Причем, в процессе КТС усилие сжатия электродов чаще всего увеличивают от начального до конечного его значения. И осуществляют это ступенчато (рис. 1.6, л ) или монотонно (рис 1.5, м ) [10, 15, 18, 54...58].

Нагрев металла в зоне сварки осуществляют обычно одним импульсом сварочного тока и регулируют изменением его силы и длительности. Форму импульса тока при сварке на серийных машинах, как правило, не регулируют. Характер его нарастания и спада определяется естественным модулированием, зависящим от индуктивности вторичных контуров сварочных машин (рис 1.2). Это обусловлено ограниченными возможностями изменения силы сварочного тока путем фазового его регулирования при небольшой длительности импульсов и промышленной частоте тока 50 Гц. Только при сварке сталей на машинах переменного тока, иногда представляется возможным регулировать нарастание и спад импульса тока, а также регулировать спад тока при сварке деталей из легких сплавов, на низкочастотных машинах и машинах постоянного тока [2…4, 7...19].


1.2.3. Контактная точеная сварка с обжатием периферийной зоны
соединений

Выше было показано, что традиционные способы КТС отличаются весьма большим многообразием используемых технологических приемов. Несмотря на это уровень дефектности сварных точек в серийном производстве даже при изготовлении узлов летательных аппаратов, достигает
5 % [32]. В условиях точечной сварки в обычных отраслях машиностроения он еще выше. Это говорит о том, что традиционные способы практически исчерпали свои технологические возможности. В этой связи весьма перспективным направлением развития технологии КТС является совершенствование и разработка новых способов точечной сварки с целенаправленным программированным воздействием на процесс формирования соединения. Одним из таких перспективных способов КТС является так называемая «контактная точечная сварка с обжатием периферийной зоны соединений» [3, 16].

При контактной точечной сварке с обжатием периферийной зоны соединений (рис. 1.7) свариваемые детали сжимают токопроводящими электродами усилием F Э и прикладывают вокруг них обжимными втулками автономное дополнительное сжимающее усилие F 0 (усилие обжатия).


В основе способов КТС с обжатием периферийной зоны соединений лежит изобретенный в 1930 г. П. Н. Львовым специальный электрод

(рис. 1.8) [59]. Этот электрод (рис. 1.8, а ) содержит собственно токопроводящий электрод 2 и концентрично расположенный вокруг него силовой пуансон (обжимную втулку) 3, соединенный с приводом обжатия, которым служит упругий элемент 7.

Данное электродное устройство позволяет общее усилие сжатия деталей F СВ , которое задают приводом сварочной машины, разделить на две его составляющих. Одна его часть F Э (см. рис. 1.7, а ), как и при традиционных способах КТС, сжимает свариваемые детали посредством токопроводящих электродов в центральной части зоны формирования соединения (над ядром). Другая же его часть F 0 — посредством силовых пунсонов обжимает свариваемые детали в периферийной ее области (в области уплотняющего пояска). Таким образом, в силу конструктивных особенностей данное электродное устройство предопределяет основные признаки способа КТС с обжатием периферийной зоны соединений в области уплотняющего пояска [16, 60], при котором в любой момент соотношение усилий определяется следующей зависимостью (см. рис. 1.7, б ):

. (1.6)

Проведенные за истекший период исследования показали высокую эффективность данного способа КТС по предотвращению выплесков и непроваров. Устойчивость процесса формирования соединения против образования выплесков повышается вследствие увеличения усилия сжатия деталей в области уплотняющего пояска [3, 16, 61]. Устойчивость же процесса сварки против образования непроваров можно повысить вследствие уменьшения вероятности образования выплесков при обжатии периферии соединения, проводя сварку на более жестких режимах [3, 16]. Кроме того, обжатие периферийной зоны соединений позволяет предотвращать дефекты усадочного характера (трещины, поры) [62], уменьшить глубину вмятин от электродов, зазоры между деталями в нахлестке и ее ширину [3, 16]. Применение этого способа КТС позволяет также увеличить прочность соединений, в том числе и динамическую, путем прогиба деталей в направлении оси электродов до начала импульса тока [63], обжатием во время его действия [16] или же проковкой периферии соединения на стадии охлаждения зоны сварки [64].

Наряду с выявлением технологических возможностей способа КТС с обжатием периферийной зоны соединений совершенствовались и конструкции электродных устройств для их осуществления. В результате был разработан ряд электродных устройств (рис 1.8), отличающихся в основном конструкциями приводов усилий на электроде или обжимной втулке.

Весьма привлекательной, позволяющей получить практически любую программу изменения усилия обжатия F0 , кажется конструкция устройства (рис. 1.8, б ) с электромагнитным приводом 6 усилия на обжимной втулке 3 [65]. Однако в нем усилие F0 зависит от осевого смещения втулки 3 относительно токопроводящего электрода 2, что уменьшает стабильность усилия обжатия вследствие отклонений глубины вдавливания электрода в поверхности детали 1. Кроме того, при современных токопроводящих материалах электромагнитный привод должен иметь катушку значительных геометрических размеров, чтобы получить требуемые усилия обжатия ( ). Это затрудняет использование данного электродного устройства в практике КТС.

Следует отметить, что конструкции электродных устройств с упругими элементами в приводах усилия на обжимной втулке F0 (рис. 1.8, а ) или усилия на токопроводящем электроде FЭ (рис. 1.8, в ) проработаны более глубоко. В них требуемые усилия обеспечиваются путем деформации упругих элементов 7 или 8 на заранее установленную величину h при сжатии деталей. В первой конструкции таких электродных устройств [59, 66…68] усилие FЭ на электроде 2 задается приводом машины посредством силового элемента 5, а на обжимной втулке 3 — упругим элементом 7 (рис. 1.8, а ). Во второй же конструкции (рис. 1.8, в ) наоборот — привод машины 5 задает усилие обжатия F0 на обжимной втулке, а на токопроводящем электроде 2 усилие FЭ задается упругим элементом 8 [69].

Несмотря на некоторые конструктивные различия, эти электродные устройства имеют одинаковые преимущества (относительно простую конструкцию и малые габаритные размеры) и общий недостаток — усилия F0 (рис. 1.8, а ) или FЭ (см. рис. 1.8, в ) также зависит от перемещения обжимной втулки 3 относительно токопроводящего электрода 2. Это приводит к их отклонениям при сварке вследствие вдавливания токопроводящих электродов 2 в поверхности деталей 1. Кроме того, конструкции этих электродов не вполне удовлетворяют требованиям по технологичности, так как очень трудоемка настройка электрода на требуемое при сварке усилие обжатия вследствие высокой жесткости упругого элемента.

По-видимому, их использование возможно при сварке деталей малых толщин, когда величины усилий FЭ и F0 , а следовательно и жесткость упругих элементов, а также взаимные осевые смещения электрода и втулки в процессе формирования соединений относительно малы. В этом случае отклонения силового воздействия на детали от заданных значений в меньшей степени влияет на качественные показатели соединений ввиду кратковременности цикла сварки и инерционности механических процессов в силовых приводах сварочных машин.

Наиболее приемлемым для сварки деталей малых, средних и больших толщин является электродное устройство с гидравлическим приводом [70]. В нем (рис. 1.8, г ) усилие F0 на обжимной втулке 3 задается приводом машины посредством силового элемента 5, а усилие FЭ на токопроводящем электроде 2 — гидроприводом 9. Достоинством данной конструкции является то, что гидропривод можно расположить в верхней части электрододержателя 4 и уменьшить габариты рабочей части устройства. Но это усложняет подвод тока к подвижному электрододержателю 4. Такой привод позволяет получать стабильные усилия, независящие от осевого смещения обжимной втулки относительно электрода. Здесь следует отметить, что для него не разработаны специализированные устройства, которые задавали бы требуемое для КТС давление рабочей жидкости.

Широкому использованию в условиях реального производства способов КТС с обжатием периферийной зоны соединения, несмотря на их высокую технологическую эффективность, препятствуют рабочие характеристики электродных устройств, в первую очередь относительно низкая стойкость токопроводящего электрода 2. Это обусловлено тем, что обжатие деталей в области уплотняющего пояска диаметром dП вызывает необходимость уменьшения внутреннего диаметра dВВ обжимной втулки 3 и, следовательно, наружного диаметра DЭ рабочей части электрода 2 до значений, близких к диаметру ядра dЯ , которые значительно меньше стандартных. Поэтому увеличивается уровень сжимающих напряжений в рабочей части электрода 2, ухудшается температурный режим его работы из-за повышения плотности сварочного тока и затрудненного охлаждения. В результате интенсифицируются пластические деформации в приконтактных объемах металла электродов и процессы взаимодействия металлов в контактах электрод-деталь.

Таким образом, формирование точечных сварных соединений как при традиционных способах сварки, так и при сварке с обжатием периферийной зоны соединений происходит по единой схеме и способы КТС различаются между собой в основном количественными параметрами термодеформационных процессов, протекающих в зоне сварки на разных этапах формирования соединения, которые определяются внешним энергетическим и силовым воздействием на металл зоны сварки (параметрами режима). Процесс КТС с обжатием периферийной зоны соединений предоставляет больше возможностей силового воздействия на зону сварки и потому весьма перспективен в технологическом плане.

1.3 . Параметры режимов — факторы регулирования процесса точечной сварки

Режимы точечной сварки конкретного соединения (марка металла и сочетание толщин деталей) определяются совокупностью параметров, из которых основными являются: сила I СВ импульса сварочного тока; длительность t СВ импульса сварочного тока (время сварки); усилие сжатия электродов F СВ ; форма и размеры рабочих поверхностей электродов (d Э — при плоской и R Э — при сферической).

Режимы КТС принято подразделять на два типа: «жесткие» режимы, характеризующиеся малым t СВ и большим I СВ , и «мягкие» режимы с относительно большим t СВ и малым I СВ [2…4, 7...11, 13…17].

Известны предложения, по которым можно количественно оценивать жесткость режимов, например, по отношению отдельных параметров режима КТС: , по показателям, представляющим собой различные интерпретации критерия Фурье [71, 72], среди которых наиболее распространен критерий А.С. Гельмана [10]:

, (1.7)

где s — толщина свариваемых деталей; a — коэффициент температуропроводности их материала;

а также по критерию технологического подобия [13]:

, (1.8)

где Q Н — энергия, выделившаяся в объеме ядра; Q М — тепловые потери в массу свариваемых деталей; ρПЛ — удельное электрическое сопротивление металла при температуре плавления ТПЛ ; d Я и h Я — диаметр и высота ядра расплавленного металла; σТ предел текучести свариваемого металла в холодном состоянии; F Э усилие сжатия электродов. a — коэффициент теплопроводности; γ — плотность; cm — удельная массовая теплоемкость.

При увеличении жесткости режимов увеличивается мощность источников теплоты и уменьшается роль теплоотвода в формировании температурного поля, вследствие чего увеличивается проплавление деталей. Вместе с этим возрастает и склонность процесса КТС к образованию выплесков. Поэтому при сварке на жестких режимах применяют большие усилия сжатия электродов, чем при сварке на мягких режимах. [3, 15]

Энергетическое и силовое воздействие на металл зоны формирования соединения при КТС обеспечивается конкретным сочетанием параметров режима. При этом изменение каждого из них приводит к интенсификации или, наоборот, подавлению отдельных термодеформационных процессов, протекающих на отдельных или всех этапах процесса сварки. В конечном итоге, это сказывается на устойчивости процесса формирования соединения и размерах ядра (рис. 1.9).

1.3.1. Время сварки

В теории и практике КТС под термином «время сварки» понимается длительность t СВ импульса сварочного тока I СВ . При неизменной силе сварочного тока I СВ время сварки t СВ определяет количество теплоты Q ЭЭ , которое в этом случае выделяется в зоне формирования соединения пропорционально длительности импульса тока. Поэтому с увеличением времени сварки растет проплавление деталей А и, в большей мере, диаметр d Я ядра расплавленного металла (рис. 1.9, а ).

Вместе с этим при увеличении t СВ возрастает и влияние теплоотвода на характер распределения температуры в зоне сварки, которое сопровождается большим разогревом деталей и увеличением деформаций. Кроме того, при увеличении t СВ все большая часть Q ЭЭ отводится в окружающий зону сварки металл Q 2 и в электроды Q 3 , что приводит к уменьшению энергетического КПД процесса КТС (см. п. 2.4). При некотором t СВ может наступить состояние теплового равновесия, при котором вся выделившаяся теплота отводится из зоны сварки, то есть , а количество теплоты в зоне сварки Q 1 не изменяется. Это приводит к тому, что ядро (А и d Я ) расплавленного металла перестаёт расти. Следовательно, увеличение t СВ дальше момента теплового равновесия и энергетически, и технологически нецелесообразно потому, что ни к чему кроме увеличения разогрева деталей не приводит.


1.3.2. Сила сварочного тока

Сила сварочного тока I СВ является одним из основных параметров режима КТС, поскольку при неизменной длительности его импульса t СВ определяет не только количество энергии, выделяющейся в зоне сварки, но и, что наиболее важно для процесса формирования соединения, градиент её увеличения по времени. Вследствие этого именно сила сварочного тока определяет скорость нагрева металла в зоне формирования соединения.

В ряде случаев сварки, в особенности при малом расстоянии (шаге) между сварными точками, сила сварочного тока I СВ , т. е. тока который протекает через зону формирования соединения и определяет тепловыделение в ней, и сила тока, который протекает во вторичном контуре сварочной машины I 2 , могут различаться между собой. Причиной этого может являться ток шунтирования I Ш , который протекает вне зоны сварки, в частности, через ранее сваренные точки (рис. 1.10) или контакты деталь-деталь, расположенные вне зоны формирования соединения, например, при точечной сварке с обжатием периферийной зоны соединения. Таким образом, значение вторичного тока сварочной машины I 2 зависит от сварочного тока I СВ и тока шунтирования I Ш :

(1.9)

Ток шунтирования . Зона проводимости тока шунтирования представляет собой электрическую цепь с сопротивлением r Ш , параллельную электрической цепи зоны сварки с сопротивлением r ЭЭ . Вследствие этого силу тока шунтирования можно вычислить по формуле [3]:

, (1.10)

где — электрическое сопротивление шунтирующей ветви; ρ — удельное электрическое сопротивление металла свариваемых деталей;
k Э — коэффициент ( );
s — толщина детали; b ПР — ширина шунта, приведенная с учётом растекания тока и равная ; d П и d Ш — диаметры уплотняющего пояска и шунтирующего контакта соответственно.

