Главная              Рефераты - Производство

Научная работа: Метод А.Ф. Смирнова для определения критических нагрузок в стержневых системах

МЕТОД А.Ф.СМИРНОВА ДЛЯ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКИХ НАГРУЗОК В СТЕРЖНЕВЫХ СИСТЕМАХ

1. ОСНОВНЫЕ ПРЕДПОСЫЛКИ

1)Нагрузка приложена только в узлах стержневой системы и до потери устойчивости не вызывает изгиба стержней.

2)Материал работает в упругой стадии.

3)Перемещения при потере устойчивости малы по сравнению с размерами конструкции

4)При определении перемещений учитываются продольные силы только в тех стержнях,в которых они возникали до потери устойчивости.

Примечание: Если критические нагрузки определяются в статически неопределимой системе, то ее статическая неопределимость раскрывается методом сил.

Основная система выбирается в момент потери устойчивости .

Основная система-это статически определимая и геометрически неизменяемая система, полученная из заданной путем удаления лишних связей в деформированном состоянии.

Основную систему рекомендуется выбирать таким образом, чтобы сжато-изогнутые элементы не имели смещений вдоль своих осей.

1.2.Алгоритм расчета по методу А.Ф.Смирнова

Рассмотрим упругую систему, загруженную узловыми нагрузками.

В момент потери устойчивости система характеризуется наличием сжато-изогнутых и изогнутых элементов.

Деформированное состояние системы характеризуется вектором отклонений Y, имеющим размер(m×1):

Y1

Y2

Y3

= ...

(m×1) ...

Yn ,

где m-число ненулевых координат вектора отклонений ,которые задаются только для сжато-изогнутых стержней.

Вектор отклонений можно определить по формуле Мора ,которая в матричной форме имеет вид

(1.1)

При определении перемещений система разбивается на участки. В пределах каждого участка намечаются расчетные сечения по концам каждого участка и в тех точках сжато-изогнутых стержней, перемещение которых подлежит определению.

Обозначим : μ-число расчетных сечений

Для составления My необходимо в основной системе построить эпюры моментов от единичных сил приложенных в направлении искомых перемещений Y1 ,Y2 ,Y3 ...Yn .

Матрица Му имеет размер(μ×m)

Эпюра Эпюра Эпюра … Эпюра

=

(μ×m)

G-размером (μ×μ)-матрица податливости всей системы.

Она формируется из матриц податливости отдельных участков.

Мр - матрица-столбец, элементами которой являются ординаты эпюр изгибающих моментов на тот период времени, когда заданная система находится в критическом состоянии.

Для статически-неопределимых систем при определении Мр используется матричный алгоритм метода сил:

(1.2),

где (1.3)-матрица ,раскрывающая статическую неопределимость системы.

Если заданная система статически определимая ,то матрица превращается в единичную матрицу (μ×μ):

=Е (1.4)

Структура матрицы

Эпюра Эпюра Эпюра … Эпюра

=

(μ×m)

-матрица столбец, элементами которой являются ординаты эпюры моментов ,построенной от действия внешних узловых сил в основной системе ,с учетом ее деформированного состояния.

Ординаты эп. зависят от вектора перемещений y

Получим матрицу в виде:

(1.5),

где: H-числовая матрица размером (μ×m),преобразующая вектор отклонений у в эпюру моментов грузового состояния

Тогда (1.6)

Подставляя (1.6) в (1.1) получим вектор перемещений

(1.7)

Обозначим : =k∙c (1.8),

Где k-общий множитель ,полученный из множителей при перемножаемым матрицах Н и G

Тогда: или ,обозначим (1.9),

где :λ-собственное число матрицы ; -собственный вектор матрицы

Преобразуем (1.9)

(1.10)-УРАВНЕНИЕ УСТОЙЧИВОСТИ МЕТОДА СМИРНОВА,

где ; .

Выражение (1.10) представляет собой систему однородных уравнений относительно ,где матрица составлена из коэффициентов при неизвестных Y1 ,Y2 ,Y3 ...YN .

Уравнение устойчивости (1.10) имеет два решения

1) Вектор перемещений равен 0

Y1 0

Y2 0

Y3 0

= ... = ... (1.11)-начальная форма равновесия

... ...

Yn 0

2) Определитель ,составленный из коэффициентов при неизвестных равен 0.

=0 (1.12)-характеристическое уравнение

Если раскрыть определитель,то получим уравнение m10 порядка,где неизвестным будет λ.

Решение этого уравнения дает значения λ,λ123 …λm .

