Главная              Рефераты - Медицина

Медицинская аппаратура - реферат

План.

Введение………………………………………………………………………...3

1. Электробезопасность и надёжность медицинской аппаратуры……...4

2. Электроды. Датчики……………………………………………………15

3. Искажения усилителей………………………………………………...18

Заключение…………………………………………………………………….21

Список использованной литературы………………………………………...22

Введение.

Актуальность проблемы электробезопасности физиотерапевтической аппаратуры вызвана наличием у такой аппаратуры рабочей части для воздействия на пациента электрической энергией в различных ее формах.

Применение электрической энергии для лечебных целей всегда связано с возможностью ошибочной дозировки, неправильной последовательностью включения аппарата и другими ошибками медицинского персонала. Всю ответственность за выполнение правил эксплуатации несет медицинский персонал, однако предусмотренные в аппаратуре рациональная схема и конструкция, а также применение средств автоматики должны свести эти опасности к минимуму.

Опасность поражения электрическим током возникает при прикосновении к частям аппарата, находящимся под напряжением. Поэтому главная мера защиты заключается в предотвращении возможности случайного прикосновения к токоведущим частям. Понятие случайное прикосновение означает возможность касания частей изделия, доступ к которым становится возможным без использования инструмента (отвертки, гаечного ключа и т.п.) для демонтажа корпуса аппарата, открытия крышек и люков.

Электробезопасность и надёжность медицинской аппаратуры.

Электробезопасность медицинской аппаратуры – комплексная система мероприятий, осуществляемых при разработке, промышленном выпуске и эксплуатации медицинской аппаратуры и направленных на обеспечение полной электробезопасности для обслуживающего персонала и пациентов. Необходимость их обусловлена возможностью поражающего действия электрического тока, используемого в физиотерапевтических аппаратах либо для лечебного воздействия, либо для обеспечения их энергией.

Обеспечение электробезопасности включает три основные группы мероприятий: защита от прикосновения к находящимся под напряжением частям, защита от напряжения прикосновения, защита пациента.

Одно из основных требований электробезопасности – исключить возможность случайного прикосновения к находящимся под напряжением частям. Поэтому части, находящиеся под напряжением, не должны становиться доступными после снятия кожухов, крышек, задвижек. Исключение делается для патронов ламп накаливания и предохранителей. В аппаратах обязательно должен быть обеспечен автоматический разряд конденсаторов после отключения аппарата от сети. При наличии в аппарате частей, находящихся под напряжением, превышающим 1000 В переменного или 1500 В постоянного тока, на этих частях или рядом с ними должен быть знак высокого напряжения – красная стрела молнии. При наличии в аппарате высоких напряжений следует использовать блокировки, автоматически отключающие аппарат от сети при снятии его кожуха или крышки. Защите от прикосновения к находящимся под напряжением частям содействует и ограничение диаметра (до 12 мм) отверстий в корпусе аппарата.

Для защиты от напряжения прикосновения применяют различные способы. В зависимости от способа защиты физиотерапевтические аппараты, как и все электромедицинские аппараты с внешним питанием, делятся на четыре класса. Классы 0I и I предусматривают защитное заземление или зануление; класс II – защитную изоляцию; класс III – питание от цепи низкого напряжения (ниже 24 В). Класс 0, при котором нет каких-либо дополнительных мер защиты от напряжения прикосновения, кроме основной изоляции, в изделиях медицинской техники недопустим.

Защита пациента в физиотерапевтических аппаратах обеспечивается: выполнением корпусов аппаратов из изолирующего материала; использованием в них различных элементов сигнализации; введением в аппараты автоматических процедурных часов; применением средств контроля за контактом электродов и др.

В зависимости от степени защиты от поражения электрическим током изделия медицинской техники, включая и физиотерапевтические аппараты, подразделяются на следующие типы: Н – с нормальной степенью защиты (например, стерилизаторы, лабораторное оборудование), не находящееся в пределах досягаемости пациента; В – с повышенной степенью защиты (электрокардиографы, ультразвуковые аппараты и др.); BF – с повышенной степенью защиты и изолированной рабочей частью (низкочастотная электролечебная аппаратура, стимуляторы и др.); CF с наивысшей степенью защиты и изолированной рабочей частью (электрокардиостимуляторы). Конечно, различные виды электромедицинской аппаратуры отличаются особенностями обеспечения электробезопасности. Поэтому при эксплуатации приборов и аппаратов необходимо строго руководствоваться правилами (инструкциями), изложенными в документации, прилагаемой к изделиям заводом-изготовителем.