Сварочный ток. От силы сварочного тока размеры ядра расплавленного металла зависят в наибольшей степени (рис. 1.9, б ). С увеличением I СВ проплавление деталей А и диаметр ядра d Я растут почти прямо пропорционально изменению I СВ .

Силу сварочного тока I СВ , по той же причине, что и t СВ , пока определяют только ориентировочно по технологическим рекомендациям или по эмпирическим зависимостям [2…4, 7…11, 13, 15…17]. В отличие от t СВ , для определения которого расчетные методики вообще отсутствуют, для определения I СВ в теории КТС предложено много самых разнообразных зависимостей, к сожалению, не отличающихся высокой точностью и универсальностью, например, зависимостей следующего вида [73...76]:

; ;

; ,

где s — толщина деталей; d Э — диаметр рабочей поверхности электрода;
ki – опытный коэффициент; θ — температура плавления (с учетом скрытой теплоты плавления); ρ и λ — удельное электрическое сопротивление и коэффициент теплопроводности; d Т — диаметр ядра (см); ρТ — удельное электрическое сопротивление металла в момент его плавления (мкОм/см).

В практике традиционных способов КТС для сварочного импульса, длительностью t СВ , усредненную силу сварочного тока I СВ чаще всего приближенно рассчитывают по следующей зависимости, которая получена из общеизвестного закона Джоуля – Ленца [8…11, 16]:

, [3] (1.11)

где Q ЭЭ — количество теплоты, выделяющееся в зоне сварки, которое требуется для образования сварного соединения заданных размеров (величина Q ЭЭ определяется по уравнению теплового баланса (см. ниже п. 2.4.3));
mr — коэффициент, который учитывает изменение сопротивления зоны сварки r ЭЭ в процессе формирования соединения (для низкоуглеродистых сталей он равен , для алюминиевых и магниевых сплавов — , для коррозионно-стойких сталей — , для сплавов титана — ; r ДК — электрическое сопротивление деталей в конце сварки (определение r ДК см. ниже п. 2.3.3).

1.3.3 . Усилие сжатия электродов

Усилие сжатия электродов (сварочное усилие) F СВ — один из важнейших параметров режима КТС, который оказывает влияние на все основные процессы, ответственные за формирование соединения, в частности, на микро- и макропластические деформации, на выделение и перераспределение теплоты, на охлаждение металла в зоне сварки и кристаллизацию его в ядре.

С увеличением F СВ увеличиваются пластические деформации металла в зоне сварки и площади контактов, уменьшается плотность тока в них, уменьшается электрическое сопротивление участка электрод–электрод и стабилизируется его величина. Поэтому при постоянстве остальных параметров режима увеличение F СВ вызывает уменьшение размеров ядра
(рис. 1.9, в ), прочности сварных точек при одновременном понижении и их стабильности. Если же увеличение F СВ сопровождается таким увеличением I СВ или t СВ , что размеры ядра остаются неизменными, то с ростом величины сварочного усилия прочность точек возрастает и становится более стабильной. [10, 77…79]

Как и сварочный ток, сварочное усилие определяют в основном по эмпирическим зависимостям, предложенным для приближенного расчета или пересчета сварочного усилия и основанным на подобии процессов КТС. Методики пересчета F СВ исходят из подобия процессов формирования соединений при сварке деталей из одних и тех же металлов разных толщин. Все они, к сожалению, также не отличаются ни высокой точностью, ни универсальностью. В частности, для пересчетов и расчетов F СВ предложены следующие зависимости [10, 15, 73, 80...82]:

; ;

; ; ;

; ,

где F 0 — удельное сварочное усилие; d Я — диаметр ядра расплавленного металла с известным F СВ ; d Я — диаметр ядра, для которого рассчитывают F СВ ; P 0 — удельное давление, определяемое экспериментально; d Э — диаметр рабочей поверхности электрода; s — толщина деталей; k 1 и k 2 —коэффициенты, учитывающие сопротивление деформации металла и конструктивную жесткость изделия; σ 02 — условный предел текучести свариваемого металла при нормальной температуре; — предел текучести свариваемого металла при температуре 300о С;

1.3.4. Форма и размеры рабочих поверхностей электродов

Форма и размеры рабочих поверхностей электродов (рис. 1.3: d Э — при плоской и R Э — при сферической), контактирующие со свариваемыми деталями, существенно влияют на качество получаемых сварных соединений. Увеличение площади контакта электрод–деталь, например, из-за износа рабочей поверхности электродов приводят к уменьшению плотности тока и давления в зоне сварки, а, следовательно, к уменьшению размеров ядра и снижению качества готовых точечных соединений (рис. 1.9, г ).

Применяемая форма электродов зависит от свойств материала свариваемых деталей. Так, например, для сварки титановых, алюминиевых и магниевых сплавов, как правило, применяют электроды со сферическими рабочими поверхностями. Стали же, в основном сваривают электродами с плоской рабочей поверхностью.

Размеры рабочих поверхностей электродов в большинстве случаев выбирают исходя из толщины свариваемых деталей.

Радиус сферы электрода R Э определяют, ориентируясь на конечный диаметр отпечатка и допустимую глубину вмятины, которая не должна превышать 10 % от толщины детали [83]. Исходя из этого условия предложены следующие зависимости для определения минимального R Э MIN и максимального R Э MAX радиусов рабочих поверхностей электродов в зависимости от толщины s свариваемых деталей [84]:

.

Диаметры плоских рабочих поверхностей электродов выбирают с учетом диаметров ядра, которые в свою очередь задают по толщине деталей. Значения d Э определяют по следующим зависимостям [85, 86]:

, .

Однако в практике КТС размеры рабочих поверхностей электродов обычно не рассчитывают. Значения d Э и R Э , как правило, выбирают по технологическим рекомендациям (табл. 1.2), в которых они близки к значениям, рассчитанным по приведенным выше зависимостям. Окончательные значения t СВ , I СВ , F СВ и R Э или d Э определяют и корректируют на образцах технологической пробы [3, 15].

Поскольку приемлемые по точности для практики КТС методики оптимизации режимов сварки (сочетаний I СВ , t СВ и F СВ ) пока не разработаны параметры одного из них, как правило, время сварки t СВ , определяют ориентировочно по технологическим рекомендациям, основанным на экспериментальных исследованиях процессов КТС и опыте их практического использования в промышленности. После этого для принятого значения t СВ по приближенным методикам, определяют силу I СВ и усилие сжатия электродов F СВ [2…4, 7…11, 13, 15…17].

Таким образом, существующие расчетные методики определения основных параметров режима весьма не совершенны. У них можно отметить общий недостаток — они не отражают физической сущности процессов, протекающих при КТС, не являются универсальными и применимы только для тех ограниченных областей толщин и металлов, на основании результатов исследований которых они и получены. Они не могут использоваться для решения задач, связанных с программированным изменением термодеформационных процессов, протекающих при формировании точечных сварных соединений.

1.3.5 . Критерии подобия для определения режимов сварки

Выше, в п. 1.2.1 отмечалось, что, несмотря на изменение значимости влияния на отдельных этапах формирования соединения каждого из основных термодеформационных процессов, протекающих в зоне сварки, на процесс сварки общая схема формирования соединения происходит по единой схеме. При этом исследователями процесса КТС давно было подмечено, что при сварке деталей разных толщин параметры основных термодеформационных процессов изменяются по одинаковым закономерностям, то есть подобно. На основании результатов экспериментальных исследований рядом исследователей были разработаны основы теории подобия процессов КТС и предложен ряд критериев — безразмерных величин, математически описывающих это подобие [3, 4, 13, 16, 74…76, 87, 88].

Физические процессы подобны, если они описываются одним и тем же дифференциальным уравнением и имеют подобные начальные и граничные условия. Подобие выражается в том, что при определенных условиях в сходственных точках тел, т. е. в точках с одной и той же относительной координатой, например, в точках, расположенных в середине или на краю листа, достигаются одни и те же значения переменных параметров, в частности температуры или деформации.

По этим критериям, определяемым по моделям, рассчитывают масштабные коэффициенты для определения параметров процесса. Процессы точечной свирки деталей разной толщины могут быть подобны при равенстве критериев подобия, например, следующих [16]:

- критерий геометрического подобия

; (1.12)

- критерий гомохронности (подобия по времени — критерий Фурье)

; (1.13)

- критерий подобия тепловыделения

; (1.14)

- критерий подобия пластических деформаций

, (1.15)

где s — толщина деталей; d Я — диаметр ядра; I Д и t СВ — действующее значение сварочного тока и время его протекания; F СВ — сварочное усилие; с m , γ, ТПЛ , и σД — соответственно, массовая теплоёмкость, плотность, температура плавления и сопротивление деформации свариваемого металла.

Применение теории подобия позволяет по одному экспериментально определенному режиму с использованием критериев подобия рассчитать параметры режима сварки деталей других толщин. Значения критериев определяют по единичным опытам [3, 4, 15].

Однако часто расчеты по зависимостям (1.12…1.15) приводят к значительным погрешностям. Обусловлено это прежде всего тем, что в практике сварки не соблюдается критерий геометрического подобия
(см. табл. 1.1). Поэтому для приближенной оценки параметров режима в относительно малом диапазоне толщин (1…4 мм) пользуются рядом других, в основном эмпирических, соотношений, аналогичных по структуре указанным выше, например, [15].

Таким образом, различие способов точечной сварки определяется внешним силовым энергетическим и силовым воздействием на зону формирования соединения. Это воздействие влияет на параметры термодеформационных процессов, протекающих в зоне сварки, которые рассмотрены ниже, и определяющих качество получаемых соединений.

2. основные Процессы, протекающие при
контактной точечной сварке

Сварная точка является результатом сложных термодеформационных процессов, протекающих в зоне формирования соединения в течение цикла сварки. Некоторые из этих процессов протекают последовательно, а некоторые и параллельно. Параметры последних зависят не только от внешнего энергетического и силового воздействия на металла в зоне сварки, но и от сложного их взаимного влияния. Ниже рассмотрены закономерности протекания термодеформационных процессов, оказывающих наиболее значимое влияние на конечный результат сварки.

2.1. Сближение свариваемых деталей

Технологической операцией, которая первой выполняется в любом цикле КТС, является сближение свариваемых поверхностей до соприкосновения, поскольку собранные для сварки детали практически никогда плотно не прилегают между собой. Обусловлено это тем, что между свариваемыми деталями всегда имеются зазоры. Они являются следствием либо искривления деталей при выполнении технологических операций, которые предшествуют сварке, либо дефектов сборки деталей перед сваркой, или деформаций деталей непосредственно в процессе сварки предшествующих точек [3, 10, 11, 14…16].

В сближении свариваемых деталей до соприкосновения следует выделить два фактора, которые оказывают значимое влияние как на формирование начальных контактов, так и на процесс сварки в целом: геометрический фактор, который проявляется в искривлении деталей при их деформировании в процессе сближения, и силовой фактор, следствием влияния которого является отклонение усилия сжатия в контакте деталь–деталь от усилия сжатия электродов [14…16, 89… 91].

2.1.1. Деформирование свариваемых деталей при их сближении

Реальная деформация свариваемых деталей в процессе их сближения (рис. 2.1) представляет сложное сочетание признаков, близких как к чистому изгибу пластины (рис. 2.1, а ), так и к чистому ее прогибу по типу мембраны (рис. 2.1, д ). При этом переход от первого ее состояния ко второму происходит плавно (рис. 2.1, б...г ) по мере увеличения расстояния u от кромки нахлестки до центра электродов. Причем этот переход происходит тем быстрее (при меньшей величине u ), чем меньше расстояние t Ш до точек опоры вдоль нахлестки.

Наличие зазоров между деталями и операции их сближения до соприкосновения, которое приводит к сложному искривлению деталей, существенно изменяет как распределение напряжений в контактах, так и характер, протекающих в них микро- и макродеформаций. При отсутствии зазора (рис. 1.5, этап 1) можно допустить, что в контакте деталь-деталь деформируются две плоские поверхности, а при большом расстоянии от кромки листов до электродов (рис. 2.1, д ) — две сферические поверхности. В практике же сварки в основном встречаются промежуточные более сложные, несимметричные виды деформирования свариваемых деталей при их сближении (рис. 2.1, б...в ) [91].


Сложное искривление деталей при их сближении приводит как к уменьшению размеров ядра, так и к искажению его формы (рис. 2.2). Основной причиной этого является изменение формы контакта (рис. 2.3).

Исследования влияния величины зазора δ , шага между точками t =2 t Ш , расстояния от кромки нахлестки u и F СВ на величину и форму начального контакта выявили сложную их зависимость от перечисленных выше факторов. При этом измерение контурной площади контакта производили по известной методике угольных плёнок [92…94].

Форма контакта оценивалась коэффициентом формы k Ф , который характеризует отклонение формы контакта от окружности, т. е. эллипсоидность контакта. В этом случае реальный контакт принимается в форме эллипса, в котором взаимно перпендикулярные наибольшее и наименьшие значения диаметров контакта принимаются равными наибольшей и наименьшей 2 b оси эллипса (рис. 2.3). Эти оси сравниваются с диаметром d 0 условной окружности, площадь которой равна площади эллипса. В этом случае коэффициент формы контакта определяется по зависимости

. (2.1)


Очевидно, что коэффициент формы контакта показывает относительное отклонение формы контакта от окружности. Во всех случаях прогиба деталей при наличии зазора между ними контакт вытягивается вдоль оси, перпендикулярной линии края нахлестки (рис. 2.4).

Увеличение расстояния от края листа u при постоянстве остальных параметров приводит к уменьшению контурной площади сварочного контакта S К относительно ее величины при отсутствии зазора S 0 (S К /S 0 ) и уменьшению коэффициента её формы k Ф , т. е. его эллипсоидности
(рис. 2.4, а ). Это объясняется плавным переходом вида деформации детали


от изгиба к прогибу по типу мембраны.