Минимальное значение Ркр составляет λmax ( )

minPкр = (1.13),

где -наибольшее собственное число характеристической матрицы .

Собственный вектор характеристической матрицы дает форму потери устойчивости.

2 .ПОРЯДОК РАСЧЕТА СИСТЕМ НА УСТОЙЧИВОСТЬ МЕТОДОМ А.Ф.СМИРНОВА

1.Заданная система изображается в критическом деформированном состоянии.

Выявляются сжато-изогнутые и изогнутые элементы, назначается число ненулевых координат вектора отклонений для сжато-изогнутых элементов.

2.Ось системы разбивается на участки .Назначаются расчетные сечения и правило знаков для эпюр изгибающих моментов .

3.Определяется степень статической неопределимости n и, если n>0 выбирается основная система метода сил.

4.Формируются необходимые матрицы .

5.Вычисляется характеристическая матрица

,

где -для статически неопределимых систем;

=Е-для статически определимых систем

6.Решается характеристическое уравнение =0 →

7.Определяется значение критической нагрузки:

minPкр =

3 .ФОРМИРОВАНИЕ МАТРИЦЫ ПОДАТЛИВОСТИ ДЛЯ СТЕРЖНЕВЫХ СИСТЕМ ПРИ РАСЧЕТЕ НА УСТОЙЧИВОСТЬ

Матрица податливости всей системы формируется из матриц податливости отдельных участков и имеет следующую структуру

0

G= Gk

(μ×μ) Gk -матрица податливости участка k

Вид матрицы Gk зависит от типа участка (какую деформацию он испытывает).

1)Участок ,испытывающий только изгиб

G ,

где : l0 -длина любого участка ,принятого за основной

B0 -жесткость любого участка ,принятого за основную

;

2)Участки ,испытывающие деформацию сжатие с изгибом. Для такого участка вид матрицы Gk зависит от того ,на сколько панелей разбита его длина

а)Длина участка разбита на две панели:

-длина участка

-длина панели

;

б)Длина участка разбита на три панели:

; ;

в)Длина участка разбита на четыре и более панелей:

В этом случае общая длина сжато-изогнутого элемента компонуется из подучастков с двумя или тремя панелями. Соответственно и компонуется матрица податливости.

GΙ

Gk =GΙ Ι

4 .ФОРМИРОВАНИЕ МАТРИЦЫ H

Матрица H-числовая матрица размером (μ×m), преобразующая вектор перемещений в эпюру моментов грузового состояния.

;

Для построения матрицы H необходимо определить изгибающие моменты во всех расчетных сечениях основной системы от узловых нагрузок и построить эпюру М0

Эпюра М0 строится со стороны растянутых волокон с учетом деформированного состояния системы.


М0 =

В матрицу H вписываются коэффициенты при перемещениях из каждого уравнения.

5 .РЕШЕНИЕ ХАРАКТЕРИСТИЧЕСКОГО УРАВНЕНИЯ

Существует несколько методов решения характеристического уравнения . Все методы делятся на две группы:

1)Первая –позволяет вычислить все собственные числа( метод Крылова-Лузина и др.)

2)Вторая –позволяет вычислить наибольшее собственное число(и соответственно наименьшее значение критической нагрузки)

К этой группе относится метод последовательных приближений

Метод итераций позволяет вычислить наибольшее собственное число характеристической матрицы .Вместе с определением собственного числа одновременно производится определение собственного вектора, соответствующего этому числу и удовлетворяющего равенству:

,

где -характеристическая матрица

-для статически неопределимых систем

=Е- для статически определимых

- собственное число характеристической матрицы

-собственный вектор матрицы

Порядок решения:

1)Задаемся приближенным вектором перемещений -первое приближение;

2)Вычисляется: ,

где -второе приближение собственного вектора; -первое приближение собственного числа.

Вектор следует сделать нормированным ,т.е. его наибольшую координату надо вынести за знак матрицы в виде множителя .

3)Далее вновь подсчитывается :

и т.д.

4)Повторение процесса продолжается до тех пор ,пока значения координат векторов двух последних приближений не совпадут.

Величина найденная в последнем приближении принимается за искомое

6 .ПРИМЕР.

Определить критическую силу методом А.Ф.Смирнова

; =Е- т.к. система статически определима

= ; ;

;

;

;

=0

=0

С С=
у1 1 0,5
Су1 118,5 30,5
у2 1 0,257
Су2 109,75 25,15
у3 1 0,229
Су3 108,74 24,54
у4 1 0,2257
Су4 108,62 24,46
у5 1 0,225

=108,62

у=

minPкр =