Главная              Рефераты - Медицина

Литература - Другое (книга по генетике) - реферат

ВВЕДЕНИЕ

Если век Х1Х по-праву вошел в историю мировой цивилиза-

ции, как Век Физики, то стремительно завершающемуся веку ХХ,

в котором нам посчастливилось жить, по всей вероятности, уго-

товано место Века Биологии, а может быть и Века Генетики.

Действительно, за неполных 100 лет после вторичного открытия

законов Г. Менделя генетика прошла триумфальный путь от на-

турфилософского понимания законов наследствености и изменчи-

вости, через экспериментальное накопление фактов формальной

генетики к молекулярно-биологическому пониманию сущности ге-

на, его структуры и функции. От теоретических построений о

гене как абстрактной единице наследственности к пониманию его

материальной природы как фрагмента молекулы ДНК, кодирующей

аминокислотную структуру белка, до клонирования индивидуаль-

ных генов, создания подробных генетических карт человека и

животных, идентификации генов, мутации которых сопряжены с

тяжелыми наследственными недугами, разработки методов биотех-

нологии и генной инженерии, позволяющих направленно получать

организмы с заданными наследственными признаками, а также

проводить направленную коррекцию мутантных генов человека, то

есть генотерапию наследственных заболеваний. Молекулярная ге-

нетика значительно углубила наши представления о сущности

жизни, эволюции живой природы, структурно-функциональных ме-

ханизмах регуляции индивидуального развития. Благодаря её

успехам начато решение глобальных проблем человечества, свя-

занных с охраной его генофонда.

Естественно, что возможность манипуляции с индивидуаль-

ными генами человека и животных еще недостаточна для понима-

ния функции всего генома, его организации вцелом, взаимо-

действия его частей в обеспечении всего многообразия механиз-

мов онтогенеза, то есть развития одной клетки до целого орга-

низма. Если добавить к этому, что в геноме любого вида за-

писана не только программа индивидуального развития, но зако-

дирована и вся эволюция вида, то есть его филогенез, стано-

вится понятным насколько логичной и методически своевременной

явилась Международная научная программа "Геном человека". На-

ряду с аналогичными программами для других видов (лаборатор-

ные мыши, нематоды) программа Геном человека, начатая около

10 лет назад, уже к 2 000 году позволит полностью расшифро-

вать первичную структуру ДНК, то есть идентифицировать все

гены человека, их регуляторные элементы. Захватыающая Одиссея

о наследственности, которой и является эта программа, безмер-

но расширит наши представления о структуре и функции генома,

его эволюции, откроет горизонты столь увлекательного, а, воз-

можно, и не менее опасного направленного воздействия человека

на геном растений, животных и, что особенно рискованно, на

свой собственный геном. Важно осознать, что это не завтрешний

день фундаментальной науки, не отдаленные абстракции, но день

сегоднешний. Он уже наступил и стал реальным независимо от

нас, и, если не быть к нему готовым концептуально и методи-

чески, то пройдет помимо нас.

Предлгаемая вашему вниманию книга, действительно,

представляет собой введение в молекулярную генетику

наследственных болезней и рассчитана на достаточно широкую

аудиторию медиков и биологов. Для большинства из уже состояв-

шихся специалистов в этих областях - это реальная возможность

для самообразования, которой, увы, с годами мы так часто пре-

небрегаем, запутавшись в повседневных заботах. Для студентов

биофаков и особенно для студентов-медиков - эта книга вполне

может рассматриваться в качестве учебного пособия по молеку-

лярным основам медицинской генетики. Однако, и для первых и

для вторых, по глубокому убеждению авторов, много лет отдав-

ших внедрению достижений молекулярной биологии в медицинскуюя

практику, книга может служить в качестве справочного руко-

водства по молекулярной генетике человека. Действительно, ни

одна клиническая дисциплина (за исключением, может быть,

службы организации здравоохранения) не мыслима сегодня без

знаний и определенных навыков по молекулярной генетике. Ни

один биолог, занятый вопросами наследственности, изменчи-

вости, онтогенеза или эволюции независимо от конкретного био-

логического объекта, не может игнорировать человека, как од-

ного из пока немногих биологических видов с полностью

расшифрованной структурой генома. Быстро набирающая силы мо-

лекулярная медицина, преподование азов которой все еще явно

недостаточно для будущих врачей, на самом деле представляет

собой принципиально новый качественный уровень в понимании

вопросов этиологии, патогенеза, а, следовательно, и лечения

многих болезней, как наследственной моногенной, так и муль-

тифакториальной природы.

По нашему мнению, не только современный врач и специа-

лист-биолог, но и каждый образованный человек сегодня должен

знать о триумфе Международного Научного Сообщества в выполне-

нии программы Геном человека, в результате которой успешно

расшифровываются все гены человека, каждый из которых, будучи

выделенным из организма и проклонированным может выступать в

качестве лечебного препарата для генотерапии. О том, что уже

сегодня идентифицировано на генетических картах более 5 000

структурных генов и свыше 60 000 пока неизвестных смысловых и

анонимных ДНК последовательностей. О том, что всего за 5 лет

после первых успешных попыток введения чужеродных маркерных

генов в клетки человека in vivo, число уже одобренных для

клинических испытаний программ по генной терапии наследствен-

ных заболеваний достигло более 100! Эти итоги представляются

особенно впечетляющими если учесть, что согласно данным Все-

мирной Организации Здравоохранения около 2,4% всех новорож-

денных на земном шаре страдает теми или иными наследственными

нарушениями; около 40% ранней младенческой смертности и инва-

лидности с детства обусловлены наследственной патологи-

ей. Нельзя не упомянуть о реальных достижениях молекулярной

генетики в расшифровке наследственных факторов таких бичей

человечества как ишемия сердца, атеросклероз, диабет, онколо-

гические и инфекционные заболевания. Адекватно воспринимать

происходящую на наших глазах революцию в биологии и в медици-

не, уметь воспользоваться её заманчивыми плодами и избежать

опасных для человечества соблазнов - вот что необходимо се-

годня и врачам, и биологам, и представителям других смежных

специальностей, и просто образованному человеку.

Именно эта цель, эта сверхзадача, поставлена перед дан-

ной монографией, восполняющей, по мнению авторов, наметив-

шийся в отечественной научной литературе пробел в области мо-

лекулярных аспектов медицинской генетики и генетики человека.

Отдельные обзоры, монографии (Шишкин, Калинин, 1993), пере-

водная литература по молекулярной биологии и даже обстоятель-

ные сводки, подводящие ежегодные итоги работ по программе

"Геном человека" достаточно фрагментарны и касаются лишь от-

дельных аспектов проблем генодиагностики и генотера-

пии. Рассчитаны преимущественно на специалистов по молекуляр-

ной биологии. Задача данной монографии не только осветить

современное положение дел в молекулярной диагностике и лече-

нии наследственных болезней методами генной терапии, но,

главным образом, подготовить читателей, прежде всего врачей и

биологов, к пониманию и восприятию этой методически и концеп-

туально достаточно сложной обасти генетики.

Для достижения поставленной цели нам представлялось ло-

гичным начать изложение материала с описания структуры и сов-

ременных методов анализа ДНК, с общих представлений о её кло-

нировании, секвенировании, геномных библитеках (Глава I).

Глава II полностью посвящена структуре генома человека, новой

трактовке понятия "ген", генным семействам, вариабильным

структурам генома. Генетические карты, принципы их построе-

ния, функциональное и позиционное картирование, молекулярные

маркеры, современные достижения в разработке физических и

хромосомных карт человека и в картировании генов, ответствен-

ных за наследственные заболевания рассмотрены в Главе III.

Глава IV целиком посвящена описанию молекулярных методов де-

текции как уже известных мутационных изменений в структурных

генах, так и методов сканирования предполагаемых мутаций оп-

ределенных генов. Описание прямых методов идентификации му-

таций дополнены косвенными методами, основанными на молеку-

лярном маркировании мутантных генов. Все эти методы, как

прямые, так и косвенные, составляют основу молекулярной ди-

агностики моногенных наследственных болезней, широко исполь-

зуются в генетике человека при построении генетических карт,

исследовании проблем филогенеза, в популяционной гентике и в

геномной дактилоскопии, то есть для идентификации личности.

Подробному анализу внутренних (эндогенных) факторов мутаге-

неза, а также принципам популяционного анализа мутаций

посвящена Главе Y. Основные подходы, используемые при изуче-

нии экспрессии генов в модельных бесклеточных системах, на

уровне отдельных клеток и целых организмов приведены в Главе

VI. Принципы молекулярной диагностики наследственных болез-

ней и, в частности, пренатальной диагностики, а также осо-

бенности выявления гетерозиготного носительства в семьях

выского риска, изложены в Главе VII. Небольшая по размеру,

но важная также и для понимания принципов генной терапии

Глава VIII касается искусственного создания генетических мо-

делей наследственных заболеваний, в частности на базе

трансгенных живоных. Описаны используемые при этом методы

направленного переноса чужеродных генов в эукариотические

системы. В Главе IX изложены основы генотерапии наследствен-

ных заболеваний, рассмотрены методы доставки чужеродной ДНК

в клетки человека in vitro и in vivo, преимущества и не-

достатки существующих векторных систем (физических, хими-

ческих и биологических), их конструирование, преспективы

создания "идеальных" векторных систем. Кратко рассмотрены

итоги уже проведенных испытаний по генотерапии тех заболева-

ний, для которых Программы клинических испытаний уже одобре-

ны или находятся на стадии эксперимента. В заключительной

главе (Глава X) мы посчитали целесообразным подвести некото-

рые итоги и более подробно рассмотреть молекулярную диаг-

ностику трех групп наследственных заболеваний: (1) достаточ-

но полно изученную группу лизосомных болезней накопления;

(2) болезни экспансии (преимущественно нейродегенеративные

заболевания), вызываемые совершенно новым ранее неизвестным

типом так называемых "динамических" мутаций и (3) наиболее

частые, социально значимые наследственные заболевания, по

пренатальной диагностике которых молекулярными методами уже

накоплен достаточно большой опыт в нашей лаборатории и в

других медико-генетических центрах России.