Увеличение расстояния между точками t приводит к увеличению контурной площади контакта и увеличению искажения его формы (рис. 2.4, б ). Причем увеличение k Ф происходит до некоторого значения t , зависящего от величины зазора δ , а затем с увеличением t эллипсоидность контакта k Ф уменьшается. Это также объясняется изменением вида деформации деталей в контакте. Так, увеличение S К при уменьшении u и увеличении t можно объяснить увеличением усилия сжатия F в площади контакта, так как усилие, которое затрачивается на деформацию деталей при их сближении при таком изменении t и u уменьшается. Уменьшение же k Ф при увеличении u объясняется переходом от изгиба детали в месте сжатия к ее прогибу по типу мембраны. Начальное увеличение k Ф при увеличении t , наоборот, обусловлено переходом от прогиба детали по типу мембраны к ее изгибу, а дальнейшее уменьшение k Ф обусловлено уменьшением искривления деталей при увеличении t .

При увеличении зазора δ (рис. 2.4, в ) площадь контакта S К вначале уменьшается, что можно объяснить уменьшением усилия в площади контакта, а затем резко увеличивается вплоть до первоначальных размеров. Последнее обусловлено тем, что при достижении зазором некоторой величины δ , которое зависит от конкретного сочетания значений t и u , происходит резкий переход от изгиба детали к её прогибу по типу мембраны. Дальнейшее же увеличение забора приводит к монотонному уменьшению площади контакта, причиной чего является уменьшение усилия сжатия в площади контакта. Эллипсоидность контакта при увеличении зазора вначале увеличивается, а затем монотонно уменьшается. Это объясняется описанным выше изменением вида деформации деталей. Причем, положение точек перегиба (δ = 2…2,5 мм , и t = 100…125 мм ) на кривых изменения S К /S 0 и k Ф не является постоянным, а изменяется при изменении сочетаний значений t , δ и F .

Увеличение усилия F сжатия деталей (рис. 2.4, г ) во всех случаях приводит к монотонному увеличению площади контакта деталь–деталь, обусловленному увеличением давления в его площади. При этом монотонно уменьшается и искажение формы контакта.

Таким образом, контурная площадь контакта деталь–деталь всегда уменьшается при наличии зазора между ними, а искажение её формы зависит от конкретных сочетаний расстояния между точками и расстояния до кромки нахлёстки, а также значений зазора и усилия сжатия деталей. При величинах зазоров, встречающихся в практике КТС, искажение формы контакта однозначно увеличивается с увеличением расстояния между точками и уменьшением расстояния до кромки нахлёстки.

2.1.2. Влияние деформирования деталей на усилие сжатия
в свариваемом контакте

Из силовой схемы двусторонней точечной сварки (см. рис.1.1) следует, что усилие сжатия в контактах электрод–деталь и деталь–деталь равны усилию сжатия деталей электродами. Однако это всегда справедливо только для контактов электрод–деталь. Что же касается усилия сжатия в контакте деталь–деталь, то во многих случаях сварки оно отличается от усилия сжатия деталей электродами. И причиной этого являются зазоры, которые приводят к тому, что некоторая часть усилия сжатия электродов (в дальнейшем будем обозначать ее — F Д ) затрачивается на деформирование свариваемых деталей при их сближении до соприкосновения. Вследствие этого усилие в площади свариваемого контакта FC меньше усилия сжатия электродов F Э на величину F Д .

Оценка величины отклонения FC от F Э важна не только для формирования начальных контактов, а для всего процесса формирования соединений при КТС. Так, устойчивость процесса формирования соединений против образования выплесков при традиционных способах сварки связывают, в частности, с наличием зазоров между свариваемыми деталями. При этом основной причиной образования выплесков при наличии зазоров считают значительное уменьшение усилия сжатия деталей в свариваемом контакте, несмотря на то, что величину зазоров при КТС жестко регламентируют (табл. 2.1) [10, 11, 91, 95].

Очевидно, что такие допуски, в особенности при сборке крупногабаритных изделий, например, при сборке обечаек диаметром в несколько метров с перегородками или набором, выдержать весьма проблематично. Такие ограничения, несомненно, удорожают технологию сборки и сварки. При этом, конкретные результаты исследований, которые бы установили степень влияния F Д на отклонение F С от F Э в процессе КТС и тем самым обосновали бы такое объяснение причин повышенной склонности процесса сварки к образованию выплесков и такие жесткие допуски на величину зазоров, очень немногочисленны.

Таблица 2.1

Допускаемая величина зазоров при КТС

Длина
участка

(мм)

Толщина более тонкой детали — s , мм

0,3 ≤ s < 1

1 ≤ s < 1,5

1,5 ≤ s < 2,5

s ≥ 2,5

Допускаемая величина зазоров δ , мм

100

0,5

0,4

0,3

0,2

200

1,0

0,8

0,6

0,4

300

1,5

1,2

0,9

0,6

По-видимому, наименее трудоемким было бы расчетное определение величины F Д , например, решением известного уравнения С. Жермен – Лагранжа, описывающего прогиб пластинки [96],

, (2.2)

где w – величина прогиба пластинки; x и y – координаты; q – внешняя нагрузка; D – цилиндрическая жесткость листа, равная

;

здесь E – модуль упругости; s – толщина листа; μ – коэффициент Пуассона.

Однако точное решение уравнения (2.2) даже для идеализированных граничных условий представляет большие трудности и, например, по мнению автора работы [97], не всегда оправдано. Кроме того, аналитическое определение величины F Д затрудняется еще и тем, что схема закрепления деталей при точечной сварке, например, посредством уже сваренных точек весьма неопределенна. Она не имеет близких аналогов среди идеализированных схем закрепления пластинок в известных [96…98] аналитических решениях этой задачи.

В экспериментальных исследованиях силового взаимодействия деталей при наличии зазоров [91, 99, 100], величина усилия F Д , необходимая для сближения свариваемых деталей, определялась как функция комплексного влияния ряда технологических факторов точечной сварки (рис. 2.5):

F Д = F(t, t* , u, α, δ , s, R Э ),


где t расстояние между сваренными точками; t * расстояние до соседних сваренных точек; u расстояние от кромки листа до центра свариваемой точки, которое, как правило, равно половине ширины В нахлестки; α угол раскрытия зазора в нахлестке; δ – величина зазора в месте сварки; s толщина деталей; R Э радиус сферы рабочей поверхности электродов.

Так как при точечной сварке зона нагрева ограничена и составляет относительно небольшую часть зоны упругопластической и упругой деформации деталей при их сближении, то считается, что усилие прогиба деталей в процессе сварки не изменяется [95]. Такое допущение позволяет проводить эксперименты по определению F Д на холодных образцах вне сварочной машины.

Моделирование зазоров производилось по известной методике, показанной на (рис. 2.6). В этом случае образцы 1 в местах имитации уже сваренных точек сжимались специальными струбцинами 2 усилием 2…8 кН, которое вполне обеспечивало жесткое закрепление образцов толщиной 1…4 мм при их деформировании электродами в месте сварки (рис. 2.6, а ). Величина зазора δ , а также угол α раскрытия зазора в нахлестке устанавливались прокладками 3. Кроме того, зазоры моделировали и по известной методике [95], в соответствии с которой образцы сваривали через размерные прокладки (рис. 2.6, б ).


Деформация образцов производилась на экспериментальной установке изготовленной на базе разрывной машины УММ-5 (рис. 2.7).

В ней верхний 1 и нижний 2 электрододержатели с установленными в них электродами закреплены в губках разрывной машины 3 и 4. На нижнем электрододержателе 2 жестко закреплена направляющая скоба 5, в направляющей 6 которой верхний электрододержатель 1 установлен с возможностью осевого перемещения. На кронштейне 7, жестко закрепленном на верхнем электрододержателе 1, установлен индикатор перемещения часового типа 8, установка нуля на котором производится регулировочным винтом 9. Деформируемые детали 10 помещаются между электродами перпендикулярно их оси. Поддерживающее приспособление 11 служит для фиксации пространственного положения деформируемых деталей.

Прогиб ω деформируемых деталей 10 измерялся с точностью ± 0,005 мм по сближению h электродов 1 и 2, а величина деформирующего усилия измерялась по шкале разрывной машины с точностью ± 10 Н. Погрешность Δ h измерения сближения деталей h учитывалась как среднестатистическая поправка. Она появляется из-за деформации элементов конструкции установки при нагружении, внецентренного расположения индикатора перемещения и вдавливания электродов в детали. Величина погрешности Δ h , которую определяли при сжатии одного листа, зависит от сжимающего усилия F Д (рис. 2.8). В итоге прогиб одного листа определялся по выражению

.

В экспериментах использовались образцы из сплавов АМц, Д16Т, АМг6 и МА2-1 размером 300 × 400 мм и толщиной 1...5 мм. Измерения деформирующего усилия F Д при сочетании факторов каждой ячейки производились три раза.

Для определения значимости влияния на величину F Д усилия сопротивления деталей их сближению до соприкосновения семи технологических факторов точечной сварки, которые показаны выше (рис. 2.5), планировались четырёхфакторный эксперимент в пяти уровнях (латинский квадрат) и трехфакторный эксперимент в семи уровнях по известным методикам [101…105].

При проведении четырехфакторного эксперимента в пяти уровнях осуществляли проверку значимости влияния на величину F Д факторов t * , α, R Э и s при неизменных значениях параметров t , δ и u . В результате получены отношения дисперсий факторов к дисперсии воспроизводимости, которые соотносятся с критерием Фишера, для условий данного эксперимента равным 3,9, следующим образом:

; ;

; .

Таким образом, из этого эксперимента следует, что влияние фактора Д, т. е. толщины деталей s , на величину F Д значимо, а влияние факторов А, В и С, т. е. t * , α и R Э — не значимо.

Проверку значимости влияния исследуемых факторов t , δ, u на величину F Д при неизменных значениях параметров t * , α, R Э и s осуществляли проведением трехфакторного эксперимента в семи уровнях. В результате также получены отношения дисперсий факторов к дисперсии воспроизводимости, которые соотносятся с критерием Фишера, который для условий данного эксперимента равен 3,9, следующим образом:

; ; .

Следовательно, все исследуемые в данном эксперименте факторы А, В и С, т. е. расстояние между сваренными точками t , величина зазора в месте сварки δ и расстояние от кромки листа до центра свариваемой точки u на величину F Д влияют значимо.

Степень влияния каждого из факторов на величину усилия сопротивления деталей деформации при их сближении F Д можно оценить по соотношению дисперсий. Тогда значимо влияющие на величину F Д факторы в порядке уменьшения их влияния располагаются следующим образом:

; ; ; .


Таким образом, из семи исследуемых технологических факторов значимо влияют на величину F Д только четыре вышеуказанных: толщина деталей s , расстояние между точками t , величина зазора в месте сварки δ и расстояние от кромки листа до центра свариваемой точки u (рис. 2.9). Влияние же расстояния до соседних сваренных точек t * , угла раскрытия зазора в нахлестке α и радиуса сферы рабочей поверхности электродов R Э в исследуемом диапазоне их изменения не значимо и находится в пределах статистического разброса измеренных значений F Д .

Зависимость F Д от значимо влияющих на его величину факторов однозначна при любых их сочетаниях. Величина F Д возрастает с увеличением s , δ и u , а также с уменьшением t (рис. 2.9). При этом градиент изменения F Д , характеризующий степень влияния каждого из факторов, согласуется с приведенным выше соотношением их дисперсий.

Для определения количественной зависимости между усилием сопротивления свариваемых деталей их прогибу F Д и значимо влияющими на его величину технологическими факторами КТС проводились однофакторные эксперименты по общеизвестной методике. Проведенными исследованиями установлено следующее.


С увеличением толщины деталей s характер увеличения усилия сопротивления свариваемых деталей их прогибу F Д практически не изменяется при всех сочетаниях остальных значимых факторов (рис. 2.10). Это же можно сказать и о характере уменьшения F Д при увеличении расстояния между сваренными точками t (рис. 2.11).

Влияние величины зазора δ и расстояния до кромки листа u на усилие сопротивления свариваемых деталей их прогибу F Д не столь однозначно (рис. 2.12). Так, при сжатии деталей у кромки нахлестки, т. е. при небольших значениях u (кривая 1 на рис. 2.12, а ) или при небольших отношениях δ /t (рис. 2.12, б ), что имеет место при малой величине зазора δ или большом шаге между точками t , увеличение F Д происходит практически пропорционально увеличению зазора. Это объясняется тем, что при таких условиях искривление деталей в месте сжатия небольшое, характер деформации листов близок к чистому изгибу и детали деформируются в упругой области (см. рис. 2.1).


При увеличении отношения δ /t деформирование листов переходит от их изгиба к прогибу по типу мембраны. Кривизна деталей в месте сжатия увеличивается и деформации могут выходить за пределы области упругих. В этом случае детали в области, прилегающей к месту сжатия, могут деформироваться упруго-пластически или даже пластически. В следствие этого прямо пропорциональная зависимость усилия F Д от величины зазора δ нарушается и рост величины F Д замедляется (рис. 2.12, а ).

С увеличением расстояния до кромки нахлестки u усилие сопротивления свариваемых деталей их прогибу увеличивается F Д (рис. 2.13). Однако в этом случае рост F Д происходит только до определенного соотношения между параметрами δ, u и t , а затем прекращается (рис. 2.13, а , б ).


Это объясняется тем (см. рис. 2.1), что по мере увеличения отношения u / t характер деформации деталей изменяется от состояния, близкого к чистому изгибу (при малых значениях отношений u / t и δ/ t ), к состоянию, близкому к чистому прогибу по типу мембраны (при увеличении отношений u / t и δ/ t ). При достижении отношением u / t определенного значения, которое зависит от соотношения s и δ , соответствующего переходу к прогибу по типу мембраны (рис. 2.1, г ), дальнейшее увеличение u на усилие F Д практически не влияет.