Общее электрическое сопротивление тела между двумя электродами можно представить в виде двух частей существенно отличающихся друг от друга. Это сопротивление кожи и сопротивление внутренних тканей и органов. Сопротивление кожи значительно превосходит сопротивление других тканей. Это объясняется наличием на поверхности ее внешнего слоя (эпидермис) ороговевших клеток. Омертвевшие, обезвоженные клетки рогового слоя имеют удельное сопротивление 106 - 107 кОМ/см. Сопротивление определенного участка кожи зависит от толщины рогового слоя, которая, например, на спине не превышает 0,04 мм, а на ладонях может составлять 0,1 -1,5 мм. Соответственно сопротивление кожи находится в пределах от десятков до сотен килом, приближаясь по своим электрическим свойствам к диэлектрику, обладает значительными емкостными качествами.

Кожа является естественной защитой организма от поражения электрическим током. Во многих случаях при напряжениях в несколько десятков (иногда до сотни) вольт величина тока ограничивается значительным сопротивлением кожи и вместо неизбежной электротравмы происходит знакомый каждому, не оставляющий каких-либо последствий удар током. Однако сопротивление наружного рогового слоя зависит от многих причин и часто падает значительно ниже указанных величин. Особенно сильно сказывается на изолирующих свойствах кожи влажность. Так, например, при длительном мытье рук теплой водой защитные свойства кожи почти полностью исчезают. Это объясняется размягчением рогового слоя, внедрением в него молекул воды, а также открытием многочисленных пор.

В медицинской практике как случайное, так и намеренное увлажнение кожи весьма вероятно. Повышенная влажность может быть вызвана чисто внешними причинами: мытье рук, пролитая жидкость (вода, кровь, моча) и т.п. Медицинский персонал широко использует дезинфицирующие растворы как средство личной гигиены. При многих процедурах тело больного протирают различными жидкими обезжиривающими или дезинфицирующими средствами. Особенно большое значение с точки зрения електробезопасности имеет малое сопротивление кожи под различного рода электродами, накладываемыми на тело с диагностическими или терапевтическими целями. В месте наложения электрода кожу протирают спиртом либо на нее наносят токопроводящую пасту, либо под электрод подкладывают матерчатую прокладку, смоченную изотоническим раствором хлорида натрия (терапия низкочастотными токами) или раствором лекарственных веществ (электрофорез). Во всех указанных случаях сопротивление кожи перестает играть существенную роль в общем электрическом сопротивлении тела больного между электродами.

Кожа может в сильной степени увлажняться и за счет пота, заполняющего потовые протоки и выступающего на поверхности кожи вследствие повышенной окружающей температуры и влажности. Интенсивное потоотделение часто наблюдается и как результат испуга, волнения. Все эти факторы как физиологического, так и психологического происхождения могут значительно снизить сопротивление кожи. Пот уменьшает сопротивление между электродами, наложенными на тело, также за счет заполнения им неровностей тела под электродами, что снижает переходное сопротивление.

Таким образом, в реальных условиях, во многих случаях защитное действие кожи снижается до минимума. В связи с этим при расчетах электрических цепей, связанных с обеспечением электробезопасности, сопротивлением кожи практически пренебрегают.

Электрическое сопротивление внутренних тканей и органов тела отличается значительно большим постоянством, чем сопротивление кожи. Большое количество жидкостей с растворенными в них ионами обусловливает значительную ионную проводимость практически всех тканей (за исключением костных).

Величина сопротивления внутренних тканей зависит от пути тока, т.е. от поперечного сечения тканей, через которые он проходит, и от их длины. Для одного из наиболее распространенных при поражениях путей тока ладонь - ступня установлено, что величина сопротивления внутренних тканей незначительно отличается от 1000 Ом. При этом сопротивление отдельных участков тела по пути тока распределяется неравномерно. Значительная доля общего сопротивления приходится на конечности.