Итак, предлагаемая монография рассчитана на достаточно

широкий круг читателей, но, прежде всего, на медиков и биоло-

гов, а также специалистов смежных профессий. Нам хотелось бы

думать, что книга будет особенно полезной для студентов меди-

цинских институтов и академий, врачей курсов повышения квали-

фикации, сотрудников медико-генетических консультаций и цент-

ров, а также для студетнов-биологов, многие из которых, как

показывает наш опыт, пополняют ряды специализированных диаг-

ностических лабораторий, медико-генетических центров и инсти-

тутов.

ГЛАВА III

ГЕНЕТИЧЕСКИЕ КАРТЫ, ПОЗИЦИОННОЕ КЛОНИРОВАНИЕ.

Раздел 3.1 Классификация генетических карт, оценка

сцепления.

Генетические карты определяют хромосомную принадлеж-

ность и взаимное расположение различных компонентов генома

относительно друг друга. Возможность построения таких карт

обусловлена двумя фундаментальными характеристиками генома:

линейным характером локализации генов в хромосомах (это оп-

ределяется линейностью молекулы ДНК) и относительной ста-

бильностью расположения облигатных элементов генома в преде-

лах вида. При построении генетических карт используют разные

подходы. В первую очередь, к ним относятся анализ генети-

ческого сцепления на основе определения частот мейотической

рекомбинации в информативных семьях и изучение особенностей

наследования признаков, сцепленных с маркерными хромосомными

перестройками. Во-вторых, исследование экспрессии генов или

поиск специфических последовательностей ДНК в клеточных гиб-

ридах, содержащих лишь часть генома человека - одну или

несколько хромосом или их фрагменты. В ряде случаев с этой

целью используют механический сортинг целых хромосом и даже

их относительно небольших участковв. Эти приемы позволяют

привязать картируемый ген к определенной хромосоме и даже к

определенному фрагменту хромосомы. С помощью комплекса весь-

ма тонких методов хромосомного анализа, прежде всего, мето-

дов гибридизации in situ (см. Главу I) удается картировать

отдельные гены на хромосомах человека часто с точностью до

одного бэнда. И, наконец, методами молекулярного анализа

осуществляют физическое картирование последовательностей

ДНК, локализованных в специфических участках хромосом. Затем

проводят идентификацию в этих последовательностях транскри-

бируемых областей, то есть генов, с последующей изоляцией и

клонированием соответствующих им полноразмерных молекул

кДНК. Каждый из рассмотренных этапов анализа структуры гено-

ма завершается построением карт генов, различающихся по еди-

ницам измерения расстояний между отдельными элементами этих

карт, масштабам, по насыщенности или степени детализации на

различных участках генома. Соответственно различают карты

сцепления, генетические карты, цитогенетические карты инди-

видуальных хромосом и физические или молекулярные карты оп-

ределенных участков ДНК. Для полной молекулярной идентифика-

ции отдельных элементов генома, то есть определения их гра-

ниц, структуры и нуклеотидной последовательности, необходимо

совмещение всех типов карт в местах локализации этих элемен-

тов.

Первым шагом на пути построения генетических карт явля-

ется формирование групп сцепления генов, контролирующих

различные наследственные признаки, и исследование их взаим-

ного расположения в этих группах. На следующем этапе опре-

деляют соответствие между генетическими группами сцепления

и цитогенетически идентифицируемыми хромосомами или их

фрагментами. Цитогенетическую идентификацию хромосом прово-

дят с использованием методов дифференциальной окраски

(см.раздел 3.2). По мере появления все большего числа лока-

лизованных признаков эффективность построения генетических

карт значительно возрастает, так как увеличивается число

маркированных участков хромосом и, таким образом, появля-

ется возможность комбинированного использования различных

экспериментальных подходов для более подробного исследова-

ния этих участков.

Принципиальная схема картирования неизвестных генов,

представленная на Рис.3.1, включает следующие этапы. 1. Вы-

яснение группы сцепления; 2. Поиск ближайших фланкирующих

маркеров; 3. Определение физической области (ДНК-последова-

тельности), включающей искомый ген; 4. Клонирование набора

фрагментов ДНК, перекрывающих исследуемую область; 5. Выде-

ление из этого набора клонов, содержащих транскрибируемые

ДНК-последовательности, предположительно соответствующие

гену или его фрагменту; 6. Анализ специфических мРНК и кло-

нирование кДНК-последовательности; 7. Секвенирование и

идентификация самого гена (Wicking, Williamson, 1991).

Рассмотрим подробнее эту схему.

Построение карт сцепления основано на изучении про-

цессов расхождения и рекомбинации гомологичных хромосом в

мейозе. Генетические признаки, локализованные в разных хро-

мосомах, не сцеплены друг с другом, то есть передаются от

родителей детям независимо, и частота их рекомбинации (Q)

составляет 0.5. Это обусловлено случайным характером

расхождения гомологичных хромосом в мейозе во время редук-

ционного деления. Гены, локализованные в одной хромосоме,

рекомбинируют за счет кроссинговера, то есть за счет обмена

участками гомологичных хромосом в процессе их спаривания в

мейозе (Рис.3.2). При этом порядок генов не нарушается, но

в потомстве могут появиться новые комбинации родительских

аллелей. Вероятность кроссинговера между двумя генами за-

висит от расстояния между ними. Чем ближе гены расположены

друг к другу, то есть чем больше они сцеплены, тем эта ве-

роятность меньше.

Оценку сцепления между генами проводят на основании

статистического анализа сегрегации признаков в семьях с

разветвленными родословными. Чаще всего при этом используют

метод максимального правдоподобия (Kao, 1983), то есть

подсчитывают десятичный логарифм шансов - lod (log of the

odds), где шансы (odds) выражаются как отношение вероят-

ности наблюдаемой родословной при условии, что два гена

сцеплены (0 < Q < 0.5), к той же вероятности при отсутствии

сцепления (Q = 0.5). Если значение lod > +3, гены локализо-

ваны в одной хромосоме, причем максимально правдоподобная

оценка соответствует максимальному значению lod. При значе-

ниях lod < -2 гены не сцеплены, то есть локализованы в раз-

ных хромосомах или на разных концах одной хромосомы. Ста-

тистическую обработку родословных обычно проводят с помощью

компьютерных программ, наиболее известные из которых прог-

раммы LIPED, CRIMAP и LINKAGE (Ott, 1985; Ott, 1991;

Terwilliger, Ott, 1994). На генетических картах сцепления

расстояние между генами определяется в сантиморганах (сМ).

1 сМ соответствует 1% рекомбинации. Общая длина генома че-

ловека в этих единицах составляет около 3300 сМ. Сопостав-

ляя эту величину с размером гаплоидного набора молекул ДНК,

можно заключить, что 1 сМ приблизительно эквивалентен 1

миллиону пар нуклеотидов. Такие расчеты, однако, весьма

приблизительны, так как частоты рекомбинации, а значит и

реальная длина одного сМ, могут сильно варьировать в раз-

личных частях генома. Существуют, так называемые, горячие

точки рекомбинации, также как и районы генома, где рекомби-

нация подавлена (центромерные и теломерные участки хро-

мосом, блоки конститутивного гетерохроматина и др.). Из-

вестно также, что частота рекомбинации у мужчин меньше, чем

у женщин, так что общая длина мужского генома, измеренная в

единицах рекомбинации, составляет лишь 3000 сМ. Таким обра-

зом, генетическое расстояние может дать лишь весьма ориен-

тировочную информацию о физическом (реальном) расстоянии,

выражаемом в парах нуклеотидов.

Раздел 3.2 Соматическая гибридизация, цитогенетический

анализ, картирование анонимных последова-

тельностей ДНК.

До начала 70-ых годов построение генетических карт че-

ловека продвигалось очень медленными темпами. Небольшой раз-

мер семей, длительный период одного поколения, ограниченное

число информативных родословных и отсутствие методов эффек-

тивного цитогенетического анализа всех пар хромосом затруд-

няло целенаправленное картирование генов человека. Достаточ-

но сказать, что 1-й ген человека - ген цветной слепоты был

картирован на Х-хромосоме в 1911г., а 1-й аутосомный ген-

только в 1968г. К 1973г. на хромосомах человека было карти-

ровано всего 64 гена, а к 1994 на генетических картах чело-

века было локализовано уже свыше 60 000 маркерных ДНК

последовательностей, в том числе около 5 000 структурных

генов - Рис.3.3. Столь стремительный прогресс в картирова-

нии генов человека связан с появлением новых технологий в

цитогенетике, в клеточных культурах и особенно в молекуляр-

ной генетике.

Техника соматической гибридизации, то есть возможность

экспериментального конструирования способных к размножению

межвидовых клеточных гибридов, явилась одним из наиболее

мощных инструментов для нахождения связей между группами

сцепления и цитогенетически идентифицируемыми хромосомами и

даже их отдельными сегментами. Гибридные клоны получают пу-

тем искусственного слияния культивируемых соматических кле-

ток разных видов, в частности, клеток человека и различных

грызунов - китайского хомячка, мыши, крысы (Шея,1985).

Культивирование таких соматических гибридов, как оказалось,

сопровождается утратой хромосом человека. Так были получены

панели гибридных клеточных клонов, содержащих всего одну

или несколько хромосом человека и полный набор хромосом

другого вида. Обнаружение человеческих белков, специфи-

ческих мРНК или последовательностей ДНК в таких клонах поз-

воляет однозначно определить хромосомную принадлежность

соответствующих генов. Таким способом удалось локализовать

более 250 аутосомных генов человека (Kao, 1983).