2.1.3. Экспериментально-расчетный метод определения усилия
деформирования деталей при их сближении

В связи с тем, что точно рассчитать величину усилия сопротивления свариваемых деталей их прогибу F Д решением уравнения (2.2) для условий точечной сварки представляет большие трудности, то для решения технологических задач рационально использовать приближенный экспериментально-расчетный метод определения при КТС усилий, необходимых для деформирования деталей до их соприкосновения [91, 100]. Его суть заключается в следующем.

Результаты экспериментальных измерений величины усилия сопротивления свариваемых деталей их прогибу F Д при различных сочетаниях технологических факторов значимо влияющих на его величину, приближенно можно описать следующими функциями, которые выражают зависимость F Д от каждого из них при неизменных значениях остальных:

,

где f 1 , f 2 , f 3 , f 4 – функции удовлетворяющие равенствам, которые представляется возможным определить по экспериментальным результатам деформирования свариваемых деталей при конкретных условиях точечной сварки; w – прогиб одной свариваемой детали.

Тогда можно предположить, что существует некая функция f 5 , которая удовлетворяет условию

. (2.3)

Толщину деформируемых деталей в зависимости (2.3) можно выразить через цилиндрическую их жесткость D по зависимости 2.2

,

а величину прогиба свариваемой детали w — через величину зазора δ

,

где D 1 , D 2 — цилиндрическая жесткость деталей, причем D 1 жесткость более тонкой детали.

С учетом приведенных выше зависимостей выражение (2.3) можно преобразовать к следующему виду:

, (2.4)

где f 6 – функция, удовлетворяющая равенству.

Эмпирическая зависимость (2.4) структурно согласуется с зависимостями, полученными при аналитических решениях задач прогиба пластинки для идеализированных граничных условий, например, в работе [97].

Анализом результатов экспериментальных исследований зависимости величины усилия сопротивления свариваемых деталей их прогибу F Д от значимо влияющих на неё технологических факторов точечной сварки установлено, что параметры u / t , (w /t ) и s влияют на величину F Д не однозначно. Так, в области упругих деформаций прогиба деталей значение функции f 6 в основном зависит только от параметра . В области же деформаций упругопластических — значения функции f 6 уменьшаются с увеличением параметра (w /t ) и толщины деталей s .

Определено, что с достаточной для приближенных технологических расчетов точностью функции f 6 может быть аппроксимирована зависимостью вида

,


где А и В – экспериментально определяемые коэффициенты, которые зависят, соответственно, от параметров (u /t ) — и от параметров (w /t ) и s (рис. 2.14).

Тогда, с учетом сказанного выше, зависимость (2.4) для расчетного определения величины усилия F Д сопротивления свариваемых деталей их прогибу можно преобразовать к следующему окончательному виду

, (2.5)

где δ — величина зазора в месте сжатия; D 1 и D 2 — цилиндрическая жесткость деталей (см. зависимость 2.2), причем при неодинаковой их толщине: D 1 жесткость более тонкой детали; А и В – экспериментально определяемые коэффициенты (рис. 2.14); t — расстояние между точками.

Сравнение значений F Д при различных сочетаниях значимо влияющих на него технологических факторов, в частности, приведенных в
табл. 2.2, показало, что относительное отклонение усилия в плоскости свариваемого контакта ε F от усилия сжатия деталей электродами F Э при сварке деталей этих толщин, равное

, (2.6)

даже при исследуемых величинах зазоров (до 3-х мм) находятся в пределах 0,5…10 %. При встречающихся в практике КТС сочетаниях t , δ и s значения ε F не превышают 2…5 %.

Таким образом, полученная зависимость (2.5), позволяет при решении технологических задач расчетным путем приближенно определять величину усилия F Д , необходимого для сближения свариваемых деталей до соприкосновения их поверхностей при конкретных условиях сварки, и с достаточной для практики точностью прогнозировать возможное отклонение усилия сжатия в площади свариваемого контакта от усилия сжатия деталей электродами.

2.2. Формирование контактов при сжатии деталей электродами

Исходным условием осуществления процесса контактной точечной сварки является наличие электрической проводимости между токопроводящими электродами, что невозможно без наличия её в контактах деталь–деталь и электрод–деталь. То, что величина и стабильность начального электрического сопротивления контактов существенно влияют на тепловые процессы в зоне сварки и, в конечном итоге, на качество готового соединения можно считать однозначно установленным. Это подтверждается многочисленными результатами исследований процесса КТС как отечественных [3, 4, 7...17, 106...115], так и зарубежных [116…120] исследователей. И только в немногочисленных исследованиях [121, 122] получены противоположные результаты.

В свою очередь, образованию электрических контактов деталь–деталь или электрод–деталь должно предшествовать образование между ними хотя бы очагов контактов механических [4, 13].

Таблица 2.2

Значения F Д при различных сочетаниях s , t , u и δ


пп

Сочетания факторов

F Д (кН)

Отклонения FДэксп от FДрасч. (%)

F Э (кН)

Отклонения εF
(%)

s

t

u

δ

Экспериментальные значения

Расчетные значения

1

1,0

30

8

0,5

0,110

0,133

17,6

5,0

2.6

2

-″-

-″-

-″-

1,0

0,280

0,256

9,3

-″-

5,1

3

-″-

-″-

-″-

1,5

0,350

0,373

6,5

-″-

7,4

4

-″-

-″-

-″-

2,0

0,460

0,487

5,8

-″-

9,6

5

-″-

100

-″-

1,0

0,020

0,014

4,2

-″-

0,2

6

-″-

-″-

-″-

2,0

0,030

0,027

11,1

-″-

0,5

7

-″-

-″-

-″-

3,0

0,040

0,041

2,6

-″-

0,8

8

2,0

50

10

0,5

0,270

0,303

11,4

11,0

2,7

9

-″-

-″-

-″-

1,0

0,640

0,607

5,5

-″-

5,4

10

-″-

-″-

-″-

1,5

0,930

0,896

3,8

-″-

8,1

11

-″-

-″-

-″-

2,0

1,130

1,182

4,4

-″-

10,7

12

-″-

100

-″-

1,0

0,100

0,116

15,2

-″-

1,0

13

-″-

-″-

-″-

2,0

0,250

0,235

6,3

-″-

2,2

14

-″-

-″-

-″-

3,0

0,360

0,349

3,2

-″-

3,2

15

3,0

70

13

0,5

0,470

0,511

6,0

16,0

3,1

16

-″-

-″-

-″-

1,0

0,940

1,011

7,0

-″-

6,3

17

-″-

-″-

-″-

1,5

1,610

1,509

6,6

-″-

9,9

18

-″-

-″-

-″-

2,0

0,207

1,979

4,7

-″-

12,3

19

-″-

100

-″-

1,0

0,460

0,438

5,0

-″-

2,6

20

-″-

-″-

-″-

2,0

0,850

0,864

1,6

-″-

5,3

21

-″-

-″-

-″-

3,0

1,320

1,278

3,2

-″-

7,9

Таким образом, формирование контактов при КТС включает в себя, по крайней мере, два, различающихся между собой, процесса: формирование механических контактов; формирование электрических контактов, которые во временной последовательности протекают одновременно после сближения свариваемых деталей до соприкосновения их поверхностей.

2.2.1. Формирование механических контактов

Реальные поверхности деталей всегда имеют микроскопические неровности (рис. 2.15), поскольку они образуются не только при механической обработке поверхностей [12, 13], но даже и при кристаллизационных [12] или рекристаллизационных [123] процессах в металлах. Эти неровности в технологии машиностроения характеризуют шероховатостью и волнистостью. Их параметры, включая и терминологию, регламентированы ГОСТами [124, 125].

Если бы поверхности деталей были идеально гладкими и плоскими, то контакты между ними существовали бы по всей площади сопрягаемых поверхностей. Эту площадь принято называть «номинальной площадью контакта» и обозначать Аа (рис. 2.16). Следовательно, при точечной сварке «номинальной площадью контакта» Аа является вся площадь нахлестки. Наличие на поверхностях реальных деталей шероховатости и волнистости приводит к тому, контакт между ними не будет сплошным. Лишь отдельные участки поверхностей воспринимают усилия сжатия. Сумма таких дискретных площадок контакта образует «фактическую площадь контакта», которую принято обозначать А r . Единичные пятна фактического контакта располагаются неравномерно, отдельными областями. Эти области сосредоточения пятен фактических контактов, обведенные контурами, в сумме составляют «контурную площадь контакта», которую обозначают Ас . Тогда можно считать, что при контактной точечной сварке «контурной площадью контакта» Ас является вся площадь внутри контура уплотняющего пояска. Такая классификация площадей контактов общепринята в технологии машиностроения [126, 127] и сварки [4, 12, 13, 92, 128, 129].


При контактировании жестких тел величина контурной площади контакта определяется геометрическими характеристиками их поверхностей, в основном волнистостью, а также, хотя и в значительно меньшей мере, и шероховатостью [126, 127, 130...135]. При точечной сварке кроме волнистости и шероховатости на контурную площадь контактов оказывает влияние распределение нагрузки, которое зависит от площади (при плоской) или радиуса (при сферической) рабочих поверхностей электродов, и толщина свариваемых деталей вследствие относительно небольшой жесткости последних [4, 13,81, 92, 136].

В теории контактной точечной сварки наиболее известны две методики расчетного определения контурной площади контактов АС [10, 13]:

, (2.7)

, (2.8)

где F Э — усилие сжатия электродов; σТ — предел текучести материала деталей; Аа — номинальная площадь контакта; Z — показатель степени, который учитывает нагрузку и сопротивление деформации металла деталей

или ;

здесь α — опытный коэффициент; Т — температура в контакте; σ — удельная нагрузка: ; ТПЛ абсолютная температура плавления металла; σСД — сопротивление деформации металла в масштабе волнистости.

Значения контурной площади АС , рассчитанные по зависимости (2.7), значительно превышают экспериментальные значения, например, приведенные в работах [92, 128, 129]. Экспериментальные данные, а также теоретические исследования [81, 136] однозначно показывают, что при точечной сварке контурная площадь практически не зависит от площади нахлестки, то есть от номинальной площади контакта Аа . Поэтому возможность применения зависимости (2.8) для практических расчетов в условиях точечной сварки весьма проблематична. Кроме того, вычисления по зависимости (2.8) весьма трудоемки, так как могут быть произведены только методом итераций, поскольку искомая величина АС входит и в правую ее часть для определения величины удельной нагрузки σ .

Сведения же о фактической площади контактов при точечной сварке и механизме ее формирования весьма ограничены. Так, в работе [92] экспериментально установлено, что она составляет 1…25 % от контурной площади контакта. При этом отмечается, что в случае сжатия деталей электродами с плоской рабочей поверхностью пятна единичных микроконтактов распределяются почти равномерно по всей контурной площади. В случае же сжатия деталей электродами со сферической рабочей поверхностью плотность единичных контактов растет к ее периферии.

Для расчета фактической площади контакта А r в работе [13] предложена зависимость, которая структурно аналогична зависимости (2.8)

, (2.9)

где: Х — показатель степени, равный

или ;

здесь β — опытный коэффициент; σΔ — давление, действующее в площади единичного микроконтакта; ТΔ температура микровыступов в контакте; σСДΔ — сопротивление деформации металла в масштабе микровыступов.

Расчеты фактической площади контакта А r по зависимости (2.9) затрудняются теми же обстоятельствами, что и расчет контурной площади по зависимости (2.8). Причем определение температуры и свойств металла в масштабе микровыступов весьма неопределенно.

При сварке деталей из алюминиевых и магниевых сплавов относительные деформации микрошероховатостей на их поверхности достигают 60…70 %. Причем их значения в контакте электрод–деталь в 1,3...1,4 раза больше, чем в контакте деталь–деталь [129]. Такой уровень микродеформаций в контактах электрод–деталь может приводить к схватыванию металлов детали и электрода (по механизму сварки давлением в твердой фазе [12, 137]) и такому нежелательному при точечной сварке явлению, как массоперенос металлов между поверхностями деталей и электродов [128].

2.2.2. Формирование электрических контактов

Образование механических микроконтактов в фактических площадях контактов еще не гарантирует наличие в нем контакта электрического [4, 13]. Это обусловлено тем, что идеально чистая (ювенильная), металлическая поверхность существует только короткие моменты времени (доли секунды) в изломе металла или в первые мгновения после её механической обработки [4, 12, 13]. Очистка и предотвращение последующего возникновения поверхностного загрязнения деталей в технологических процессах сварки давлением в основном удаётся только в вакуумных устройствах [137...140]. В силу конструктивных особенностей таких устройств [141...144] использовать их при точечной сварке экономически и технологически не целесообразно.


Реальные же поверхности свариваемых деталей всегда покрыты окисной пленкой, состав и толщина которой зависит от рода металла или сплава, от состава, давления и температуры газовой фазы, а так же от продолжительности их воздействия (рис. 2.17).

На поверхности окисных пленок возможно наличие адсорбированных газов, влаги и органических веществ, и прочих наслоений [3, 4, 12, 13, 145...151]. Последние значительно затрудняют сближение металлических поверхностей, так как вещество граничного слоя при сжатии приобретает упругость твердого тела [12, 148]. Поэтому фактическую площадь даже единичного контакта условно можно разделить на три (см. рис. 2.16). К первой, А r м — относятся участки с металлическим контактом, в которых электрический ток протекает без заметного переходного сопротивления, как это имеет место между кристаллами в компактном металле. Ко второй, А r пл — участки с квазиметаллическим контактом, поверхность которых покрыта тонкой пленкой, легко пропускающей ток благодаря туннельному эффекту [152] или фриттинг эффекту [13]. К третьей же, А r мо — участки, не проводящие ток и покрытые мономолекулярными плёнками (окислы, сульфаты и т. п.), которые практически играют роль изоляторов [13, 152].

С целью создания наиболее благоприятных условий для формирования электрических контактов перед их сваркой, как правило, проводят специальную подготовку поверхностей деталей, например, травление с последующей пассивацией или механическую зачистку. При этом время хранения подготовленных деталей до сварки регламентируют. А непосредственно перед ней контролируют электрическое сопротивление участка электрод–электрод [7...17, 111...115].