Защита от прикосновений. От прикосновения должны быть защищены части, находящиеся под напряжением выше 42 В. Для электромедицинской аппаратуры, учитывая особенности ее эксплуатации, все находящиеся под напряжением части должны быть защищены от случайного прикосновения. С точки зрения обеспечения электробезопасности важно, чтобы пои касании какой-либо доступной части аппаратуры через тело человека, имеющее электрический контакт с землей или другой доступной частью, не протекал так называемый ток утечки, превышающий допустимое значение.

Основной способ защиты от прикосновения применение корпусов, крышек, щитков и других конструктивных элементов, исключающих доступ к токоведущим частям. Приэтом должна быть обеспечена, с одной стороны, достаточная механическая прочность ограждения, а с другой - изоляция его от этих частей.

Изоляция, отделяющая находящиеся под напряжением части от ограждающих металлических частей, называется основной. В ряде случаев основная изоляция может выполнять и функции защиты от прикосновения, например, изоляция открыто проложенных проводов. Типичные примеры основной изоляции: опорные стойки, панели для монтажа зажимов, изоляция монтажных и обмоточных проводов, изоляция осей тумблеров от их контактов и т.п. К основной изоляции предъявляются достаточно высокие требования. Ее сопротивление после испытаний на влагоустойчивость должна быть не менее 2 МОм.

При обеспечении недоступности для прикосновения находящихся под напряжением частей следует различать «ПОЛНУЮ защиту от прикосновения» и «Защиту от случайного прикосновения».

Полная защита от прикосновения обеспечивает при всех обстоятельствах недоступность токоведущих частей. Коснуться их можно, только нарушив защитную оболочку. Такая защита обеспечивается, если находящиеся под напряжением части закрыты корпусом, который не может быть вскрыт без поломки даже с помощью инструмента. Наиболее распространенным примером полной защиты являются изолированные провода, шнуры.

В медицинских аппаратах полную защиту от прикосновения, как правило, обеспечить не удается, поэтому применяется защита от случайного прикосновения. Такую защиту обеспечивает корпус с крышками или стенками, которые могут быть сняты только с помощью инструмента, например, с помощью гаечного ключа, отвертки.

Применение инструмента представляет собой намеренное действие, на которое защита от случайного прикосновения не может быть рассчитана. Точно также намеренным является касание отверткой, гвоздем либо другим металлическим предметом токов едущих частей через вентиляционные или другие отверстия в корпусе аппарата. Однако при этом должны учитываться реальные условия эксплуатации, при которых касание через отверстие не может быть ненамеренным, случайным или, наоборот, использование отверстия необходимо при регулировке или настройке аппарата.

Опираясь на прибор при проведении процедуры, либо передвигая его с места на место, врач или медицинская сестра может случайно вставить пальцы в отверстия корпуса аппарата. Не исключена такая вероятность и для пациента. При подобном ненамеренном действии должна быть обеспечена электробезопасность, Те. исключено касание токоведущих частей.

Особенностью электромедицинской аппаратуры является наличие у отдельных ее видов так называемой рабочей части - электродов, излучателей датчиков и т.п. С помощью рабочей части низкочастотных электролечебных аппаратов осуществляется воздействие на пациента постоянным или низкочастотным током. При этом рабочая часть - электроды - находятся в непосредственном контакте с телом пациента и, естественно, не могут быть защищены от прикосновения; в то же время напряжение на них может быть весьма значительным.

Безопасность пациента и медицинского персонала обеспечивается в этом случае строгим выполнением всех правил проведения процедуры, подробно указанных в инструкции по эксплуатации аппарата.

В ряде случаев при высоком рабочем напряжении на неизолированных электродах применяют специальные меры, уменьшающие возможность нарушения правил эксплуатации и связанную с этим опасность поражения электрическим током.

Электромедицинскую аппаратуру по степени связи с телом пациента различают на четыре типа:

К типу Н относится аппаратура, не имеющая рабочей части и находящаяся вне пределов досягаемости пациента (лабораторные приборы, стерилизационное оборудование, потолочные светильники и др.).

Аппаратура типа В находится в пределах досягаемости пациента и может иметь рабочую часть, предназначенную для контактирования с телом пациента, за исключением непосредственного контакта с сердцем.