Дальнейший прогресс в области генетического картирова-

ния в значительной степени ассоциируется с деятельностью

многих научно-исследовательских центров и лабораторий по

созданию банков клеточных культур, представляющих наиболее

интересные и обширные родословные. Так, в Центре по Изучению

Полиморфизма Человека (CEPH) (Париж, Франция) была создана

уникальная коллекция перевиваемых клеточных культур от всех

членов семей, многоступенчатые родословные которых насчиты-

вают многие десятки и даже сотни индивидуумов (CEPH-семьи)

(Todd,1992; Weissenbach et al,1992). Перевиваемые линии кле-

ток получали из первичных культур, трансфорированных вирусом

Эпштейн-Барра, после чего такие лимфобластозные клетки ста-

новятся "бессмертными", то есть могут неограниченно долго

поддерживаться в условиях культивирования. CEPH-семьи

представляют собой идеальные системы для генетического ана-

лиза наследственных признаков. В результате исследования

этих клеточных линий определены генотипы членов CEPH-семей

одновременно по тысячам полиморфных локусов и построены

соответствующие генетические карты. Кроме того, совместными

усилиями многих лабораторий мира были созданы Банки Клеточ-

ных Культур, в которых поддерживаются коллекции лимфоб-

ластозных линий клеток, полученных от членов наиболее инфор-

мативных семей, в которых наблюдается сегрегация по различ-

ным наследственным признакам, в том числе по моногенным за-

болеваниям. Материал этих линий в виде клеточных клонов или

образцов ДНК используется, в частности, для анализа сцепле-

ния сегрегирующих генов с известными генетическими маркерами

или с вновь описанными полиморфными локусами. Таким образом,

во многих случаях при картировании генов человека удается

преодолеть ограничения, связанные с недостатком обширных ин-

формативных родословных.

Наконец, в начале 70-х годов появилась реальная возмож-

ность точной идентификации не только всех хромосом в карио-

типе человека, но и их отдельных сегментов. Это связанно с

появлением методов дифференциального окрашивания препаратов

метафазных хромосом, которые, по сути, произвели революцию в

цитогенетике и хромосомологии. Для получения дифференциаль-

ной окраски хромосомные препараты окрашивают некоторыми флю-

орохромами, либо, после соответствующей протеолитической об-

работки или нагревания, - красителем Гимза. При этом на хро-

мосомах выявляется характерная поперечная исчерченность, так

называемые бэнды, расположение которых специфично для каждой

хромосомы. На метафазных хромосомах малой степени спирализа-

ции идентифицируется около 750 таких полос, на прометафазных

хромосомах 2 500 - 3 000. Следовательно, величина небольших

бэндов на прометафазных хромосомах примерно соответствует 1

сМ на цитогенетических картах или 1 миллиону пар оснований

на физических картах. Такие ориентировочные рассчеты, как

уже упоминалось, оказываются полезными при сопоставлении

масштабов различных генетических карт.

Согласно официально утвержденной номенклатуре

(ISCN,1971) каждая хромосома человека после дифференциальной

окраски может быть разделена на сегменты, нумерация которых

начинается от центромерного района вверх (короткое плечо -

р), либо вниз (длинное плечо - q) (Рис.3.4). Полосы в каждом

сегменте также пронумерованы в аналогичном порядке. Крупные

полосы зачастую подразделяются на несколько частей, соот-

ветствующих более мелким бэндам, выявляемым только при ок-

раске малоспирализованных прометафазных хромосом. Запись по-

ложения гена на цитогенетической карте включает номер хро-

мосомы, плечо, а также номер сегмента, бэнда и его субъеди-

ницы. Например, запись 7q21.1 означает, что ген локализован

в субъединице 1, 1-го бэнда 2-го сегмента длинного плеча

хромосомы 7.

Такая подробная запись особенно удобна при использова-

нии для цитогенетического картирования метода гибридизации

in situ (см.Главу I), позволяющего локализовать ген с точ-

ностью до одного бэнда и даже его субъединицы. Основу данно-

го метода, как уже указывалось составляет гибридизация ге-

номной ДНК целых хромосом на разных стадиях их спирализации

с предварительно меченными специфическими ДНК-зондами.

Источником последних могут служить геномные последователь-

ности ДНК, сцепленные с картируемым геном, либо кДНК-овые

последовательности. В настоящее время из тканеспецифических

библиотек генов выделено около 20 000 анонимных последова-

тельностей кДНК, представляющих более 10 000 различных генов

человека (Sikela, Auffray, 1993). Эти кДНК составляют при-

мерно 10-15% всех кодирующих последовательностей генома. Ме-

тодом гибридизации in situ уже идентифицировано более 2000

генов, для многих из которых пока не найдено сцепление с по-

лиморфными маркерами (Poduslo et al., 1991). Такие кодирую-

щие последовательности присутствуют на карте генов человека,

но их пока нет на картах сцепления.

Раздел 3.3 Генетические индексные маркеры.

Как мы уже отмечали раньше, успешная локализация неиз-

вестного наследственного признака (гена) в значительной сте-

пени определяется присутствием на карте фланкирующих марке-

ров, находящихся на относительно небольшом расстоянии по обе

стороны от гена. В качестве генетических маркеров специфи-

ческих участков хромосом могут быть использованы любые лока-

лизованные в этих участках элементы генома с высоким уровнем

легко идентифицируемой популяционной изменчивости или поли-

морфизма. Отбор сцепленных с картируемым признаком генети-

ческих маркеров производят по результатам совместного анали-

за их сегрегации в информативных семьях.

Значительные успехи в геномном картировании были связа-

ны с использованием в качестве генетических маркеров широко

распространенной во многих популяциях изменчивости по изо-

ферментному спектру различных белков. Оказалось, что многие

ферменты у разных индивидуумов, в разных тканях и на разных

стадиях онтогенеза могут находиться в различных изоформах.

Такие варианты одного и того же белка обычно не отличаются

по специфической активности, но имеют измененную электрофо-

ретическую подвижность. Популяционный анализ изоферментов

обнаружил существование полиморфизма для очень многих белко-

вых систем, контролируемых разными генами, локализованными

во многих хромосомах. Таким образом, для этих хромосом были

найдены генетические маркеры, с помощью которых были иденти-

фицированы соответствующие группы сцепления.

Совершенствование молекулярных методов анализа специфи-

ческих последовательностей ДНК привело к обнаружению большо-

го числа высокоизменчивых участков генома - полиморфных сай-

тов рестрикции, гипервариабельных мини- и микросателлитных

последовательностей (см.Главу II) Эта изменчивость также бы-

ла использована для маркировки участков хромосом с целью

установления более точного взаиморасположения локусов. Вско-

ре после обнаружения полиморфных сайтов рестрикции были

опубликованы теоретические рассчеты, согласно которым от 10

до 20 таких локусов, расположенных равномерно на каждой хро-

мосоме на расстоянии около 20 сМ друг от друга, достаточно

для определения хромосомной принадлежности генов, от-

ветственных за любой тип наследственной изменчивости

(Botstein et al,1980). По этим оценкам около 200 таких ин-

дексных маркеров позволят построить карты сцепления для всех

известных генов на основании анализа сегрегации соответству-

ющих признаков в семьях с большим числом мутантов. Для опре-

деления порядка расположения генов на хромосомах и оценки

генетических расстояний между ними достаточно около 400 рав-

номерно распределенных полиморфных маркеров.

Идентификация в геноме человека большого числа поли-

морфных сайтов рестрикции и разработка простых методов ана-

лиза индивидуальной изменчивости по этим локусам существенно

повысили возможности локализации неизвестных признаков на

геномных картах. Уже к 1989г. были картированы более 2000

клонированных последовательностей ДНК, обнаруживающих поли-

морфизм по длине рестрикционных фрагментов (ПДРФ) в различ-

ных популяциях (Kidd et al., 1989). Более 1000 из них типи-

ровано в CEPH-коллекциях родословных. В значительной степени

это анонимные последовательности, связь которых со специфи-

ческими генами не установлена. Их наименования чаще всего

соответствуют названию отобранного из библиотеки генов кло-

на. В дальнейшем была разработана стандартная генетическая

номенклатура для обозначения используемых в качестве марке-

ров сегментов ДНК с неизвестной функцией. Первая буква D,

что значит ДНК, затем номер хромосомы, далее S для уникаль-

ных и Z для повторяющихся последовательностей и в конце но-

мер, идентифицирующий данный зонд в определенном районе ДНК.

Применение полиморфных сайтов рестрикции в качестве ге-

нетических маркеров имеет два ограничения: сравнительно низ-

кая информативность (частота гетерозигот не может превышает

50%- см. Главы II, Y) и неравномерное распределение

ПДРФ-сайтов по хромосомам. Этих недостатков практически ли-

шены гипервариабельные STR-сайты (ди-, три- и тетрануклеа-

тидные повторы). Использование микро- и минисателлитных ДНК

последовательностей в качестве индексных генетических марке-

ров открыло новую эру в построении карт сцепления генома че-

ловека. В настоящее время работа по идентификации высокопо-

лиморфных маркеров, перекрывающих весь геном и равномерно

распределенных по хромосомам практически завершенаа

(Weissenbach et al.,1992; Reed et al.,1994). Эта система

построена на базе динуклеотидных (C-A)n повторов.

(C-A)n*(G-T)n представляют собой наиболее частый класс

простых повторов, обнаруженных в геноме человека (за исклю-

чением An* Tn мультимеров). Такие повторы присутствуют при-

мерно в 1% колоний из геномных библиотек, сконструированных

на базе фрагментов длиной 300 - 500 п.о., которые образуются

после переваривания геномной ДНК эндонуклеазой Alu1. Более

90% из них оказываются полиморфными по числу копий в класте-

ре, причем в 70% локусов присутствует более трех аллелей. В

1992г. группе французских ученых под руководством Жана

Вайссенбаха удалось разработать систему идентификации с по-

мощью ПЦР индивидуальной изменчивости в местах локализации

(C-A)n повторов и на этой основе создать геномную карту из

814 высокополиморфных индексных маркеров со средним расстоя-

нием между ними около 5 сМ, получившую название

Genethon-коллекции микросателлитных маркеров (Weissenbach et

al., 1992). Для этого были просеквенированы более 12 000

фрагментов ДНК, выделенных из геномной Alu1-библиотеки путем

ее скрининга poly(dC-dA)*poly (dG-dT) ДНК-зондом. Праймеры

для амплификации подбирали из последовательностей ДНК, окру-

жающих повторы, используя для этого компьютерные программы.