Таким образом, формирование контактов электрод–деталь и деталь–деталь со стабильными параметрами представляет сложную задачу технологии точечной сварки, так как этот процесс зависит от большого числа факторов, параметры которых на практике зачастую носят случайный характер и имеют большой статистический разброс: от усилия сжатия электродов и геометрии их рабочих поверхностей; от макро- и микрогеометрии поверхностей деталей; сопротивления деформации металла микро- и макромасштабах; поверхностных пленок и др.

2.3 . Электрическая проводимость зоны сварки.

Электрическая проводимость зоны сварки характеризуется электрическим сопротивлением участка электрод–электрод r ЭЭ (рис. 2.18).

В общем случае, электрическое сопротивление участка электрод–электрод r ЭЭ представляют в виде суммы последовательно соединенных активных сопротивлений собственно свариваемых деталей r Д1 и r Д2 , сопротивлений контакта между ними r ДД , а также сопротивлений контактов между деталями и электродами r ЭД1 и r ЭД2 [3, 16]:

. (2.10)

При сварке деталей равной толщины и из одного и того же материала эту зависимость можно упростить и записать в следующем виде:

. (2.11)

Для определения общего электрического сопротивления зоны сварки по зависимости (2.11) необходимо в любой момент процесса сварки опре делить величину всех ее составляющих. Очевидно, что математически точно решить эту задачу вряд ли представляется возможным из-за чрезвычайно сложного влияния и взаимовлияния на проводимость зоны сварки параметров термодеформационных процессов, которые протекают в зоне сварки. Например, таких как нестационарный нагрев металла в зоне сварки, обусловленный процессами выделения теплоты и ее отвода в электроды и детали, изменение удельного сопротивления металла при нагреве, микропластические деформации в контактах деталь–деталь и электрод–деталь, макропластические деформации металла в зоне сварки и др. Поэтому в технологических расчетах величину электрического сопротивления зоны сварки определяют приближенно, в большинстве, по эмпирическим зависимостям.

2.3.1 . Электрические сопротивления контактов при точечной сварке

Наличие электрических контактных сопротивлений обусловлено относительно небольшой площадью электрического контакта по сравнению с номинальной площадью контактирующих поверхностей. Это происходит из-за наличия неровностей на поверхностях деталей и электродов, а также из-за различных не электропроводных поверхностных образований: оксидных и гидрооксидных пленок, адсорбированных влаги, масел, пыли и т.п. С увеличением сопротивлений контактов, как правило, уменьшается и стабильность их значений. Большие и не стабильные значения электрических сопротивлений контактов являются основными возмущающими факторами процесса КТС, которые могут приводить не только к отклонениям параметров качества сварных соединений, но и к образованию дефектов типа выплеск или непровар. На сопротивление контактов деталь–деталь и электрод–деталь при точечной сварке наиболее значимо влияют исходное состояние поверхностей деталей и усилие их сжатия (рис. 2.19).

Влияние состояния поверхности на контактное сопротивление очень велико. При этом на его величину оказывает влияние и шероховатость поверхностей, и сопротивление деформации металла в поверхностном слое, и параметры поверхностных пленок. Увеличение параметров шероховатости, а также толщины и прочности поверхностных пленок, при одинаковых остальных условиях, приводят к увеличению контактного сопротивления в десятки, сотни, а иногда и тысячи раз (табл. 2.3).


С увеличением усилия сжатия электродов при контактной точечной сварке деталей любых толщин и из любых материалов однозначно уменьшаются как величина сопротивления контактов, так и разброс их значений. Такое изменение контактных сопротивлений при увеличении усилия сжатия происходит вследствие интенсификации процессов микропластических деформаций в контактах, которые приводят к смятию микровыступов, разрушению поверхностных пленок и увеличению площадей фактических контактов [3, 4, 7...17, 107...120, 153, 154].

Механические и электрические процессы, протекающие в сварочных контактах в процессе формирования соединений за цикл сварки и определяющие его электрические параметры, очень сложны. Это затрудняет их математическое описание, т. е. разработку математических моделей контактов при КТС. Задача осложняется еще и неопределенностью, а также случайностью параметров, которые характеризуют шероховатость поверхностей после их технологической обработки и поверхностные пленки. Так, о реальном профиле шероховатых поверхностей авторы работы [127] замечают следующее: «…Надо обладать большим воображением, чтобы в реальных очертаниях выступов увидеть правильную геометрическую фигуру. …Существование неровностей с заостренными вершинами вообще представляется маловероятным».

Для условий точечной сварки наиболее адекватной считается ситовая модель проводимости контактов. На ее основе разработан ряд методик для расчетного определения электрического сопротивления контактов. Из них наибольшую известность получили две методики.

Одна из них — это методика Р. Хольма, разработанная им для шинных контактов и приведенная, например, в более поздней работе [152]. Эта формула затем Ф. И. Кислюком [7, 106] была введенная в теорию контактной точечной сварки и до настоящего времени не претерпела существенных изменений [3]:

, (2.12)

где r ДД0 и а — коэффициенты, определяемые экспериментально; F Э — усилие сжатия электродов.

Другая же методика, первоначально разработанная К. А. Кочергиным для стыковой сварки [107], а затем распространенная им же и на сварку точечную, учитывает в определенной мере реальные микропластические деформации в контактах. В ней микрогеометрия шероховатой поверхности моделируется правильными четырехгранными пирамидами одинаковой высоты и рассчитывается сопротивление системы этих пирамид в условиях их деформирования. По крайней мере, эта методика описывает реальные микропластические деформации качественно [4, 13]:

, (2.13)

где: ρΔ — удельное электрическое сопротивление металла в масштабе микрошероховатости; (1…2) f — толщина контактного слоя; АС — контурная площадь контакта; Х — функция нагрузки и сопротивления деформации металла (определение АС и Х см. в зависимостях (2.8) и (2.9)).

Электрические же сопротивления контактов электрод–деталь r ЭД . до сих пор, как правило, отдельно не рассчитывают. Их, по предложению
А. С. Гельмана [155], принимают равными половине величины сопротивлений в контактах деталь–деталь r ДД , т. е.:

. (2.14)

Следует отметить, что возможность использования зависимостей (2.13) или (2.14) в современных методиках решения технологических задач точечной сварки весьма проблематична. Очевидно, что зависимость (2.12) не отражает физической сущности проводимости контактов и представляет собой функцию, аппроксимирующую экспериментальные измерения r ДД . Поэтому она может быть использована только для тех условий сварки, при которых определялись её коэффициенты. Специализированных же банков данных их значений, как отмечается в работе [156], пока нет, а имеющиеся их значения не точны и зачастую представлены в некорректной форме. Это же в полной мере можно отнести и к значениям ρΔ в зависимости (2.13). Кроме того, вычисление в ней значений АС (см. зависимость (2.8)) при точечной сварке весьма неопределенно.

Таким образом, несмотря на то, что исследования механизма формирования контактов при контактной точечной сварке и их влияния на процесс формирования соединения весьма многочисленны и глубоки, их, по-видимому, нельзя считать завершенными. Отсутствуют приемлемые для решения современных технологических задач методики расчётного определения электрического сопротивления участка электрод–электрод и, в частности, сопротивления контактов. Так, в работе [156] при разработке современных САПР ТП для точечной сварки рекомендуется использовать все ту же зависимость (2.12). В работе же [4] автор зависимости (2.13)
К. А. Кочергин отмечает, что существующие методики расчетов описывают процессы, протекающие в контактах, в основном только качественно, и точность количественных расчетов по данным методикам весьма низкая.

Поэтому, в большинстве случаев, даже когда решают задачи по определению в зоне сварки полей распределения потенциалов и температуры в относительно точной постановке, например, численным решением дифференциальных уравнений, сопротивления контактов либо вообще не учитывают, либо задают их по зависимостям типа (2.12).

2.3.2. Электрические сопротивления собственно свариваемых деталей

Электрическое сопротивление собственно деталей — это сопротивление, которое определенным образом распределено в объеме деталей, расположенном между сжимающими их электродами.

Величину электрического сопротивления собственно детали r Д в большинстве случаев определяют по методике А. С. Гельмана. Еще в 40-х годах 20-го в. им была теоретически определено распределение потенциалов в свариваемых деталях путем решения методом конечных разностей дифференциального уравнения, описывающего электрическое поле

, (2.15)

где φ — потенциал в рассматриваемой точке; z и r — цилиндрические координаты пространства.

Решением этого уравнения с граничными условиями, отражающими особенности протекания электрического тока при точечной сварке на участке электрод–детали–электрод, им определена топография растекания линий тока в деталях до диаметра dj (см. рис 2.18) при различных условиях сварки и разработана инженерная методика расчета электрического сопротивления r Д собственно свариваемых деталей [16, 85, 155]:

, (2.16)

где: АГ — коэффициент (рис.2.20), учитывающий уменьшение сопротивления детали r Д относительно сопротивления цилиндра r Ц , высотой s и диаметром d К , которое происходит из-за растекания линий тока до диаметра dj ; ρТ — удельное электрическое сопротивление металла деталей; k Р — коэффициент, учитывающий неравномерность нагрева деталей.

Следует отметить поразительную, для того времени и тех вычислительных средств (расчетов на арифмометрах), точность решения
А. С. Гельмана. В 70-х годах многие исследователи подобные задачи начали решать на ЭВМ. Естественно, что некоторые из них пытались уточнить решение А. С. Гельмана. Как это ни удивительно, но значения коэффициента АГ (сейчас его так и называют — «коэффициент Гельмана»), полученные с помощью арифмометра [155] и ЭВМ, например, в работе [157], практически совпадают.

При решении этой же задачи растекание линий тока в деталях
К. А. Кочергин моделирует их токопроводящее сечение в виде двух усеченных конусов, вершинами обращённых к контактам (показаны штриховыми линиями на рис 2.18). Это же сопротивление деталей r Д он рассматривает как сумму сопротивлений конусов и сопротивлений за счет искривления линий тока в близи контакта (уменьшения площади токопроводящего сечения). В результате такого решения [4, 13] величину r Д им предложено определять по следующей зависимости:

, (2.17)

где φ — коэффициент, который представляет собой отношение электрического сопротивления конусов к сопротивлению цилиндра диаметром d К и высотой, равной толщине деталей s .

При расчетах r Д по зависимости (2.17) значение диметра dj , до которого происходит растекание линий тока в деталях, т. е. диаметра основания конуса, определяется через тот же коэффициент А.С. Гельмана АГ :

.

Таким образом, по существу эти методики расчета электрического сопротивления свариваемых деталей представляют собой одно и то же решение данной задачи. Они различаются только тем, что в зависимости (2.16) рассчитывается уменьшение r Д , которое происходит из-за растекания линий тока в деталях до диаметра dj , относительно сопротивления цилиндра, диаметром d К , а в зависимости (2.17) — наоборот, рассчитывается увеличение r Д относительно сопротивления цилиндра, диаметром dj , которое происходит из-за сужения линий тока у контактов до диаметра d К .

Преимущественное применение в практике расчетов зависимости (2.16) объясняется, во-первых, тем, что диаметр контакта d К , в отличие от dj , в процессе сварки можно легко измерить, а во-вторых, по-видимому, и тем, что методика А.С. Гельмана предложена намного раньше.

2.3.3. Общее электрическое сопротивления зоны сварки

Многочисленными исследованиями процесса КТС к настоящему времени однозначно установлены зависимости электрического сопротивления участка электрод–электрод r ЭЭ от основных факторов, воздействующих на него при точечной сварке. В общем случае величина r ЭЭ и ее изменение при КТС зависят от параметров режима сварки, толщины деталей и свойств их металла, формы и размеров рабочих поверхностей электродов. Наибольшее влияние на исходную величину электрического сопротивления участка электрод–электрод r ЭЭ оказывают свойства материала деталей, состояние их поверхностей и время t В выдержки деталей от момента зачистки до сварки, усилие сжатия электродов F Э , форма и размеры их рабочих поверхностей (d Э или R Э ).

С увеличением усилия сжатия электродов F Э исходное электрическое сопротивление участка электрод–электрод всегда уменьшается
(рис. 2.21). При этом одновременно с уменьшением величины r ЭЭ уменьшается и разброс его значений, т. е. повышается их стабильность. Именно поэтому применение повышенного усилия сжатия электродов является одним из основных и наиболее простых технологических приемов, которым в практике КТС повышают стабильность показателей качества получаемых сварных соединений [2, 3, 8…11, 14…17].

С увеличением времени выдержки деталей от момента зачистки до сварки t В увеличивается как величина r ЭЭ , так и разброс его значений. То есть в этом случае, наоборот, стабильность электрического сопротивления участка электрод–электрод уменьшается. Причем наиболее интенсивно рост величины r ЭЭ и разброса его значений идет в первые двое – трое суток. Это обусловлено увеличением контактных сопротивлений из-за окисления свариваемых деталей, то есть ростом толщины окисных пленок на их поверхностях. Именно поэтому в практике КТС проведение технологических мероприятий (подготовки поверхностей деталей перед сваркой), направленных на уменьшение величины контактных сопротивлений и повышение стабильности их значений, является исходным условием получения качественных сварных соединений. Последнее обстоятельство особенно существенно для технологии сварки деталей из алюминиевых и магниевых сплавов [3, 9, 10, 14, 114].

При увеличении диаметра d Э (при плоской) или радиуса R Э (при сферической) рабочих поверхностей электродов величина r ЭЭ несколько уменьшается. Это обусловлено увеличением площади токопроводящего сечения в свариваемых деталях. Разброс же значений r ЭЭ при этом увеличивается, то есть стабильность их уменьшается. Это является следствием уменьшения давления в контактах, которое происходит из-за увеличения их площади при неизменном усилии сжатия электродов. Однако влияние этого фактора на процесс КТС не столь существенно, как двух описанных выше. Геометрические параметры электродов (d Э , d Э или R Э ) обычно выбирают по технологическим рекомендациям в зависимости от толщины свариваемых деталей (см. табл. 1.2) [3, 9, 11, 15].

При КТС в процессе формирования точечного сварного соединения величина электрического сопротивления участка электрод–электрод r ЭЭ всегда уменьшается (рис. 2.22). В динамике уменьшения r ЭЭ выделяют два этапа: I и II, которые существенно различаются градиентом скорости изменения электрического сопротивления участка электрод–электрод.