Если рабочая часть такой аппаратуры изолирована от доступных для прикосновения частей, она относится к типу BF.

А аппаратура, предназначенная для непосредственного контакта с сердцем, имеет изолированную рабочую часть и относится к типу CF.

Для изделий всех типов при единичном нарушении (обрыв заземляющего провода для изделий классов 0I и 1 , однополюсное выключение сети для изделий класса Н , ток утечки не должен превышать 0,5 мА. Для изделий без защитного заземления, т.е. класса II, в нормальных условиях наибольшая величина тока утечки составляет 0,25 мА для типа Н и 0,1 мА для типов В и BF. Учитывая особую опасность тока утечки изделий типа CF при отсутствии защитного заземления, его величина для изделий класса II в нормальных условиях не должна превышать 0,05 мА.

Значительный вклад в ток утечки на корпус вносит трехжильный сетевой шнур. Особенно существенным этот вклад становится, если длина шнура по каким-либо причинам необычно велика (более 3- 4 м .). В этом случае каждый метр сетевого шнура вносит дополнительный ток vтечки около 2,5 мкА (при напряжении фазы питающей сети 220 В). Поэтому при эксплуатации медицинской техники категорически запрещено применение удлинителей.

Ограничение тока утечки до допустимых величин непосредственно связано с обеспечением достаточных путей тока утечки и воздушных зазоров. Сопротивление изоляции между токами идущими и доступными для прикосновения частями определяется не только удельным сопротивлением материала, из которого изготовлена изоляция, и его толщиной, но и расстоянием между этими частями по поверхности изолятора и по воздуху.

Загрязнение поверхности изоляции, покрытие ее пылью, грязью, влагой, обладающими хорошей проводимостью, является наиболее частой причиной пробоев, либо недопустимого увеличения тока утечки.

Основным средством защиты от поражения электрическим током является обеспечение недоступности находящихся под напряжением частей. Однако одна эта защита не может обеспечивать необходимого уровня электробезопасности. Главная причина этого заключается в том, что основная изоляция, т.е. изоляция токоведущих частей от корпуса, крышек и других средств защиты от прикосновения имеет ограниченную надежность.

Во время эксплуатации под влиянием процессов старения, механических, тепловых и других воздействий изоляционные качества материалов, применяемых для выполнения основной изоляции, ухудшаются. Неправильная эксплуатация аппаратуры, проникновение в неё влаги, пыли, грязи ускоряют износ изоляции. Все эти причины могут в конечном счете привести к нарушению, пробою основной изоляции и как следствие этого появлению опасных напряжений на доступных. металлических частях.

В случае возникновения пробоя изоляции между сетевой цепью и корпусом аппарата говорят о «замыкании на корпус». При замыкании на незащищенный корпус в нем возникает напряжение относительно земли. Человек, касающийся такого корпуса, оказывается включенным в цепь замыкания.

Падение напряжения на сопротивлении тела человека, так называемое напряжением прикосновения, зависит от многих причин, главным образом от изоляции человека от земли и соединенного с ней оборудования. Так, если человек стоит на полу с хорошими изолирующими свойствами или одет в обувь с резиновой подошвой, напряжение прикосновения составит только часть от напряжения на корпусе относительно земли. При расчете напряжения прикосновения основное значение имеет сопротивление пола. Сопротивление обуви, которая может иметь сырую кожаную подошву, как правило, не учитывается.

Дощатые, паркетные полы имеют электрическое сопротивление, составляющее сотни килоом, что достаточно для снижения напряжения прикосновения до допустимой величины.

Однако, влага на полу (вода, реактивы, кровь, моча и др.) уменьшает его сопротивление в сотни раз, лишает пол практически полностью его защитных свойств. Во взрывоопасных помещениях (операционная) полы намеренно выполняются из токопроводящего материала для снятия электростатических зарядов. Такой пол также не может обеспечить существенного уменьшения напряжения прикосновения.