Для дальнейшего анализа было отобрано около 3 000

(C-A)n-сайтов и проведена специфическая амплификация этих

участков у четырех неродственных CEPH-индивидуумов. На сле-

дующем этапе была определена хромосомная принадлежность по-

лутара тысяч наиболее информативных маркеров путем их иден-

тификации в панели из 18 соматических гибридных клонов, со-

держащих разные наборы хромосом человека. Детальная карта

сцепления индексных маркеров построена по результатам их ге-

нотипирования в коллекции 8 самых больших CEPH-родословных.

Предложенная система маркеров перекрывает все хромосомы, а

суммарное расстояние между ними соответствует примерно 90%

всего генома человека.

К 1994г. число индексных STR-маркеров было увеличено до

2 066, а средний интервал между соседними локусами уменьшен

до 2,9 сМ (Gyapay et al.,1994). В последнее время перспекти-

вы широкомасштабного картирования всего генома человека ста-

ли еще более значительны. Группой английских авторов под ру-

ководством Дж.Тодда была разработана система автоматического

скринирования 254 динуклеотидных маркеров, перекрывающих

весь геном человека со средним расстоянием между соседними

маркерами около 13 сМ. 80% этих повторов было отобрано из

Genethon-коллекции маркеров, остальные - из других источни-

ков (Genome Data Base, Baltimore). Амплификацию всех 254 по-

лиморфных сайтов проводили в 39 мультиплексных ПЦР (МПЦР),

причем используемые для этих целей олигопраймеры были мечены

четырьмя типами флюорохромов, так что аллели даже одинаково-

го молекулярного веса можно было различить на электрофорег-

рамме по цвету. В каждой из 39 МПЦР скринировали 7 - 9

STR-сайтов какой-то определенной хромосомы. Такие МПЦР-набо-

ры были разработаны для всех 22 аутосом и для Х-хромосомы.

Регистрация аллелей всех STR проводилась автоматическим

сканнером с использованием компьютерной программы Genotyper.

Только с помощью одного автоматического сканнера удается

проанализировать по этой схеме более 2.5 тысяч генотипов в

день! (Reed et al.,1994). Такая система уже сегодня открыва-

ет самые широкие возможности не только для генетического

картирования и создания подробных карт сцепления практически

любых моногенных заболеваний, но, что особенно существенно,

она делает реальной разработку стратегии картирования генов,

мутации которых предрасполагают к мультифакториальным забо-

леваниям, таким как диабет, гипертония, инфаркт миокарда,

психозы и многое другое.

Раздел 3.4 Хромосом-специфические библиотеки генов,

пульсирующий гель-электрофорез.

Используя столь обширную систему молекулярных маркеров

и проводя анализ сцепления на коллекциях клеточных культур

или на материале информативных родословных можно довольно

быстро привязать любой признак, особенно моногенный, не

только к определенной хромосоме, но даже к одному бэнду, оп-

ределить ближайшие фланкирующие маркеры и перейти не-

посредственно к позиционному клонированию с целью выделения

и идентификации самого гена. В этой связи важное значение в

картировании генов принадлежит молекулярно-цитогенетическим

подходам, являющимся принципиально важным звеном для успеш-

ного совмещения карт сцепления и физических карт целых хро-

мосом и их фрагментов.

Точность цитогенетического картирования определяется

степенью спирализации хромосом, характером использованной

метки и разрешающей способностью микроскопического оборудо-

вания. При картировании на стандартных метафазных хромосомах

и использовании радиоактивно меченых зондов точность карти-

рования ограничивается одним крупным бэндом или даже сегмен-

том хромосомы и составляет около 5-10 миллионов п.о. При

использовании биотиновой метки на прометафазных хромосомах

точность картирования возрастает в среднем в 5-10 раз (до 1

миллиона п.о.), а при работе со специально приготовленными и

растянутыми интерфазными хромосомами может доходить до 50

тысяч п.о.(Boehringer Mannheim Mannual,1992). Тем ни менее,

даже при такой разрешающей способности цитогенетическое кар-

тирование дает лишь весьма ориентировочные результаты и обы-

чно рассматривается как 1-й этап физического картирования.

Значительно более точные результаты достигаются на 2-м

этапе - этапе физического (рестрикционного) картирования.

Среднее расстояние между стандартными сайтами узнавания на

рестрикционных картах колеблется в пределах от 10 до 20 кб.

Из-за расхождений почти на два порядка масштабов цитогенети-

ческого и молекулярного картирования прямое сопоставление

этих типов физических карт практически невозможно.

Одним из способов преодоления этих трудностей является

конструирование хромосом-специфических библиотек генов. Как

уже упоминалось (см.Глава I,1.5) для приготовления таких

библиотек используют наборы клеточных линий соматических ги-

бридов с отдельными хромосомами человека либо хромосомы, ме-

ханически отобранные путем проточной цитометрии. Для некото-

рых видов молекулярного клонирования удобнее оказались биб-

лиотеки генов, построенные из субхромосомальных фрагментов.

Получение таких фрагментов достигается путем целенаправлен-

ного конструирования соматических гибридов, содержащих лишь

часть какой-либо хромосомы человека. Субхромосомные клоны

могут быть получены и с помощью микроманипуляций, при кото-

рых механически, под контролем микроманипулятора может быть

вырезан практически любой видимый фрагмент каждой хромосомы.

Разработаны также молекулярные методы выделения из генома и

идентификации крупных фрагментов ДНК, приближающихся по раз-

мерам к единичным хромосомным бэндам. Это стало возможным

после обнаружения редкощепящих рестриктаз, разрезающих ДНК

на фрагменты длиной от сотен тысяч до миллиона пар нуклеоти-

дов (Estivill, Williamson, 1987).

Другим важным шагом на пути клонирования и анализа

больших субхромосомальных фрагментов ДНК явилась разработка

методов их разделения путем гель-электрофореза в пульсирую-

щем поле (Barlow, Lehrach, 1987; Smith, Cantor, 1986; Smith

et al., 1987). В соответствии со стандартными методами

электрофореза под действием однонаправленного постоянного

поля в агарозном или в полиакриламидном гелях удается разде-

лять фрагменты ДНК размером не более 3 - 5 десятков килобаз.

Продвижение больших фрагментов ДНК в геле при пульсирующем

изменении направления электрического поля происходит, по

-видимому, за счет конформационных изменений, обусловленных

скручиванием и раскручиванием молекул ДНК в момент переклю-

чения направления поля. При этом более короткие молекулы

легче адаптируются к изменению условий и потому движутся в

геле быстрее. Существуют различные варианты пульсирующего

гель-электрофореза, главным образом, связанные с геометри-

ческим расположением направлений полей - ортогональный,

гексогональный, инверсионный. При использовании любого из

этих вариантов могут быть разделены молекулы ДНК размером от

50 кб до более, чем 9 миллионов п.о. Эффективность разделе-

ния фрагментов ДНК зависит не только от их размеров, но и от

условий проведения электрофореза (напряжение, температура

буфера, концентрация агарозы, время одного импульса). В ка-

честве маркеров для определения величины больших молекул ДНК

используют целые хромосомы дрожжей известной молекулярной

массы. В дальнейшем отбор крупных фрагментов ДНК, несущих

специфические последовательности, также может быть осущест-

влен путем блот-гибридизации с ДНК-зондами. Разделенные и

идентифицированные фрагменты ДНК могут быть элюированы из

геля и использованы для рестрикционного картирования, пост-

роения библиотек генов и для молекулярного клонирования с

целью идентификации и изоляции генных последовательностей. В

последнее время для изоляции крупных субхромосомальных сег-

ментов ДНК широко используется метод клонирования в

искусственных дрожжевых минихромосомах - YAC, и построения

библиотек генов на основе YAC-векторов.

Раздел 3.5 Позиционное клонирование, прогулка и прыжки

по хромосоме, идентификация и изоляция генов.

Мы уже упоминали, что средние размеры гена составляют

около 10-30 кб, варьируя в широких пределах (см.Глава II.2.

4). Единицы рекомбинации, размеры цитогенетических бэндов

и субхромосомных фрагментов ДНК измеряются миллионами пар

нуклеотидов, также как и размеры фрагментов ДНК, выделяемых

с помощью обработки геномной ДНК редкощепящими эндонуклеаза-

ми, пульсирующего электрофореза и клонирования в дрожжевых

минихромосомах. Переход от этих крупных фрагментов к после-

довательностям ДНК, сопоставимым с размерами гена, осущест-

вляют с помощью молекулярного клонирования, то есть получе-

ния набора фаговых или космидных клонов, содержащих относи-

тельно небольшие последовательности, насыщаяющие или пол-

ностью перекрывающие крупный сегмент ДНК, предположительно

содержащий идентифицируемый ген (Рис.3.5). Затем проводят

упорядочивание клонов в соответствии с взаимным расположени-

ем инсертированных в них фрагментов ДНК, осуществляя однов-

ременно молекулярный анализ этих фрагментов с целью иденти-

фикации регуляторных или кодирующих областей генов. Позднее

мы подробнее остановимся на тех критериях, с помощью которых

можно различить транскрибируемые и нетранскрибируемые участ-

ки генома. Для молекулярного клонирования используют различ-

ные подходы (Iannuzzi, Collins, 1990). Прежде всего, это

насыщающее клонирование, то есть изоляция из хромосом-специ-

фических библиотек нескольких сотен клонов с целью картиро-

вания различными методами инсертированных в них фрагментов

ДНК и идентификации клонов с последовательностями, локализо-

ванными в заданном районе. Значительно чаще используется

тактика скринирования фаговых, космидных и YAC библиотек,

сконструированных из субхромосомальных сегментов ДНК, пред-

варительно отобранных на основании сцепления с различными

ДНК-маркерами. При этом методы выделения субхромосомальных

сегментов ДНК могут быть самыми различными. Дальнейший поиск

в библиотеках генов клонов, содержащих транскрибируемые

последовательности ДНК, осуществляют достаточно трудоемкими

методами, получившими название "прогулки" и "прыжков" по

хромосоме.