Этап I характеризуется быстрым уменьшением сопротивления участка электрод – электрод. В основном это обусловлено быстрым уменьшением при нагреве контактных сопротивлений r ДД и 2r ЭД .

В течение этапа II величина сопротивления r ЭЭ в основном определяется величиной сопротивления деталей 2r Д , так как сопротивление контактов электрод–деталь 2r ЭД невелико, а сопротивление контакта деталь–деталь r ДД к этому времени уменьшается практически до нуля. В этот период характер изменения r ЭЭ определяется в основном двумя процессами: увеличением сопротивления зоны сварки из-за его нагрева и уменьшением ее сопротивления вследствие увеличения площадей контактов. Небольшой спад r ЭЭ на этом участке обусловлен преимущественным влиянием увеличения площади электрических контактов, диаметры которых к концу нагрева достигают значений d Э и d П [3, 4, 7…17, 107, 155, 156].

В общем случае характер изменения r ЭЭ в процессе сварки зависит от свойств металла, толщины деталей, режима сварки, формы импульса тока, размеров ядра, формы рабочей поверхности электродов и т. п.

Естественно, что величина общего сопротивления участка электрод-электрод r ЭЭ меньше для сплавов с более низким удельным электросопротивлением (сплавы на основе меди и алюминия (рис. 2.23)). Это обусловлено также и тем, что для всех толщин деталей, независимо от материалов из которых они изготовлены, отношения геометрических параметров рабочих поверхностей электродов и диаметров ядра к толщине деталей примерно одинаковые (см. п. 1.3.4, табл. 1.1 и 1.2).

С увеличением толщины деталей общее сопротивление участка электрод–электрод и конечное его значение r ЭЭК заметно снижаются в основном за счет увеличения площади контакта в процессе сварки (см. табл. 2.4). Увеличение диаметра ядра при , которое достигается повышением силы тока или времени сварки приводит, как правило, к снижению r ЭЭ и r ЭЭК .

Изменение параметров режима точечной сварки оказывает заметное влияние на r ЭЭ вследствие изменения теплового состояния металла и площади контактов. Так, увеличение FCB или I СВ приводит к росту диаметра контактов и снижению r ЭЭ . Переход к режимам с большим временем сварки при сохранении одного и того же диаметра ядра также приводит к некоторому снижению r ЭЭ и r ЭЭ К из-за уменьшения сопротивления пластической деформации и роста размеров контактов.

При точечной сварке используются электроды со сферической и плоской рабочей поверхностью.

Сварка электродами со сферической рабочей поверхностью отличается меньшими размерами контакта на первом этапе, соответственно большей плотностью тока и большей скоростью тепловыделения. Зона расплавления возникает раньше, чем при сварке электродами с плоской рабочей поверхностью, и поэтому область I на рис. 2.22 менее протяженна и значения r ЭЭ в этой области заметно выше. При этом скорость повышения r ЭЭ возрастает с уменьшением радиуса сферы. Характер изменения r ЭЭ области II для обоих типов электродов примерно одинаков, но в течение всего цикла сварки среднее значение r ЭЭ при сварке электродами со сферической рабочей поверхностью на 10…15 % выше, чем при сварке электродами с плоскими рабочими поверхностями.

Таблица 2.4

Значения r ЭЭ К в конце процесса КТС

Материал

Толщина деталей, мм

0,3

0,5

1

1,5

2

2,5

Д16АТ

18

16

13

11

10

8

Л62

76

48

30

24

20

18

08 кп

150

135

115

100

90

75

30ХГСА

115

145

125

110

100

90

Х15Н5Д2Т

145

165

135

120

110

100

12Х18Н10Т

215

185

150

130

120

110

ОТ4-1

240

210

165

145

133

120

Примечание. Данные приведены для двух деталей одинаковой толщины с минимальным диаметром ядра

Таким образом, основным фактором, дестабилизирующим электрическое сопротивление зоны сварки (участка электрод–электрод) и, в конечном итоге, параметры качества получаемых соединений, является в основном электрическое сопротивление контактов. Поэтому при приближённых технологических расчётах, например, сварочного тока по зависимости (1.11), сопротивление зоны сварки r ЭЭ обычно принимают равным его значению в конце процесса КТС r ЭЭК . [3]

Для упрощения расчета r ЭЭ = 2r Д (при сварке двух деталей одинаковой толщины) используют условную схему термодеформационного состояния металла зоны сварки. В частности, учитывая, что в контакте электрод–деталь его диаметр dK ЭД примерно равен диаметру рабочей поверхности электрода d Э (dK ЭД d Э ) (см. табл. 1.1), а диаметр контакта деталь–деталь dK ДД приближённо равен диаметру уплотняющего пояска d П (dK ДД d П ) и то, что d Э мало отличается от d П , условно принимают d П d Э (где d П ≤ 1,2 d Я ). Кроме того, принимают также, что сопротивления контактов r ЭД и r ДД равны нулю.

При таких допущениях определяемое сопротивление r ЭЭ представляют как сумму сопротивлений двух условных пластин одинаковой толщины s , каждая из которых нагрета до некоторой средней температуры Т1 и Т2 (рис. 2.24). Тогда искомое сопротивление r ЭЭК определяется следующей зависимостью [3]:

. (2.18)

Удельные электросопротивления деталей ρ1 и ρ2 (см. рис. 2.23) определяют соответственно по температурам Т1 и Т2 для полулистов, прилегающих к электродам и контакту деталь–деталь соответственно (рис. 2.24). В частности, при сварке деталей из низкоуглеродистых сталей Т1 и Т2 принимают соответственно равными 1200 и 1500 °С, а для алюминиевых сплавов — 450 и 630 °С. Коэффициент kP , учитывающий неравномерность нагрева деталей, для сталей принимают равным ~ 0,85, для алюминиевых и магниевых сплавов — ~ 0,9. При сварке деталей толщиной 0,8…3 мм коэффициент А. С. Гельмана АГ (см. рис. 2.20) принимают равным ~ 0,8 [3].

Значения сопротивлений, рассчитанные по зависимости (2.18), как правило, согласуются с экспериментальными данными, в частности, приведенными в табл. 2.4.

Таким образом, электрическая проводимость зоны сварки, определяемая электрическим сопротивлением свариваемых деталей и контактов электрод–деталь и деталь–деталь, зависит от большого числа технологических факторов точечной сварки и отличается значительной нестабильностью, в первую очередь, из-за нестабильности электрических сопротивлений контактов электрод–деталь и деталь–деталь. Поэтому при приближенных решениях технологических задач КТС проводимость зоны сварки оценивают по электрическому сопротивлению только свариваемых деталей.

2.4. Нагрев металла в зоне сварки и методы количественной его оценки

Для решения технологических задач точечной сварки в большинстве случаев требуется определить количество теплоты, выделившееся в зоне сварки, и распределение в ней температуры. Характер температурного поля в зоне формирования соединения определяют в основном два процесса, одновременно протекающие и противоположно направленные: тепловыделение сварки и теплопередача из нее в окружающий холодный металл и электроды [2…4, 158].

Наиболее точные значения параметров тепловыделения и распределения температуры получают путем решения дифференциальных уравнений распределения потенциалов и теплопроводности. Вместе с тем, при проектировании технологий КТС в основном применяют приближенные инженерные методики расчетов этих параметров, поскольку они более наглядно отражают тепловые процессы, которые протекают в зоне формирования точечного сварного соединения, и, в ряде случаев, вполне удовлетворяют по точности расчетов.


2.4.1. Источники теплоты в зоне формирования сварного соединения

При КТС в зоне сварки действует несколько источников теплоты. Нагрев металла в зоне сварки происходит в основном за счет генерирования теплоты в свариваемых деталях, а также на электрических сопротивлениях участка электрод–электрод, при прохождении через них электрического тока (рис. 2.25).

Основное количество теплоты, выделяющейся при прохождении сварочного тока, в процессе точечной сварки (> 90 % от общего его количества Q ЭЭ , выделяющегося за цикл сварки в зоне формирования соединения на участке электрод–электрод [3]) происходит в свариваемых деталях, где действует ее источник, распределенный в объеме металла деталей, проводящем электрический ток.

Линии электрического тока j в свариваемых деталях претерпевают заметные искривления, вследствие чего площадь элементарной силовой трубки тока Δ S меняется в зависимости от ее длины dl . С учетом этого суммарное количество теплоты Q Д , которое выделяется в деталях на собственно их сопротивлениях r Д , может быть определено по закону Джоуля – Ленца, записанному следующим образом [4, 13]:

, (2.19)

где j — плотность тока; ρ — удельное электрическое сопротивление металла свариваемых деталей, по которому протекают линии тока j ; S — площадь сечения, по которому растекаются линии тока; T и t — координаты температуры и времени.

Кроме того, некоторое количество теплоты (< 10 % от Q ЭЭ [3]) генерируется в контактах деталь–деталь и электрод–деталь и в областях прилегающим к ним, где, хотя и в относительно короткий период (~ 0,1t СВ ), действуют ее плоские источники. В них генерируется теплота Q МГ за счет электрического сопротивления микровыступов r МГ (T ), непосредственно образующих контакт, которое в процессе сварки относительно быстро уменьшается вплоть до нулевых значений из-за деформирования (смятия) микровыступов вследствие их разупрочнения при увеличении температуры T , а также теплота Q ПЛ , которая генерируется за счет электрического сопротивления естественных оксидных пленок или (в некоторых случаях практики КТС) в искусственных покрытиях. Для условий КТС, характеризуемых непрерывным изменением силы сварочного тока и температуры металла в зоне формирования соединения, количество теплоты Q МГ и Q ПЛ можно определить соответственно по следующим зависимостям [4, 13]:

, (2.20)

. (2.21)

При точных расчетах, как дополнительные источники теплоты следует учитывать теплоту Q ПТ , выделяющуюся в контактах электрод–деталь вследствие проявления эффекта Пельтье [9, 10, 159] или же вследствие проявления полупроводниковых свойств окисной пленки [160]. Теплота Пельтье генерируется по границам пленок с металлом или по границам жидкого металла с твердым, или же по границам разнородных металлов. Ее количество может быть определено по зависимости [4, 13]:

, (2.22)

где П (Т ) — коэффициент Пельтье для данной границы.

Таким образом, общее количество теплоты Q ЭЭ , которое выделяется в зоне сварки при протекании через нее сварочного тока I СВ в течение длительности его импульса t СВ (времени сварки) может быть определено как сумма количеств теплоты, выделившейся на указанных выше источниках:

. (2.23)

При приближенных решениях задач технологии КТС, например при определении для конкретных условий сварки ориентировочных значений сварочного тока, теплоту, выделяющуюся в контактах, т. е. Q МГ , Q ПЛ и Q ПТ , по зависимостям (2.20)…(2.22) не рассчитывают. И вообще ее, как правило, в расчетах не учитывают, или же учитывают усредненно через различные поправочные коэффициенты [2, 3, 15].

Таким образом, в технологических расчетах теплоту, выделяющуюся в зоне сварки Q ЭЭ , в основном определяют как теплоту Q Д , выделяющуюся только в свариваемых деталях. Поскольку в большинстве случаев температуру в зоне сварки усредняют, то зависимость (2.19) преобразуют виду

, (2.24)

где I СВ — сила сварочного тока, из которого при усреднении по времени силы сварочного тока I СВ и электрического сопротивления зоны сварки r ЭЭ и получают расчетные зависимости типа (1.11) [2, 3].

2.4.2. Температурное поле в зоне формирования соединения

Распределение температуры в зоне формирования соединения измерить непосредственно при КТС пока никому не удалось, несмотря на многочисленные общеизвестные попытки это сделать. Поэтому и мнения о значениях температуры, например, в центре зоны сварки, расходятся от температуры плавления металла до температуры его кипения [7, 11, 107, 161]. Анализ известных аналитических методик расчетов температуры в зоне сварки [107, 158, 162, 163], которые учитывают выделение и перераспределении теплоты в ней, например, приведенный в работе [164], показывает, что пытаться удовлетворить требованиям современной технологии КТС по точности определения температуры в зоне сварки этим путем весьма проблематично. Поэтому и работы в этом направлении, по-видимому, бесперспективны.

А. С. Гельман для исследования температурных полей в зоне сварки, по-видимому, первым применил решение дифференциальных уравнений распределения потенциалов и теплопроводности, которые осуществил численным методом, а точнее — методом конечных разностей [155, 164]. Это позволило ему при решении поставленных задач учесть изменение в процессе КТС теплофизических характеристик металла, геометрических параметров соединений, а также влияние энергетического и силового воздействия на зону сварки и скрытую теплоту плавления металла в ядре.

Эту методику, которая заключается в совместном решении дифференциальных уравнений распределения потенциалов и теплопроводности, в дальнейшем с уточнением граничных условий стали широко использовать при решении различных задач технологии точечной сварки методом конечных разностей и методом конечных элементов, как отечественные [157, 165…174], так и зарубежные [175…179] исследователи.

При исследованиях тепловых процессов в зоне формирования точечного сварного соединения в большинстве случаев осуществляют совместное решение дифференциального уравнения (2.15), описывающего электрическое поле, и дифференциального уравнения теплопроводности Фурье, которое при условии, что теплоемкость и плотность металла не зависят от температуры, записывают чаще всего в следующем виде [3, 16]:

, (2.25)

где с m , γ , λ и ρ — соответственно, массовая теплоемкость, плотность, коэффициенты теплопроводности и удельного электрического сопротивления металла; j — плотность тока.

Сведения о температуре металла в зоне сварки, полученные расчетом по данным методикам, по-видимому, являются наиболее близкими к истинным ее значениям при конкретных условиях сварки. Так, расчетные изотермы температуры плавления (рис. 2.26) по конфигурации и геометрическому положению весьма близки к границам ядра расплавленного металла, экспериментально определяемым на различных стадиях его формирования [165, 172…174].


2.4.3. Тепловой баланс в зоне сварки и расчет сварочного тока

Теплоту Q ЭЭ , которая должна выделиться в зоне формирования соединения для получения ядра заданных размеров, можно рассчитать через теплосодержание металла в ней к концу процесса сварки и количество теплоты, отведенное из зоны сварки в процессе формирования соединения. Для этого используют условные схемы теплопередачи в зоне сварки и распределения в ней температуры (рис. 2.27).