Даже при наличии пола с высоким электрическим сопротивлением прикосновение к корпусу аппарата с нарушенной изоляцией представляет серьезную опасность. Это объясняется большим количеством аппаратуры и оборудования в медицинских помещениях, в связи с чем приходится считаться с возможностью одновременного прикосновения к аварийному аппарату и соединенному с землей оборудованию. При этом защитное действие пола не имеет места, а напряжение прикосновения равно полному напряжению между корпусом поврежденного аппарата и землей. Таким образом, рассматривая появление напряжения на доступных частях аппаратуры и говоря о напряжении прикосновения на этих частях, имеют в виду наихудший случай одновременного касания этих частей и заземленного предмета.

Заземление старейшая мера защиты от напряжений, возникающих на доступных металлических частях аппаратуры, из-за соединения с ними сетевой цепи. Такое соединение может возникнуть в результате нарушения основной изоляции (замыкание на корпус), при каких-либо поломках деталей, обрывах проводов и при других аварийных обстоятельствах.

Идея защитного заземления чрезвычайно проста. В результате соединения с сетевым проводом доступные части оказываются под напряжением относительно земли, с которой источник сетевого напряжения соединен непосредственно (глухое заземление одного из фазных проводов однофазной сети или нейтралли трехфазной сети), либо через сопротивление изоляции и распределенную емкость сетевых проводов (сети, изолированные от земли). Чтобы уменьшить напряжение, под действием которого может оказаться человек, коснувшись таких доступных металлических частей (корпус аппарата), они соединяются с помощью специального низкоомного заземляющего устройства с землей.

При замыкании на зануленный корпус в системе зануления, имеющей только заземление нейтрали, напряжение на нулевом проводе по отношению к земле имеет наибольшую величину в месте замыкания. Это же напряжение имеется и на участках нулевого провода, лежащих дальше от нейтрали. По мере приближения к нейтрали напряжение на нулевом проводе уменьшается (линейно с расстоянием), т.к. снижается сопротивление оставшейся до нейтрали части провода. Для того, чтобы увеличить ток короткого замыкания и одновременно уменьшить падение напряжения на нулевом проводе, его сопротивление должно быть возможно малым. Для уменьшения напряжения на зануленных корпусах в случае нарушения изоляции, а также при обрыве нулевого провода он должен иметь повторное заземление.

В физиотерапевтических и рентгеновских кабинетах, операционных нулевой провод должен повторно заземляться на групповых щитах. Сопротивление повторных заземлений должно быть не более 10 Ом. При наличии повторного заземления напряжение на нулевом проводе относительно земли при замыкании на корпус будет значительно меньше, чем без него. Еще более важно повторное заземление в случае обрыва нулевого провода. Если нулевой провод заземлен только за счет рабочего заземления нейтрали (повторное заземление отсутствует), то напряжение на всех зануленных корпусах на месте обрыва провода при пробое в одном из них равно фазному. Весьма существенно, что напряжение соизмеримое с фазным, будет иметь место на защищенных корпусах и при исправных аппаратах. Напряжение на корпусах в этом случае возникает за счет нагрузок, подключенных между фазными и нулевым проводом. Повторное заземление уменьшает напряжение на корпусах при обрыве нулевого провода. Напряжение уменьшается в соответствии с соотношением сопротивлений заземления нейтрали и повторного заземления, т.е. аналогично тому, как это имеет место в сети с заземленной нейтралью при защитном заземлении.

Электроды. Датчики.

Важнейшим общим требованием, предъявляемым к различным электродам, является требование минимума потерь полезного сигнала, особенно на переходном сопротивлении электрод – кожа, которое нужно стремиться сделать наименьшим. Величина переходного сопротивления зависит от типа металла, из которого изготовлен электрод, свойств кожи, площади её соприкосновения с электродом и от проводимости проводящей среды между ними. Переходное сопротивление уменьшается также с увеличением площади контакта электрод – кожа. Переходное сопротивление между чистой сухой кожей и электродом измеряется сотнями килоом. Для его уменьшения между кожей и электродом обычно прокладывается марлевая салфетка, смоченная физиологическим раствором. При этом переходное сопротивление снижается до десятков килоом. В последнее время чаще применяют специальные проводящие электродные пасты, которые дают лучший результат, чем простые электролиты. Существует множество типов металлических электродов. В качестве материала для их изготовления применяются золото, платина, серебро, палладий, нержавеющая сталь, сплавы с иридием и др. металлы и химические соединения. Причём, вопрос о влиянии металла и способа обработки на характер получаемых результатов до сих пор остаётся предметом постоянной дискуссии.