"Прогулка" по хромосоме или скользящее зондирование

(Рис.3.6). заключается в последовательном отборе клонов, со-

держащих частично перекрывающиеся фрагменты ДНК из опреде-

ленного района генома (Rommens et al.,1989). На первом этапе

проводят скрининг библиотеки с помощью маркерной ДНК, сцеп-

ленной с геном. После нахождения положительных клонов

последние сами служат зондами для изоляции других клонов,

содержащих перекрывающиеся последовательности ДНК. Таким об-

разом, каждый раз отобранный фрагмент используется в качест-

ве скринирующего ДНК-зонда для последующего поиска. В ре-

зультате получют набор клонированных фрагментов ДНК, пол-

ностью перекрывающих область поиска гена. Группа подобных

клонов носит название "контигов". С помощью физического кар-

тирования инсертированной ДНК в разных клонах удается точно

установить степень перекрывания между соседними фрагментами

и соответственно упорядочить положение клонов в "контигах".

При скринировании космидных библиотек с выявлением каждого

нового клона к участку ДНК, полностью перекрытому отобранны-

ми зондами, в среднем добавляется около 20 кб. Таким спосо-

бом, однако, редко удается пройти более 200 - 300 кб в одном

направлении из-за наличия в геноме повторяющихся и трудно

клонируемых последовательностей ДНК.

Для преодоления этих ограничений и ускорения процесса

поиска генных последовательностей американским исследовате-

лем Фрэнком Коллинзом, ныне президентом Программы Геном Че-

ловека, был разработан метод "прыжков" по хромосоме. Этот

метод позволяет изолировать фрагменты ДНК, отстоящие в гено-

ме друг от друга на сотни тысяч нуклеотидов (длина прыжка),

не изолируя при этом все промежуточные последовательности

ДНК (Collins, Weissman, 1984). Как видно на представленной

схеме (Рис.3.7), прыжки начинаются со стартового зонда, то

есть с последовательности, гибридизующейся со сцепленным с

геном ДНК-маркером. Предварительно геномная ДНК переварива-

ется редкощепящей рестриктазой, в результате чего образуются

большие фрагменты ДНК, соответствующие по длине одному прыж-

ку. Затем, эти фрагменты переводятся в кольцевую форму за

счет искусственного присоединения к их концам небольшого

маркерного гена. При этом концы рестрикционных фрагментов

сближаются. Кольцевые молекулы ДНК разрезают среднещепящими

рестриктазами и из пула относительно небольших фрагментов

ДНК отбирают те, которые содержат маркерный ген, а, следова-

тельно, и окружающие его концевые участки исходных крупных

фрагментов. Отобранные последовательности клонируют в фаго-

вых или космидных векторах, получая библиотеку генов конце-

вых участков. Затем в этой библиотеке проводят скрининг кло-

нов, содержащих стартовый зонд. Только в этих клонах компле-

ментарные зонду последовательности соединены маркерным геном

с последовательностями ДНК, отстоящими от стартового участка

поиска на длину прыжка. При необходимости промежуточные сег-

менты ДНК также могут быть клонированы с использованием ме-

тода скользящего зондирования.

Остановимся теперь на тех критериях, по которым можно

отличить сегменты ДНК, являющиеся частями генов, от любых

других последовательностей (Рис.3.7.) (Lindsay, Bird, 1987;

Rommens et al., 1989; Wicking, Williamson, 1991; Collins,

1992). Условно эти критерии могут быть разделены на три

группы. В первой группе исследуют структурные особенности

генных последовательностей. Вторая группа критериев основана

на поиске функциональных участков генов. В третьем случае

анализируют характер нуклеотидных последовательностей тести-

руемых фрагментов ДНК. Диагностику структурных участков ге-

нов осуществляют путем гибридизации с ДНК-зондами или прямым

скринированием кДНК-овых библиотек. Функциональная диаг-

ностика генов включает улавливание экзонов (exon trapping),

промоторных участков, поли-A сигнальных последовательностей,

а также перенос генов в иные конструкции и идентификацию в

них соответствующих транскриптов. И, наконец, поиск генов

может быть осуществлен путем прямого секвенирования крупных

фрагментов ДНК с последующим компьютерным анализом нуклео-

тидной последовательности и сопоставлением её с присутствую-

щими в базах данных идентифицированными генами других видов

живых существ.

Как уже отмечено ранее, кодирующие области генов,

представленные в геноме уникальными последовательностями,

достаточно консервативны в процессе эволюции. Существует

высокий процент гомологии в структуре ДНК между одинаковыми

генами у разных видов млекопитающих. На этом факте основан,

так называемый зоо-блот - скрининг клонированных последова-

тельностей, не содержащих повторов, но дающих перекрестную

гибридизацию с геномной ДНК, выделенной из разных видов жи-

вотных - приматов, сельскохозяйственных животных, грызунов,

птиц, рептилий. Клоны, содержащие консервативные последова-

тельности, подвергают дальнейшему анализу на присутствие в

инсертированных фрагментах ДНК CpG островков, часто маркиру-

ющих 5'-фланкирующие области генов позвоночных, особенно ге-

нов домашнего хозяйства ( см.Главу II,2.4), и исследуют на-

личие открытых рамок считывания -ORF (open reading frames).

Дальнейший поиск генов в более узком интервале может быть

осуществлен с помощью компьютерного анализа соответствующей

нуклеотидной последовательности ДНК. Кроме того, все клони-

рованные ДНК из этого интервала могут быть сразу использова-

ны для анализа РНК-транскриптов (Iannuzzi, Collins, 1990).

Важным доказательством принадлежности клонированной ДНК

гену является идентификация гомологичных РНК транскриптов в

тканях, где можно предполагать экспрессию этого гена. С этой

целью проводят гибридизацию уже отобранных по первым двум

критериям клонов ДНК с тотальной мРНК, выделенной из этих

тканей, а также скринируют соответствующие кДНК-овые библио-

теки. Для генов наследственных заболеваний с неизвестным

первичным биохимическим дефектом библиотеки конструируют из

пораженных органов и тканей. При обнаружении последователь-

ностей кДНК, гибридизующихся с геномными зондами, их, в свою

очередь, используют для зондирования библиотеки и выявления

всех клонов с перекрывающимися последовательностями кДНК. К

сожалению, для генов с низким уровнем экспрессии гибридиза-

ция может не дать положительных результатов.

Выделенные клоны, удовлетворяющие перечисленным крите-

риям, с большой вероятностью содержат последовательности ДНК,

являющиеся частями гена. Однако, всегда существует опасность

выбора какого-то другого гена (или псевдогена), локализован-

ного в той же области ДНК. Поэтому требуются дополнительные

доказательства идентичности выбранной последовательности ДНК

специфическому гену. Такие доказательства могут быть получе-

ны, например, при определении нуклеотидной последователь-

ности кДНК и сопоставлении ее с аминокислотной последова-

тельностью кодируемого этим геном белка. Веским доказа-

тельством в пользу правильности проведенной идентификации

гена может быть обнаружение мутантных вариантов аллелей в

изолированных последовательностях ДНК у больных, страдающих

соответствующим наследственным заболеванием. Так, например,

при идентификации гена муковисцидоза, у 70% больных в клони-

руемой кДНК последовательности была обнаружена однотипная

мутация - делеция трех нуклеотидов - delF508. Наконец, реша-

ющим аргументом правильности идентификации нужного гена яв-

ляется успешно осуществленная с его помощью генокоррекция

первичного биохимического дефекта, выполненная на соот-

ветствующих культурах мутантных клеток, или получение стой-

кого терапевтического эффекта у трансгенных животных - био-

логических моделей данного наследственного заболевания.

Определение размера молекул мРНК, гибридизующихся с ге-

номными клонами, дает оценку суммарной величины гена. Эта

оценка имеет важное значение для реконструирования полнораз-

мерной кДНК. Её клонирование, по-сути, означает идентификаию

гена, так как позволяет определить его границы в геномной

ДНК, охарактеризовать его экзонно-интронную структуру и ре-

гуляторные элементы. Зная первичную нуклеотидную последова-

тельность кДНК, можно с уверенностью прогнозировать амино-

кислотную последовательность соответствующего белка и таким

образом определить первичное биохимическое звено в патогене-

зе соответствующего наследственного заболевания.

Описанный способ изучения молекулярных и биохимических

основ наследственных заболеваний получил название обратной

генетики, а сам процесс в отличие от традиционного пути от

белка к гену, так называемого функционального клонирования,

был назван позиционным клонированием, тем более, что термин

обратной генетики уже использовался ранее для обозначения

метода анализа функции гена путем направленного введения в

него мутаций (Collins, 1992).

Возможность использования функционального клонирования

зависит от доступности информации о белковом продукте и/или

о функции соответствующего гена. Для подавляющего боль-

шинства моногенных болезней определение первичного биохими-

ческого дефекта представляет собой очень трудную задачу

из-за недостаточного понимания функционирования огромного

числа клеточных ферментов, сложностей их взаимодействия,

низких концентраций, отсутствия эффективных методов выделе-

ния и очистки а, зачастую, даже из-за отсутствия сведений о

клетках - мишенях, в которых следует искать первичный биохи-

мический дефект. Поэтому на фоне стремительного роста данных

о структуре генома чеовека и, прежде всего, о насыщенности

генами и анонимными ДНК маркерами отдельных хромосом и их

сегментов, реальные соотошения функционального и позиционно-

го клонирования в идентификации генов, ответственных за

наследственные заболевания, быстро меняются в сторону бе-

зусловного доминирования последнего.