В данной методике расчета допускают, что вся теплота Q ЭЭ выделяется в цилиндре, диаметр которого равен диаметру d Э контакта электрод-деталь. Выделившуюся теплоту Q ЭЭ условно разделяют на теплоту Q 1 , которая расходуется на нагрев и плавление металла в выделенном цилиндре (Q 1 ≈ 20...30 % от Q ЭЭ [3]), а также на теплоту Q 2 , которая отводится в окружающий его металл деталей (Q 2 ≈ 20 % от Q ЭЭ [3]), и теплоту Q 3 , которая отводится в электроды (Q 3 > 50 % от Q ЭЭ [3]). Относительно очень небольшая часть теплоты Q ЭЭ отводится с поверхностей деталей радиационной Q 4 и конвективной Q 5 теплоотдачей. Такое распределение теплоты Q ЭЭ описывается так называемым «уравнением теплового баланса», которое было предложено еще в 30-х годах прошлого века [180] и используется до настоящего времени в инженерных методиках расчетного определения силы сварочного тока [3, 10, 16]:

. (2.26)

За прошедший период методики расчета его составляющих неоднократно изменялись и уточнялись [3, 7…11, 16, 85, 87, 161, 164]. По-видимому, наиболее точные, с учетом результатов исследований тепловых процессов с применением ЭВМ [165], методики расчета составляющих уравнения теплового баланса приведены в работе [3].

При расчетах по уравнению теплового баланса (2.26) общего количества теплоты Q ЭЭ , требуемой для формирования соединения заданных размеров, радиационной Q 4 и конвективной Q 5 теплоотдачей с поверхностей деталей обычно пренебрегают из-за их относительно малых величин.

Для расчета теплоты в зоне сварки делают ряд допущений. Так, принимают, что средняя температура в цилиндре, диаметром d Э , который приближенно равен диаметру ядра, и высотой, равной суммарной толщине двух деталей 2 s , принимается равной температуре плавления ТПЛ . Считается, что заметное повышение температуры металла в деталях из-за отвода в них теплоты Q 2 наблюдается на расстоянии х2 от границы цилиндра, которое определяется временем сварки t СВ и коэффициентом температуропроводности металла аМ :

.

При этом принимается, что средняя температура кольца шириной х2 вокруг цилиндра диаметром d Э , равна .

Определение потерь тепла в электроды производится аналогичным образом. При этом принимается, что за счет тепла Q 3 нагревается до средней температуры, равной , участок электрода длиной

,

где аЭ — коэффициент температуропроводности металла электродов.

С учетом сказанного сокращенное уравнение теплового баланса

в развернутом виде описывают обычно следующим выражением [3]:

,(2.27)

где γМ и γЭ — плотность металла свариваемых деталей и электродов; сМ и сЭ — теплоемкость металла свариваемых деталей и электродов; k 1 — коэффициент, который учитывает неравномерность распределения температуры в кольце; k 2 — коэффициент, учитывающий влияние на теплоотвод формы рабочей части электродов.

С увеличением времени точечной сварки доля теплоты, отводимой в окружающий металл и электроды, всегда увеличивается, т. е. с увеличением времени сварки всегда уменьшается КПД процесса нагрева [181...184].

Количество теплоты Q ЭЭ , которое требуется для образования точечного сварного соединения заданных размеров, используют в основном для приближённого определения силы сварочного тока I СВ по зависимости (1.11), обеспечивающего выделение этой теплоты.

2.5. Объемная пластическая деформация металла в зоне
формирования точечного сварного соединения

Объемная пластическая деформация (ПД) металла при точечной сварке — это один из основных термодеформационных процессов, протекающих в зоне формирования соединения и способствующих его образованию. Она вызывается как внешними факторами, в первую очередь силовым воздействием на детали электродов, так и внутренними факторами, в частности, напряжениями, возникающими при несвободном тепловом расширении (дилатации) металла в зоне сварки между электродами сварочной машины. Пластическое течение металла имеет место на протяжении всего процесса сварки — от формирования начальных контактов, до проковки соединения при его охлаждении. На стадии нагрева во время действия импульса сварочного тока металл в зоне сварки деформируется в основном пластически [3, 16].

Пластическая деформация металла в зоне сварки оказывает решающее влияние на характер электрического и температурного полей, а также на процесс формирования ядра расплавленного металла. В первую очередь, величина объемной пластической деформации влияет на процесс нагрева, так как определяет плотность тока в зоне сварки через площади контактов деталь–деталь и электрод–деталь. При этом нагрев металла в зоне формирования соединения, в свою очередь, оказывает влияние на его пластическую деформацию через изменение сопротивления пластической деформации. В результате такой взаимосвязи и такого взаимовлияния описанных выше процессов осуществляется как бы саморегулирование процесса точечной сварки. Это предполагает, что при устойчивом процессе в зоне сварки должно существовать определенное соответствие между нагревом в ней металла и пластической его деформацией [3, 183, 185…187].

Охлаждение металла в зоне сварки и его кристаллизация в ядре сопровождается температурным и фазовым уменьшением объема, которое приводит на этой стадии формирования соединения к возникновению неравномерного поля остаточных растягивающих напряжений. Это является одной из основных причин образования в соединениях дефектов усадочного характера (трещин, пор, раковин). Только пластическое течение металла в этот период может компенсировать его усадку и предотвратить образование вышеуказанных дефектов сварных соединений [3, 16, 62, 188, 189].

Сведения о пластических деформациях при КТС носят преимущественно качественный характер. Это обусловлено как трудностями их экспериментальных исследований, в первую очередь, из-за закрытого характера зоны сварки и малого ее объема [3, 16, 62, 188, 189], так и трудностями точной математической постановки и решения задачи по определению параметров напряжений и деформаций в условиях динамичного процесса формирования соединений [190...195]. Даже численные методы решения дифференциальных уравнений с применением ЭВМ не позволяют пока достаточно точно определить все сложные взаимовлияния и взаимосвязи термодеформационных процессов, протекающих в зоне формирования соединения [169…172, 174...176, 196...198].

В этой связи весьма перспективным представляется использование для исследований термодеформационных процессов при КТС приближенных теорий напряжений и деформаций, а также расчетно-экспериментальных методов, основы которых изложены, например, в работах [199, 200].

2.5.1. Методики экспериментальных исследований макродеформаций металла в зоне сварки

Известные экспериментальные исследования процессов макропластических деформаций металла в зоне формирования соединения при КТС проводились в основном по трем методикам.

По первой из них параметры пластической деформации металла в зоне формирования точечного сварного соединения определяли на образцах с направленной текстурой, как, например, в работе [185]. Суть этой методики заключается в следующем.

Свариваемые образцы изготовляются из заготовок, имеющих ярко выраженную, направленную текстуру (проката, поковок). При этом плоскость поверхностей деталей должна быть либо перпендикулярной, либо параллельной к направлению линий текстуры. О деформации металла в зоне сварки судят по искривлениям текстурных линий (рис. 2.28). Однако эта методика не позволяет количественно определять параметры деформаций металла в зоне сварки и отражает лишь качественную картину пластического течения металла в процессе формирования соединения.

По второй методике [62, 189] исследования деформаций при КТС проводились на моделях деталей, рассеченных по плоскости оси электродов и изготовленных из упругих материалов, в частности, из резины. Основное ее достоинство заключается в том, что она относительно легко осуществима технически. Однако корректность полученных результатов вызывает сомнения, поскольку в этой методике не соблюдается один из


основных принципов пластического деформирования металла: неизменность объема металла при пластическом его течении.


Третья методика — это так называемая «методика координатных сеток», которая широко используется для исследований процессов ПД, например, при обработке металлов давлением. Экспериментальные исследования процессов пластической деформации металла в зоне формирования соединения при контактной точечной сварке по этой методике проводятся на натурных образцах с предварительно нанесенной координатной сеткой, технология изготовления которых предложена и описана в работе [128].

При исследованиях пластических деформаций в плоскостях контактов деталь–деталь и электрод–деталь координатная сетка наносилась на поверхности образцов (рис. 2.29). После этого такие образцы сваривались по обычной технологии точеной сварки, соответствующей материалу деталей и их толщине, а после сварки соединения разрушались. Для выявления динамики изменения параметров макропластических деформаций при КТС по изменению координатной сетки процесс сварки прерывали через заданные промежутки времени, кратные 0,02 с.

При исследовании деформаций в плоскости оси электродов образцы изготовлялись разъемными и координатная сетка наносилась на торцевые поверхности образцов. Перед сваркой образцы совмещались торцевыми поверхностями и зажимались в специальном приспособлении. В этом случае сварку осуществляли так, чтобы плоскость совмещенного разъема образцов совпадала с осью электродов. После сварки такие образцы разрушались по торцевому разъему и производились измерения искажений координатной сетки (рис. 2.30).


Обработка результатов экспериментов в части количественного измерения параметров пластической деформации осуществлялась по методике, описанной в работах [201, 202]. При этом деформация оценивалась только по деформации сторон координатной сетки. Оценить же сдвиговые деформации металла в различных точках зоны сварки затруднительно из-за высокой погрешности измерений угла сдвига, которая в данном случае получается соизмеримой с его величиной.

Относительные смещения металла в зоне сварки и относительные его деформации по координатам z и r в соответствии с принятой методикой оценивались по следующим зависимостям:

, (2.28)

, (2.29)

где l 0 и l 1 — расстояния от базы измерений до и после сварки (при измерении радиальных смещений по координате r в плоскости сварочного контакта и в плоскости оси электродов за базу принималась ось электродов, а при измерении осевых смещений по координате z за базу принималась плоскость свариваемого контакта); h 0 и h 1 – длина сторон координатной сетки до и после сварки.

2.5.2. Характер пластических деформаций металла в зоне сварки
на стадии нагрева

Проведенными экспериментальными исследованиями [203, 204] установлено, что радиальные (координата r ) относительные деформации и смещения металла в плоскости поверхностей свариваемых деталей, в частности в плоскостях контактов электрод–деталь и деталь–деталь (рис.2.31), а также в плоскости оси электродов (координата z ) распределяются неравномерно как по площади контактов, так и по толщине деталей.

При точечной сварке легких сплавов относительные радиальные (по координате r ) смещения металла в плоскости контакта деталь–деталь (рис. 2.31, а , в , д ) не превышают 2...4 %. Причем, зона пластических деформаций распространяется за контур уплотняющего пояска не больше, чем на 5...15 % от его диаметра d П . В плоскости контакта электрод–деталь величину относительных осевых (по координате z ) смещений можно считать вообще незначительной, так как они в течение процесса сварки не превышает 0,5...1 % (рис. 2.31, б , г , ж ).

Относительные радиальные (по координате r ) деформации металла в плоскости контактов электрод–деталь и деталь–деталь распределяются неравномерно. При этом они даже меняют знак.

В контуре контакта деталь–деталь координатная сетка растягивается. Наибольшая степень деформаций растяжения , которая достигает 1,5...3 %, наблюдается на оси электродов. На периферии контакта и за его пределами металл сжимается. Причем сжатие металла локализовано на самой периферии уплотняющего пояска и в относительно узком кольце вокруг контактов деталь–деталь, ширина которого не превышает 5...15 % от их диаметров. Здесь степень деформаций сжатия металла весьма значительна и достигает 7...15 %.

В плоскости контакта электрод–деталь в направлении оси электродов (по координате z ) металл сжимается (рис. 2.31, б , г , ж ). Однако степень деформации металла по оси z относительно не велика. Она даже на периферии контакта, не превышает 2...3 %.

Вместе с тем, относительные осевые смещения металла в плоскости оси электродов по координате z весьма значительны. Наибольшие относительные осевые смещения металла в плоскости оси электродов наблюдаются в центре контакта. Их величина к концу процесса достигает значений 8...13 % (рис. 2.31, ж ). По толщине детали их величина относительно стабильна. Это объясняется тем, что осевые относительные деформации металла не велики и, как показали исследования, не превышают 0.5...3 %. Причем, наименьшие значения они имеют в срединной полосе свариваемых деталей.


Результаты подобных измерений весьма приближённы. Но всё же они позволяют установить качественную картину пластических деформаций металла в зоне сварки, которую можно описать следующей физической моделью.

При КТС металл в зоне сварки нагревается, в результате чего в ее объеме V Д (рис. 2.32), деформируемом пластически (выделен темным цветом), он переходит в пластическое состояние, а в объеме ядра V Я , нагретом выше температуры плавления, он расплавляется. Вследствие этого объём металла в зоне сварки увеличивается (проявляется так называемый эффект дилатации) за счет температурного расширения, а в объеме ядра — дополнительно и за счет изменения фазового состояния. Своеобразная форма зоны формирования соединения, неравномерный нагрев металла в ней, его дилатация и разупрочнение, а также схема силового воздействия на детали определяют неравномерное распределение нормальных и касательных напряжений в контактах и в объеме зоны сварки. В результате наблюдается направленное течение металла (показано стрелками), в основном, к границам контакта деталь–деталь. Причем интенсивные пластические деформации в основном локализованы в объёме V Д1 (заштрихован косой линией), расположенном в области уплотняющего пояска, диаметр d Д которого на 5...15 % превышает диаметр d П уплотняющего пояска. Объём же металла V Д2 (заштрихован сеткой), расположенный над ядром, «проседает» в объём ядра практически не деформируясь.

Такой характер пластических деформаций приводит к образованию рельефа в контакте деталь–деталь (уплотняющего пояска) диаметром d П , а также зазоров между деталями в нахлестке и вмятин от электродов сВМ на внешних поверхностях.

Таким образом, за цикл сварки в зоне формирования соединения последовательно во времени и одновременно протекает ряд термодеформационных процессов, например, таких как деформирование свариваемых деталей и их сближение, микроскопические деформации металла в контактах и макроскопические в зоне формирования соединения, формирование механических и электрических контактов, нагрев и расплавление металла, его кристаллизация на последней стадии формирования соединений, которые и определяют конечный результат сварки.