Сопротивление электролита и поляризация электродов ограничивают ток в гальваническом элементе. Для локальных элементов на поверхности металла, электроды которых тесно сближены, сопротивление электролита обычно является второстепенным фактором по сравнению с более значимым — поляризацией.

Известны различные способы закрепления готового электрода на кожном покрове с помощью лент, эластичных бинтов, с помощью вакуума, путем приклеивания. Все эти способы не обеспечивают надежного контакта контактирующей поверхности электрода с кожным покровом из-за различной их конфигурации.

Известен способ, устраняющий указанный недостаток, при котором закрепление электрода происходит одновременно с его сборкой. Этот способ заключается в том, что формируют электродное контактное вещество, переводят его в жидкое состояние, наносят на участок кожного покрова, накладывают на вещество токопроводящий контакт и добиваются его удержания при отвердении контактного вещества (4), выбранный в качестве прототипа. Этот способ требует больших трудозатрат, что обусловлено тем, что электродное контактное вещество, сформированное, например, на основе гипса, переводят в жидкое состояние путем разведения водой. Отвердение же вещества происходит при его высыхании. Этот факт также определяет недостаточную надежность контакта.

Известно электродное контактное вещество гель на основе крахмала, агар-агара. Это вещество используется для улучшения проводимости при наложении стационарных электродов и не позволяет закрепить токопроводящий контакт без дополнительных крепежных элементов.

Известно электродное контактное вещество, выполненное на основе гипса. Это вещество предназначено для приготовления электрода непосредственно на кожном покрове пациента. Однако при закреплении электрода с использованием этого вещества не обеспечивается достаточная надежность контакта, требуется много времени для отвердения вещества.

Известно электродное контактное вещество, представляющее собой эластичный полимер, включающий в состав желатин фотографический, деионизированную воду, хлористый натрий, спиртовой раствор фурацилина и глицерин .

Однако это вещество не обладает достаточными адгезивными свойствами при закреплении электрода непосредственно на кожном покрове пациента, что снижает надежность контакта, уменьшается комфортность.

Техническим результатом изобретения является снижение трудозатрат при закреплении электрода, повышение надежности и комфортности процедуры для пациента.

Для этого электродное контактное вещество формируют в виде эластичного полимера, переводят его в жидкое состояние путем нагрева до оплавления, наносят на участок кожного покрова при 42-45оС, а удержания токопроводящего контакта добиваются при охлаждении контактного вещества до температуры кожного покрова, приводящей к его отвердению за счет полимеризации.

Искажения в усилителях.

Искажения в усилителях возникают различных видов.

Частотные искажения. Чем шире диапазон частот колебаний, которые нормально усиливаются усилителем, тем меньше искажения. Идеальный усилитель должен в пределах того диапазона частот, на который он рассчитан, усиливать одинаково. Практически каждый усилитель усиливает различные по частоте колебания неодинаково, вследствие чего нарушается правильное соотношение между звуками различных частот. Неодинаковое воспроизведение колебаний различной частоты наpывается частотными (или линейными) искажениями.

Показателем частотных искажений служит амплитудно-чатотная или короче, частотная характеристика, изображающая ависимость коэффициента усиления k усилителя от частоты силиваемых колебаний f.

Частотные искажения вызваны неидеальностью амплитудно-частотной характеристики системы обработки и передачи сигнала. Показателем степени частотных искажений, возникающих в каком-либо устройстве, служит неравномерность его амплитудно-частотной характеристики, количественным показателем на какой-либо конкретной частоте спектра сигнала является коэффициент частотных искажений.

Нелинейные искажения. Если на вход усилителя подано синусоидальное напряжение, то усиленное напряжение на выходе будет не синусоидальным, а более сложным. Оно состоит из ряда простых синусоидальных колебаний — основного и высших гармоник. Таким образом, усилитель добавляет лишние гармоники, которых не было на входе усилителя.

Фазовые искажения вызваны неидеальностью фазо-частотной характеристики системы обработки и передачи сигнала. Искажения, вызванные нарушением фазовых соотношений между отдельными спектральными составляющими сигнала при передаче по какой-либо цепи.