Успех позиционного клонирования определяется возмож-

ностями картирования гена, при этом функция гена исследуется

уже после его идентификации и клонирования. На рис. 3.8

представлена общая схема позиционного клонирования, за-

имствованная из работы Коллинза (Collins, 1992). Обычно, для

нахождения положения неизвестного гена на карте сцепления

используют 100 - 200 полиморфных маркеров. После обнаружения

хромосомной принадлежности картируемого гена более

точная локализациия может быть установлена с помощью при-

цельного отбора дополнительных индексных маркеров из опреде-

ленного цитогенетического сегмента. Картирование гена, оп-

ределяющего наследственное заболевание, может быть значитель-

но ускорено при наличии у какого-то больного цитогенетически

видимой структурной перестройки в области локализации этого

гена, чаще всего делеции или транслокации. Хотя такие паци-

енты, как правило, встречаются редко, но описание даже одно-

го такого случая может исключить необходимость картирования

гена путем последовательного анализа его сцепления с генети-

ческими маркерами целого генома и позволит перейти не-

посредственно к молекулярному клонированию. Именно таким об-

разом были идентифицированы гены хронического грануломатоза,

миопатии Дюшенна, ретинобластомы, X-сцепленной глухоты, ней-

рофиброматоза I, аниридии и некоторых других наследственных

болезней.

С другой стороны, в ряде случаев удается исключить дли-

тельный процесс молекулярного клонирования, используя метод

"кандидатного гена". Разработка методов, облегчающих нахож-

дение транскрибируемых областей генома, улавливание экзонов

и регуляторных участков генов, секвенирование и картирование

методами гибридизации in situ большого количества анонимных

кДНК последовательностей, изолированных из тканеспецифи-

ческих библиотек, все это в комплексе приводит к значитель-

ному увеличению степени насыщенности различных сегментов

хромосом известными генными последовательностями, среди ко-

торых и осуществляют поиск гена-кандидата. Большая роль в

этих исследованиях принадлежит также мутантным генетическим

линиям животных, моделирующим различные наследственные забо-

левания человека (см Глава VIII). Значительное сходство нук-

леотидных последовательностей кодирующих участков гомологич-

ных генов млекопитающих и человека, наличие большого числа

консервативных групп сцепления с наборами идентичных генов

позволяют успешно вести параллельные исследования геномов

человека и других животных, значительно ускоряющие эффектив-

ность поиска и молекулярного анализа индивидуальных генов

человека (Dietrich et al., 1994; Copeland et al, 1993).

Молекулярная идентификация генов открывает широкие

возможности для анализа тканеспецифической регуляции их

экспрессии в процессе развития организма на всех уровнях от

транскрипции до трансляции. Следуюшим этапом молекулярного

анализа является генотипирование мутаций и исследование тех

нарушений в структуре, локализации или в ферментативной ак-

тивности соответствующих белков, которые возникают в резуль-

тате изменений нуклеотидных последовательностей ДНК. Эти

проблемы более подробно освещены в следующих разделах книги.

Отметим только, что в настоящее время подобные исследования

стали возожны для многих сотен наследственных заболеваний

человека, для которых идентифицированы геномные последова-

тельности ДНК, соответствующие генам, и проклонированы пол-

норазмерные кДНК-последовательности.

Раздел 3.6 Каталог генов и генных болезней МакКьюсика.

Международная программа "Геном человека".

Огромный вклад в систематизацию и обобщение информации

о генетических картах хромосом человека, локализации и функ-

циях отдельных генов, и о структуре генома в целом, вносят

исследования, проводимые на протяжении последних 30 лет в

Университете Джона Хопкинса в Балтиморе под руководством

профессора Виктора МакКьюсика. Результатом этих исследований

является систематическое, с 2-х-годичным интервалом между

последними пятью публикациями, издание энциклопедий, содер-

жащих сводные данные о всех картированных генах человека и

связанных с ними наследственных болезнях под названием:

"Менделевсое наследование у человека: каталог человеческих

генов и генетических болезней" ("Mendelian inheritance in

man. Catalogs of autosomal dominant, autosomal recessive,

and X-linked phenotypes". Эти издания содержат современные

хромоcомные карты генов человека и для каждого локуса обоб-

щенные в виде отдельных статей сведения о характере наследо-

вания, функциях и размерах генов; методах их картирования и

идентификации; кодируемых продуктах; мутантных аллелях, по-

лиморфизмах и внутригенных повторах; фенотипических проявле-

ниях мутаций, их связи с наследственными заболеваниями, а

также о природе основного дефекта, включая патогенез и пато-

физиологию заболевания. Все статьи снабжены исчерпывающими

литературными ссылками. Cводные таблицы по картированным ло-

кусам с различным типом наследования и по генам наследствен-

ных заболеваний составлены либо в соответствии с их хро-

мосомной локализацией, либо в алфавитном порядке по названи-

ям генов или по наименованиям соответствующих генных болез-

ней. Отдельно представлены данные по клонированным генам,

для которых известен первичный молекулярный дефект. При этом

количество различных идентифицированных мутантных вариантов

для разных генов колеблется от одного до нескольких сотен.

Издания содержат также список доступных мутантных клеточных

линий.

Каждому локализованному менделирующему локусу в этой

энциклопедии присвоен шестизначный номер (MIM), первая цифра

которого определяет характер наследования: 1 - для аутосом-

но-доминантных генов, 2 - для аутосомно-рецессивных, 3 и 4-

для генов, локализованных в X- и в Y-хромосомах, соот-

ветственно, 5 - для митохондриальных генов. Четыре цифры,

следующие после точки непосредственно за шестизначным номе-

ром, предназначены для кодирования различных мутантных вари-

антов данного локуса. Издания выпускаются как в печатной

форме, так и в компьютерном варианте (OMIM) на дискетах или

на компакт-дисках. В последнем случае они снабжены програм-

мами, позволяющими осуществлять поиск по любой позиции и

проводить постоянное обновление энциклопедии текущей инфор-

мацией. Программы OMIM совместимы с другими базами генети-

ческих данных, в первую очередь, с GDB (Genome Data Base),

содержащей полную информацию (включая последовательности

ДНК) обо всех картированных генах, ДНК-маркерах и ДНК-зондах

человека, а также и с GenBank - полной базой данных всех из-

вестных нуклеотидных gоследовательностей ДНК.

В последнем 11-ом издании энциклопедии МакКьюсика со-

держатся сведения о 6678 картированных менделирующих локусах

человека (McKusick, 1994). Из них 4458 генов с аутосомно-до-

минантным характером наследования, 1730 - с аутосомно-ре-

цессивным, 412 генов локализовано в X-хромосоме, 19 - в

Y-хромосоме и 59 - в митохондриальной ДНК. Для более чем

2800 картированных генов определена их функция. С моногенны-

ми заболеваниями связано 770 картированных локусов, а общее

число нозологических форм, для которых гены картированы,

включает 933 заболевания. При этом более 420 генов

наследственных болезней уже клонированы и для каждого из

этих генов описано от одного до нескольких сотен мутантных

вариантов аллелей, характеризующихся различным фенотипи-

ческим проявлением.

Различные хромосомы и их участки картированы с разной

степенью детализации. На самой крупной по размерам хромосоме

1 картировано вдвое меньше генов, чем на Х-хромосоме ( 200 и

400 соответственно). Плотность уже картированных генов в

разных хромосомах очень неравномерна. Так, хромосома 19 со-

держит 178 генов, тогда как хромосома 13 только 40, при этом

первая больше второй. Хромосомы 17 и 18 примерно равны по

величине, но на первой уже картировано 180 генов, а на вто-

рой- только 26. На хромосоме 2 картировано примерно такое же

количество генов (около 175), как и на втрое меньше её по

размерам хромосоме 17. Существеные различия в числе картиро-

ванных генов отмечаются и внутри различных участков хро-

мосом. К примеру, 19 из 43 генов хромосомы 21 локализованы в

сегменте 21q22.3, составляющем лишь 20% длинного плеча. Об-

ласть 9q34 занимает 10% хромосомы 9, но содержит 27% генов -

38 из 141 (Antonarakis, 1994). Число подобных примеров не-

равномерного распределения картированных генов по хромосо-

мамс может быть значительно увеличено.

Более 10 лет тому назад был полностью просеквенирован

митохондриальный геном (Anderson et al., 1981), состоящий из

16 569 нуклеотидов и содержащий 37 генов, 22 из которых это

гены транспортных РНК, 2 гена рибосомальной РНК и 13 белко-

вых генов, кодирующих субьединицы комплексов окислительного

фосфорилирования (OXPHOS). Следует отметить, что 56 субьеди-

ниц этого комплекса кодируется ядерными генами (McKusick:

1994). Митохондриальная ДНК очень плотно насыщена кодирующи-

ми участками, так как митохондриальные гены не содержат инт-

ронов и имеют очень ограниченные размеры некодирующих флан-

кирующих ДНК. В настоящее время описано достаточно много бо-

лезней, связанных с мутациями в митохондриальном геноме, и

все они развиваются вследствие нарушений в системе окисли-

тельного фосфорилирования.

Мы уже упоминали о том, что в настоящее время проклони-

ровано около 20 000 анонимных последовательностей кДНК, вы-

деленных из тканеспецифических библиотек генов и представля-

ющих около 10-15% всех генов человека. Хотя этих последова-

тельностей пока нет на картах генов, секвенирование, со-

поставление с компьютерными базами данных и гибридизация in

situ позволят уже в самое ближайшее время провести их иден-

тификацию и локализацию (McKusick, Amberger, 1993).