3. Математические модели основных термодеформационных процессов, протекающих в зоне точечной сварки

Нагрев и пластическая деформация металла в зоне сварки относятся к термодеформационным процессам, наиболее значимо влияющим на устойчивость процесса формирования соединения и во многом предопределяющим его конечные результаты. Это можно считать признанным всеми специалистами. Если нагреву посвящено много экспериментальных и теоретических исследований, предложено большое количество расчетных методик определения его параметров, как аналитических, так и численных, то сведения о процессах пластических деформаций носят в основном самый общий характер. Практически отсутствует их математическое описание (см. раздел 2.5). Вместе с тем, очевидно, что при отсутствии математических моделей этих процессов, методик расчетов количественных значений их параметров, ни о каком научно обоснованном программировании параметров режима точечной сварки не может быть и речи, не говоря уже о создании систем автоматического проектирования технологических процессов (САПР ТП).

Оптимизация параметров силового и энергетического воздействия на детали в современных способах КТС, в том числе и с программированием их параметров режима, затруднительна без определения количественного соотношения между параметрами основных термодеформационных процессов, протекающих в зоне формирования сварного соединения. Определение же количественного соотношения между параметрами основных термодеформационных процессов, протекающих в зоне сварки, невозможно без формального математического их описания, то есть без разработки их математических моделей.

Точное описание формальным языком изменения параметров термодеформационных процессов, протекающих в зоне формирования соединения, а также их взаимозависимости и взаимовлияния, затрудняются их сложностью и динамичностью. Поэтому наиболее рациональным методом решения поставленной задачи является метод идентификации реальных процессов с идеализированными моделями, которые представляется возможным описать математическим языком.

Разработка математической модели термодеформационного равновесия процесса точечной сварки по существу представляет собой математическое описание физической модели процесса формирования соединения, описанной выше в п. 2.5.2. Иными словами, математическая модель термодеформационного равновесия процесса КТС — это математическое описание напряженно-деформированного состояния металла в зоне сварки при формировании точечного сварного соединения. Она основана на результатах экспериментальных исследований процесса сварки, в частности, на вышеуказанном выводе о том, что между тепловыми и деформационными процессами в зоне формирования соединения должно существовать определенное равновесное соотношение, которое зависит от режима сварки, теплофизических свойств металла и геометрических параметров деталей и электродов. При этом подразумевается, что при условиях формирования точечного сварного соединения, близких к условиям оптимальным, система электрод–детали–электрод в силовом отношении замкнута, и силы, действующие на каждый ее элемент, уравновешены в любой момент процесса сварки. Нагрев, разупрочнение, плавление, дилатация и пластическая деформация металла в зоне сварки не нарушают этого равновесия. Выплески же или непровары являются следствием нарушения этого равновесного состояния, вызванного воздействием каких-либо возмущающих факторов. Экспериментальным подтверждением сказанного выше являются как пространственная неподвижность зоны сварки, так и изменение площадей контактов деталь–деталь и электрод–деталь в процессе формирования соединения.

3.1 Термодеформационное равновесие силовой системы
электрод - детали – электрод при традиционных способах сварки

Математическая модель [205, 206], описывающая силовое взаимодействие свариваемых деталей и электродов в контактах деталь–деталь и электрод–деталь, по существу представляет собой математическое описание силового равновесия деталей в процессе формирования соединения при контактной точечной сварке.

Рассмотрим элемент системы электрод–детали–электрод — одну свариваемую деталь, в равновесии в какой-либо фиксированный момент времени t после момента t НП начала плавления металла в контакте деталь–деталь до момента t СВ окончания его нагрева, т. е. при (рис 3.1). Равновесие свариваемой детали в дискретный момент t будем рассматривать в цилиндрической системе координат.

Пусть в какой-либо дискретный момент времени t распределение нормальных, относительно плоскости свариваемого контакта, напряжений по площади S Э t контакта электрод–деталь описывается функцией:

[1] , (3.1)

а по площади S П t свариваемого контакта, внутри контура уплотняющего пояска, функцией:

. (3.2)

В свариваемых деталях наблюдается растекание сварочного тока и угол α между линиями тока j в приконтактных областях деталей меньше 180°. А поскольку ток в них протекает в противоположных направлениях, то между этими линиями тока действуют элементарные электродинамические силы отталкивания Fj , которые стремятся раздвинуть и свариваемые детали. Пусть их распределение по площади Sjt растекания тока, приведенное к плоскости свариваемого контакта и направленных нормально к ней, описывается функцией:


. (3.3)

В работах [3, 16, 207] показано, что давление расплавленного металла в ядре имеет градиент по координате r , который обусловлен воздействием магнитного поля на жидкий металл. Поэтому распределение давления по площади S Я t ядра в плоскости свариваемого контакта в общем случае следует описывать функцией координат r и φ :

. (3.4)

При сближении свариваемых деталей из-за упругой их деформации в них возникают напряжения. Составляющие этих напряжений, нормальные к плоскости свариваемого контакта, препятствуют сближению свариваемых деталей, т. е., как показано в п. 2.1.2, они уравновешивают часть усилия сжатия электродов. Пусть распределение этих напряжений по цилиндрической поверхности, образующая которой параллельна оси электродов, а направляющей является граница контакта деталь–деталь, и ограниченной плоскостями поверхностей свариваемых деталей, описывается функцией:

. (3.5)

Для того, чтобы эта система, имеющая одну степень свободы — возможность перемещения в направлении оси электродов, находилась в равновесии, необходимо, чтобы сумма проекций всех сил на координату z равнялась нулю. В данном случае это условие равновесия можно записать следующим образом:

,

где β1 , β2 , β3 , β4 , β5 — углы между соответствующими элементарными силами и координатой z , в данном случае равные нулю, потому что по принятым в зависимостях (3.1)…(3.5) условиям элементарные силы нормальны к плоскости свариваемого контакта; dS площадь действия элементарной силы.

При условии равенства нулю углов β соответствующие значения будут равны единице. Тогда написанное выше уравнение равновесия можно преобразовать к следующему виду:

. (3.6)

Условие равновесия (3.6) фактически является интегральным и в цилиндрической системе координат, в интегральной форме может быть записано следующим образом:

, (3.7)

где Lt – контур контакта деталь–деталь.

Данное интегральное условие равновесия включает в себя два важных взаимосвязанных технологических параметра: напряжения в контакте электрод–деталь — , и площадь уплотняющего пояска — S П t , т. е. параметры внешнего силового воздействия на зону сварки и деформирования в ней металла. Это дает возможность при известных остальных его составляющих, выражающих параметры внутренних термодеформационных процессов, определять величину одного из них при заданном значении другого. Кроме того, все составляющие условия (3.7) зависят от термодинамического состояния металла в зоне сварки, характеризуемого температурой и фазовым состоянием, а потому описывают изменение и взаимовлияние всех основных термодеформационных процессов, протекающих в зоне сварки. Поэтому его можно назвать «уравнением термодеформационного равновесия процесса контактной точечной сварки».

Точные вычисления непосредственно по уравнению (3.7) весьма затруднительны. Это объясняется отсутствием или сложностью аналитических решений ряда частных задач, входящих в данное уравнение. Например, таких, как распределение напряжений в контактах и их изменение в ходе процесса формирования соединения, определение значений давления в ядре и его градиента в плоскости свариваемого контакта, а также функций, точно описывающих граничные условия и их изменение в процессе сварки. Поэтому для приближенных решений технологических задач уравнение (3.7) целесообразно упростить.

Допущение об осесимметричности зоны формирования соединения при КТС значительно упрощает определение пределов интегрирования. Тогда, для рассматриваемой в равновесии одной детали уравнение (3.7) можно переписать со следующими пределами интегрирования:

, (3.8)

где s толщина свариваемых деталей, d Я t , d П t , d Э t , djt , диаметры соответственно ядра, контакта деталь–деталь, контакта электрод–деталь и площади растекания линий сварочного тока в момент времени t .

Приближенные вычисления значений Fjt показали, что при применяемых режимах сварки электродинамические силы, раздвигающие свариваемые детали из-за растекания в них сварочного тока, очень малы и составляют незначительную часть от сварочного усилия (меньше 0,5 %). Поэтому, при приближенных технологических расчетах этими силами можно пренебречь и 4-й интеграл в (3.8) можно принять равным нулю:

.

Очевидно, что интегрирование напряжений в контакте электрод-деталь по площади этого контакта, при любом их распределении, даст величину, равную усилию сжатия деталей электродами. Поэтому 5-й интеграл в (3.8), выражающий сумму напряжений в площади контакта электрод–деталь, можно принять равным усилию сжатия электродов F Э t в момент времени t :

.

Третий интеграл в (3.8), описывающий сумму напряжений от упругой деформации деталей при их прогибе, после вычислений по цилиндрической поверхности равен усилию F Д t , которое необходимо для сближения свариваемых деталей до их соприкосновения:

.

Усилие F Д t в условиях сварки может достигать 10 % [100]. Оно практически не изменяется в процессе формирования соединения [81] и при выборе режимов сварки может учитываться как постоянная составляющая. При приближенных технологических расчетах величину F Д t можно вычислять по зависимости (2.5).

Приближенные расчеты по зависимостям, приведенным в работах [3, 16, 207] показали, что градиент давления в ядре, обусловленный электродинамическим действием сварочного тока, не превышает 5 % от средней его величины, которая определяется термодеформационными процессами в зоне сварки. Поэтому, с целью упрощения расчетов, можно считать, что градиент давления в ядре отсутствует, т. е. допустить, что давление в ядре постоянно по всему объему и не зависит от координат r и φ . Тогда после вычисления 1-го интеграла в (3.8), который выражает величину усилия F Я t , развиваемого давлением жидкого металла в площади ядра, получаем:

, (3.9)

где РЯ t – среднее значение давления расплавленного металла в ядре;

Напряжения во 2-м интеграле уравнения (3.8), который выражает сумму нормальных напряжений в площади уплотняющего пояска, рационально учитывать через их среднее значение, не зависящее от координат r и φ . По теореме о среднем [208] — среднее значение напряжений в площади уплотняющего пояска σСР t можно выразить следующим образом:

.

Отсюда интеграл, который выражает сумму нормальных напряжений в площади уплотняющего пояска, можно определить следующим образом:

, (3.10)

где F П t усилие в площади уплотняющего пояска.

Тогда интегральное уравнение (3.8) термодеформационного равновесия процесса формирования соединений при традиционных способах КТС можно, с учетом сказанного выше, преобразовать к окончательному виду, удобному для практических расчетов:

, (3.11)

где, для момента времени t , d Я t и d П t – диаметры, соответственно, ядра расплавленного металла и уплотняющего пояска; P Я t – давление расплавленного металла в ядре; σ СР t – среднее значение нормальных напряжении в площади уплотняющего пояска; F Д t – усилие, необходимое для сближения свариваемых деталей до соприкосновения их поверхностей; F Э t – усилие сжатия деталей электродами.

Уравнение термодеформационного равновесия процесса контактной точечной сварки (3.11) позволяет для любого момента процесса формирования соединения решать две задачи.

Первая из этих задач — технологическая. Решение данной задачи позволяет рассчитывать усилие сжатия электродов F Э t , как параметр режима сварки, которое необходимо для формирования уплотняющего пояска заданного диаметра d П t , величину которого можно задавать из условия устойчивого формирования соединения при КТС.

Вторая задача — исследовательская. Ее решение может быть использовано при отработках новых технологий КТС. При решении этой задачи, наоборот, для любого момента процесса формирования соединения, по уравнению (3.11) можно рассчитывать диаметр уплотняющего пояска d П t при заданном значении усилия сжатия электродов F Э t .

Очевидно, что оба этих решения имеют большое практическое значение. Первое решение позволяет определить требуемое усилие сжатия электродов при выборе режимов сварки, а второе — моделировать термодеформационные процессы, протекающие в зоне сварки. При этом, для решении любой из этих задач необходимо для любого момента процесса сварки определять все составляющие уравнения (3.11), т. е. количественно определять параметры основных термодеформационных процессов, которые протекают в зоне формирования соединения.

3.2. Термодеформационное равновесие силовой системы
электрод-детали-электрод при контактной точечной сварке
с обжатием периферийной зоны соединения

Способы КТС с обжатием периферийной зоны соединений, описанные в п. 1.2.3, в которых обжатие осуществляют в области уплотняющего пояска (см. рис. 1.7), не нашли широкого практического применения в основном из-за относительно низкой стойкости токопроводящего электрода. Причиной этого является то, что обжатие деталей в области уплотняющего пояска вызывает необходимость уменьшения внутреннего диаметра обжимной втулки и, следовательно, наружного диаметра рабочей части токопроводящего электрода до значений, близких к диаметру ядра, которые значительно меньше стандартных. В результате токопроводящий электрод перегревается из-за высокой плотности тока и ухудшения условий его охлаждения вследствие уменьшения площади сечения его токопроводящей части. В связи с этим был разработан способ КТС с обжатием периферийной зоны соединений вне контура уплотняющего пояска, в котором силовое взаимодействие деталей значительно сложнее, чем при традиционных способах КТС, и уже не описывается уравнением (3.11).

3.2.1. Способ контактной точечной сварки с обжатием периферийной зоны соединений вне контура уплотняющего пояска

Способ контактной точечной сварки с обжатием периферийной зоны соединений вне контура уплотняющего пояска [209] заключается в том, что в нем, как и в описанных выше, соединяемые детали сжимают токопроводящими электродами, прикладывают вокруг них дополнительное периферийное усилие для обеспечения сжатия в уплотняющем пояске и пропускают импульс сварочного тока. Отличается он тем, что дополнительное периферийное усилие прикладывают вне контура уплотняющего пояска.

При осуществлении данного способа КТС токопроводящие электроды 1 (рис. 3.2) с диаметром рабочей части D Э и обжимные втулки 2 с внутренним диаметром d ВВ и наружным диаметром d ВН сжимают свариваемые детали 3, соответственно, усилиями токопроводящих электродов F Э и обжимных втулок F О . В плоскости сварочного контакта эти усилия уравновешиваются силой F Я , развиваемой давлением расплавленного металла в ядре (диаметром d Я