Динамические искажения вызваны неидеальностью динамических харктеристик (быстродействие, перерегулирование и т. д.) системы обработки и передачи сигнала. Искажения формы сигнала из-за ограниченной скорости нарастания выходного напряжения при быстрых изменениях входного напряжения.

В зависимости от характера проявления все помехи, возникающие во входных цепях УБС, делятся на разностные (дифференциальные) и синфазные. Разностная помеха представляет собой разность потенциалов между входными проводниками УБС, вызванную действием этой помехи, и не может быть отделена от полезного сигнала, если их частотные спектры перекрываются. Синфазная помеха представляет собой одинаковые потенциалы на обоих входах УБС.

В зависимости от характера возникновения помехи во входных цепях могут быть обусловлены различными причинами:

Наведенные помехи. Биоэлектрические сигналы (биопотенцилы) обычно имеют весьма малый уровень (порядка мкВ или мВ). Причем электроды соединяются с помощью относительно длинных проводов с источником сигнала, имеющим высокое внутреннее сопротивление и занимающим в пространстве значительный объем. По причинам различного происхождения (в основном за счет полей рассеяния) в линию связи индуцируется электрический сигнал, который может в десятки и сотни раз превышать отводимый биопотенциал. По своей структуре по отношению к симметричному входу УБС этот наведенный сигнал является обычно синфазным в отличие от полезного (нормального) сигнала, который является противофазным. Основный местом наведения синфазной помехи служит вход УБП.

Наводки от источников возбуждающего напряжения. При изменении ряда физиологических параметров (дыхания, давления, температуры и др.) используются различного типа датчики с дополнительными источниками возбуждения, которые также могут явиться причиной возникновения помех. Примером этого может служить мостовая измерительная схема, в которой на зажимах, подключаемых к измерительному прибору, относительно нулевого провода источника питания (генератора) возникает напряжение, равное половине напряжения источника.

Гальваническая ЭДС и поляризация электродов. На границе электрод-поверхность отведения возникает гальваническо-поляризационная ЭДС. Эта ЭДС может появляться как на сигнальных, так и "земляном" электродах, приводя к возникновению мешающего сигнала.

Физиологические помехи. Этот вид помех, как уже отмечалось, обусловлен многосвязностью организма, в результате чего в точках отведения кроме полезного сигнала всегда присутствуют помехи от соседних органов и тканей.

Следует отметить, что большинство рассмотренных помех (включая такие физиологические помехи, как кожные потенциалы) относятся к синфазным сигналам, т. е. сигналам, являющимся по отношению к симметричной линии связи (в данном случае по отношению ко входу УБС) идентичными как по амплитуде, так и по фазе. В отличие от такой помехи полезный сигнал является дифференциальным.

Заключение.

Физиотерапевтические методы получили широкое применение при лечении многочисленных заболеваний. Особенностью физиотерапии является применение большой номенклатуры достаточно сложных физиотерапевтических аппаратов, предусматривающих воздействие на пациента различных видов энергии, преобразуемой с использованием большого числа физических и физико-химических явлений и процессов.

Воздействие физических факторов, действующих на пациента и медицинский персонал, в виде выходных характеристик физиотерапевтических аппаратов, обычно нормируются в медицинских методиках (руководящих документах) заданием значения физической величины, параметра, мощности, интенсивности (удельной мощности) воздействия и дозы (количество поглощенной энергии).

Несоблюдение норм воздействия приводит к уменьшению физиотерапевтического эффекта и (или) может оказаться вредным и даже опасным.

Кроме того, при использовании некоторых физических факторов возникают побочные явления, оказывающие вредные воздействия на пациентов (в меньшей степени) и на медицинский персонал (в большей степени). Предельно допустимые уровни (ПДУ) этих воздействий нормируются санитарными правилами и нормами (СанПиН) и гигиеническими нормативами (ГН).

Список использованной литературы.

1. Ремизов А.Н… Медицинская биологическая физика.М.:Дрофа, 2004, глава 1-18.

2. Ремизов А.Н. Медицинская и биологическая физика, 1999,2003,Глава 20-22

3. Байзаков У.А….Медицинская техника.Алматы.:Бiлiм,2005,глава I