Следует отметить, что каждый картированный ген и поли-

морфный локус сами по себе автоматически становятся точками

отсчета в геноме, то есть молекулярными маркерами. Наряду с

этим, продолжается интенсивное насыщение генома новыми моле-

кулярными маркерами типа STS ( sequence tagged sites) и мик-

росателлитными повторами типа STR (short tandem repeats)

(cм. Главу II). К сентябрю 1994г Genome Database (GDB) вклю-

чала 6691 STR-сайтов и 3 752 из них (56%) имели уровень ге-

терозиготности более 60%. Карты сцепления для индексных мар-

керов сконструированы, в основном, по результатам генотипи-

рования сорока CEPH референтных семей (см.Глава II,2.3).

Среднее расстояние между соседними маркерами варьирует от 2

сМ для хромосомы 21 до 5 сМ для самых крупных хромосом с

очень небольшим числом участков в геноме с расстоянием между

маркерами большим, чем 10 сМ. GDB содержит 672 гена, локали-

зованных на картах сцепления индексных маркеров, из общего

числа 3485 клонированных генов (Guapay et al., 1994). Соз-

данные в последние годы достаточно подробные геномные карты

сцепления молекулярных маркеров в масштабах 13, 0; 5,0 и да-

же 2,9 сантиморганид; автоматизация процесса генотипирования

маркерных микросателлитных (STR) аллелей; большое число уже

картированных структурных генов, анонимных ДНК-последова-

тельностей значительно упрощают и, главное, ускоряют процесс

генетического картирования. Если в 1992г. в распоряжении

иследователей было только 814 динуклеотидных полиморфных

сайтов (Weissenbach et al.,1992), то уже к маю 1994 г. их

число возросло до 3 300 (Guyapay et al.,1994) , а к концу

года - до 5 000- 6 000 (Shmitt, Goodfellow, 1994). Столь же

быстрыми темпами нарастает число молекулярных маркеров и в

геноме лабораторных мышей (Service, 1994). По всей види-

мости, человек и лабораторная мышь будут первыми млекопитаю-

щими с полностью расшифрованными геномами.

Картирование генов человека и выяснение первичной нук-

леотидной последовательности человеческого генома составляют

основные, взаимосвязанные задачи Международной программы

"Геном Человека". Официально эта научная программа с участи-

ем ведущих молекулярно-генетических лабораторий США, Запад-

ной Европы, России и Японии оформилась в 1990г. Однако, за-

долго до приобретения официального статуса, в этих странах

проводились важные молекулярные исследования по изучению ге-

нома человека и картированию его генов. История отечествен-

ной программы началась в 1987г. Её инициатором и безусловным

лидером в течение многих лет был академик А.А.Баев. По его

настоянию в 1989г. она стала одной из ведущих Государствен-

ных научно-технических программ СССР. Основные разделы этой

программы как в России, так и во всем мире включают три

главных направления научных исследований: 1. Картирование и

секвенирование генома; 2. Структурно-функциональное изучение

генома; 3. Медицинскую генетику и генотерапию (Баев,1990;

1994).

Предполагалось, что основной раздел программы, касаю-

щийся секвенирования всего генома, то есть выяснения первич-

ной последовательности всей молекулы ДНК одной клетки чело-

века длиной около 1,5 метров, состоящей из 3.5х10!9 нуклео-

тидов, будет завершен уже к 2 005 году. Однако, серьезные

технические усовершенствования этого трудоемкого процесса,

его автоматизация и резкое снижение себестоимости (от 1$ США

за один шаг в 1990г. до 0,2$ в 1995г.) позволяют надеяться,

что эта гигантская молекула, несущая информацию о всей прог-

рамме индивидуального развития человека и его эволюции будет

полностью расшифрована уже к 2 000 году ! (Marshall, 1995).

Естественно, что в итоге этой работы будут идентифици-

рованы и все гены человека, то есть будет точно определено

их число, взаиморасположение на генетической карте и струк-

турно-функциональные особенности. Предполагается, что осу-

ществление этого проекта, помимо колоссальных теоретических

обобщений для фундаментальных наук, окажет огромное влияние

на понимание патогенеза, предупреждение и лечение

наследственных болезней, значительно ускорит исследование

молекулярных механизмов, лежащих в основе развития очень

многих моногенных нарушений, будет способствовать более эф-

фективному поиску генетических основ мультифакториальных за-

болеваний и наследственной предрасположенности к таким широ-

ко распространенным болезням человека как атеросклероз, ише-

мия сердца, психиатрические и онкологические заболевания.

ГЛАВА X.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА НЕКОТОРЫХ

МОНОГЕННЫХ ЗАБОЛЕВАНИЙ.

Раздел 10.1. Хромосомная локализация и принципы класси-

фикации генов наследственных болезней.

Раздел 8.1 Хромосомная локализация и принципы классифи-

К настоящему времени на хромосомах человека картирова-

но около 800 генов, мутации которых приводят к различным

наследственным заболеваниям. Количество моногенных заболева-

ний, для которых известна локализация контролирующего гена,

еще больше и приближается к 950 за счет существования ал-

лельных серий, то есть групп болезней, клинически сильно от-

личающихся друг от друга, но обусловленных мутациями в одном

и том же гене (см.Глава IV). Для всех этих заболеваний прин-

ципиально возможна пренатальная диагностика с использованием

косвенных методов молекулярного анализа (см.Главу VII).

Более половины картированных генов клонировано и оха-

рактеризовано методами молекулярного анализа. Для каждого из

этих генов описаны мутантные варианты среди соответствующих

групп больных, причем количество идентифицированных аллелей

в разных генах может колебаться от одного до нескольких со-

тен (см.ниже). Молекулярное генотипирование мутации позволя-

ет проводить прямую пренатальную диагностику соответствующе-

го наследственного заболевания в семьях высокого риска

(см.Главу VII).

Число генов наследственных болезней, локализованных на

каждой хромосоме приведено на Рис. 10.1. В среднем, на каж-

дой из них к 1995г. идентифицировано около 30 таких струк-

турных генов. Обращает на себя внимание неравномерный харак-

тер распределения этих генов. Так, хромосомы 1 и 2 имеют

примерно одинаковые размеры (хромосома 2 даже несколько

крупнее), однако, число уже картированных генов, связанных с

наследственными заболеваниями, на хромосоме 1 в 3 раза мень-

ше, чем на хромосоме 2. Наибольшее число таких генов (больше

100) картировано на Х-хромосоме. Это, по-видимому, можно

объяснить гемизиготным проявлением мутаций генов Х-хромосомы

в компаунде гоносом ХУ у мужчин. Вместе с тем, анализ приве-

денных данных (Рис. 10.1) свидетельствует и о феномене раз-

личной насыщенности разных хромосом структурными генами. На-

ибольшая плотность структурных генов свойственна хромосомам

1, 3, 7, 9, 17, 22, Х. Значительно меньшая - хромосомам 2,

13, 18, 21, У (Antonarakis, 1994). Неслучайно, дисбаланс не-

которых из хромосом 2-й группы часто совместим с постнаталь-

ным развитием (синдром Дауна - трисомия 21; синдром Эдвардса

- трисомия 18; синдром Патау - трисомия 13). По-видимому,

это связано со сравнительно низкой плотностью структурных

генов в этих хромосомах, а также с отсутствием в них генов,

контролирующих ранние стадии развития. Напротив, сравнитель-

но слабая насыщенность известными генами хромосом 2 и 15 в

сочетании с редкостью их дисбаланса даже в абортном материа-

ле, может рассматриваться в пользу наличия в этих хромосомах

"ранних генов", контролирующих начальные стадии онтогенеза

человека: гаметогенез, ранний эмбриогенез. Мутации таких ге-

нов отметаются селекцией уже на этих ранних стадиях, а пото-

му не обнаруживаются постнатально. Стремительный рост даных

о генетической информации, заключенной в каждой хромосоме,

распределении в ней структурных и регуляторных генов, их

взаимодействии с надмолекулярными структурами хромосом (ге-

терохроматином), межхромосомных взаимодействиях и феномене

геномного импринтинга открывает широкие возможности на новом

методическом и концептуальном уровне подойти к проблеме хро-

мосомного (геномного) контроля ранних стадий развития чело-

века - основной проблемы цитогенетики развития млекопитающих

(Баранов, 1984; 1990; 1992; Dyban, Baranov, 1987).

Другое положение, которое следует напомнить в вводной

части этой главы касается специфичности мутационных повреж-

дений каждого структурного гена. Как указывалось ранее

(см.Глава V), несмотря на наличие общих закономерностей в

мутационных процессах, спектр мутаций для каждого гена, рав-

но как и сами структурные гены - уникальны. Причины этой

уникальности кроются в особенностях первичной структуры ДНК

каждого гена, в частности, обогащенности CG нуклеотидами,

его размерах, наличии прямых и обращенных повторов, присутс-

твии внутри гена ДНК последовательностей, гомологичных вне-

генным участкам, что может приводть к нарушениям процессов

рекомбинации в мейозе и.т.д. Для каждого идентифицированного

гена, мутации которого приводят к наследственным заболевани-

ям, разработаны эффективные методы молекулярной диагностики,

как правило, направленные на генотипирование наиболее частых

мутаций этого гена. Реже для этих же целей используется неп-

рямой метод диагностики с помощью молекулярных маркеров

(см.Глава YII).

Цитогенетические карты представляют собой один из спо-

собов однозначной и обьективной систематизации генов. Для

практических целей медико-генетического консультирования и

дифференциальной диагностики моногенных заболеваний подобная

классификация не всегда удобна, так как при составлении карт

генов никак не учитывается информация об особенностях коди-

руемых генами продуктов или о фенотипическом проявлении му-

тантных аллелей. В медицинскихх целях черезвычайно важно

иметь представление о группах генов, кодирующих функциональ-

но и структурно родственные белки, или контролирующие забо-

левания со сходной клинической картиной. Однако, далеко не

всегда классификация по клиническим параметрам может быть

проведена однозначно по ряду причин. Во-первых, большое чис-

ло моногенных наследственных заболеваний носит синдромальный

характер и, зачастую, не удается выделить группу ведущих

клинических симптомов. Во-вторых, многие болезни отличаются

высоким уровнем фенотипической гетерогенности, связанной ли-

бо со спецификой мутационных повреждений, либо с различиями

в окружающих условиях и/или в генетическом фоне (см. Главу

IV). Кроме того, многие болезни, вызванные мутациями в раз-

ных генах, могут протекать сходным образом и, основываясь

только на клинических симптомах, трудно провести дифференци-

альную диагностику подобных заболеваний. Поэтому наиболее

обьективная классификация моногенных наследственных болезней

с известными первичными биохимическими дефектами проводится

на основе классификации соответствующих генопродуктов с уче-

том их участия в определенных метаболических циклах.

В данной заключительной главе мы попытаемся проиллюст-

рировать на ряде примеров теоретические положения, изложен-

ные в предыдущих главах. В качестве примеров будут приведены

краткие молекулярно-генетические характеристики некоторых

классов хорошо изученных и достаточно распространенных моно-

генных наследственных болезней. Большинство из этих завболе-

ваний в той или иной мере изучаются в соответствующих науч-

ных центрах России, а их диагностика в медико-генетических

центрах страны проводится не только по клиническим парамет-

рам, но и с обязательным учетом результатов молекулярного

и/или биохимического обследования.

Раздел 10.2. Метаболические дефекты лизосомных фермен-

тов. Болезни накопления.

В качестве примера наиболее полно и всесторонне изучен-

ных заболеваний мы выбрали группу болезней, обусловленных

наследственными дефектами лизосомальных гидролаз. В Табл.

10.1 представлены данные о наследовании и встречаемости ли-

зосомных болезней, хромосомной локализации и структуре соот-

ветствующих генов, кодируемых ими продуктах и идентифициро-

ванных мутантных аллелях. Даны также ссылки на основные ра-

боты по картированию соответствующих генов, их клонированию

и идентификации мажорных (то есть наиболее частых) мутаций.

Таблица составлена по материалам Каталога наследственных бо-

лезней В. МакКьюсика 1994 г.(McKusik, 1994) и дополнена не-

обходимыми литературными данными.

Таблица 10.1 Молекулярно-генетические основы лизосомных болезней

( N) - примечания, представленные в конце таблицы).

---------------------T--------------T-----------------------T------------------------¬

Синдромы 1), номер по¦Встречаемость,¦Типы и количество му- ¦Литература ¦

МакКьюсику; хромосом-¦белок, размеры¦таций 5), мажорные мута¦(локализация и структура¦

ная локализация; ген ¦в аминокисло- ¦ции -в скобках указаны ¦генов,клонирование кДНК,¦

2);размеры 3); экзоны¦тах 4) ¦частоты аллелей у б-ных¦идентификация мутаций). ¦

---------------------+--------------+-----------------------+------------------------+

N-ацетил-альфа-D-га- ¦Очень редко 6)¦Миссенс - 2: ¦Wang et al.,1990 ¦

лактозаминидазы деф.;¦ ¦E325K -Шиндлера болезнь¦Desnick, 1991 ¦

Шиндлера;Канзаки б-нь¦Ацетилгалактоз¦R329W - Канзаки болезнь¦ ¦

104170; 22q11; ¦аминидаза,аль-¦ ¦ ¦

NAGA.2; кДНК-2.2 кб ¦фа-N-; 411¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Ангиокератома Фабри; ¦1 : 40 000 ¦Миссенс -31;делеции (от¦ Bishop et al.,1988 ¦

дистопический липидоз¦ ¦1 н. до неск.экз.) -11;¦ Kornreich et al.,1990 ¦

301500; Xq22; ¦Галактозидаза ¦сплайс.-5 (из них 3 с ¦ Davies et al., 1993 ¦

GLA.50; 12 кб, 7 экз.¦альфа; 429¦дел.экз); инс.,дупл.-3 ¦ Eng et al.,1993 ¦

---------------------+--------------+-----------------------+------------------------+

Аспартилглюкозамину- ¦Более 100 случ¦Миссенс -5; делеции -4;¦Ikonen et al.,1991 ¦

рия, ¦в Финляндии ¦инсерции -2; ¦Ikonen et al.,1992 ¦

208400; 4q23-q27; ¦Аспартилглюкоз¦C163S - мажорная мута- ¦ ¦

AGA.11; ¦аминидаза; 346¦ция в Финляндии (98%) ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Вольмана б-нь;гиперхо¦Более 70 случ.¦Делеция 72 н.,возникшая¦Anderson et al.,1991 ¦

лестерин-гипертригли-¦ ¦в результате сплайсинго¦Anderson et al.,1994 ¦

церидемия, ¦Лизосомальная ¦вой мутации -обнаружена¦Maslen et al,1993 ¦

278000; 10q24-q25; ¦кислая липаза ¦в 2 случаях;миссенс -2;¦Klima et al.,1993 ¦

LIPA.4; 36 кб;10 экз.¦-A ¦инсерция 1 н. - 1. ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Галактосиалидоз, ¦Преим.в Японии¦Делеция экз.7 (сплайс.)¦Galjard et al.,1988 ¦

¦Протективный ¦-мажорная у взрослsх в ¦Wiegant et al.,1991 ¦

256540; 20q13.1; ¦белок бета га-¦Японии; миссенс -6; ¦Takano et al.,1991 ¦

PPGB.7; мРНК - 2 кб ¦лактозидазы452¦F412V - в 2 случаях ¦Zhou et al.,1991 ¦

---------------------+--------------+-----------------------+------------------------+

Ганглиозидоз GMI; му-¦Неизвестно ¦Миссенс -10; дуплик.-2;¦Oshima et al.,1988 ¦

кополисахаридоз 1YB, ¦ ¦I51T и R201C-мажорные в¦Noshimoto et al.,1991 ¦

230500; 3p21.33; ¦Галактозидаза ¦в Японии, R482H и W273L¦Suzuki et. al.,1993 ¦

GLB1.12; кДНК - 2кб ¦бета-1; 677¦мажорные в Европе ¦Mosna et al.,1992 ¦

---------------------+--------------+-----------------------+------------------------+

Ганглиозидоз GM2-I, ¦1 : 300 000; у¦Миссенс-34;дел.-8;инс.-¦Proia et al.,1987 ¦

варианты B,B1 и псев-¦евреев 1:3 000¦2;сплайс.-8; Мажорные:у¦Myerowitz et al.,1988 ¦

до AB;Тея-Сакса б-знь¦Гексозаминида-¦евреев-инс.4 н.-70%,спл¦Arpaia et al.,1988 ¦

272800; 15q23-q24; ¦за A, альфа ¦айс.-20%;G269S-взр.-20%¦Navon et al.,1989 ¦

HEXA.52; 35 кб, 14экз¦ 529¦не евреи - R247W - 32% ¦Triggs-Raine et al.,1992¦

---------------------+--------------+-----------------------+------------------------+

Ганглиозидоз GM2, тип¦1 : 300 000 ¦Миссенс -5; делеции -2;¦Proia: 1988 ¦

II,Зандхоффа болезнь,¦ ¦инсерции - 2; Мажорные:¦Neote et al.,1990 ¦

268800; 5q13; ¦Гексозаминида-¦16-кб делеция 1-5 экз.-¦Wakamatusi et al.,1992 ¦

HEXB.9; 40 кб, 14экз.¦за B,бета; 556¦27%;делеция 50кб; P417K¦McInnes et al.,1992 ¦

---------------------+--------------+-----------------------+------------------------+

Ганглиозидоз-GM2, AB ¦Очень редко ¦Миссенс -3: C107R; ¦Heng et al.,1993 ¦

вариант, ¦ ¦R169P; C138R (1 пациент¦Schroder et al.,1993 ¦

272750; q31.3-q33.1;¦GM2-активатор-¦гомозиготен) ¦ ¦

GM2A.3; ¦ный белок; 193¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Гоше болезнь; глико- ¦1:600 у евреев¦Миссенс -30;инс.-1;деле¦Sorge et al.,1985 ¦

сфинголипидоз, ¦изол. в Швеции¦ции-3;сплайс.-1; Мажор-¦Sorge et al.,1987 ¦

230800; 1q21; ¦Глюкоцеребро- ¦ные (98%):N370S, L444P,¦Beutler et al.,1992 ¦

GBA.36; ¦зидаза; 644¦R463C,84insG;IVS2+1 G-A¦Horowitz et al.,1994 ¦

---------------------+--------------+-----------------------+------------------------+

Лейкодистрофия глобо-¦1 : 50 000 в ¦Нонсенс мутация:E369TER¦Zlotogora et al.,1990 ¦

ид-клеточная, Краббе,¦Швеции ¦ ¦Sakai et al.,1994 ¦

245200; 14q21-q31; ¦Галактозилцера¦ ¦ ¦

GALC.1; кДНК -3.78 кб¦мидаза 669¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Лейкодистрофия ¦1 : 100 000 ¦Миссенс -7; делеции -2;¦Stein et al.,1989 ¦

метахроматическая, ¦ ¦сплайс. -2; регулят. -1¦Polten et al.,1991 ¦

250100; 22q13.31-qter¦Арилсульфатаза¦Мажорные:P426L и сплайс¦ ¦

ARSA.12; 8 экз¦A 507¦2 -70%, регулят. - 1-2%¦ ¦

---------------------+--------------+-----------------------+------------------------+

Лейкодистрофия мета- ¦Редко ¦Миссенс -4: T23I,T216I,¦Rorman et al.,1992 ¦

хроматическая, SAP1 ¦ ¦C241S,F385C; ¦Wenger et al.,1989 ¦

деф.; Гоше б-нь, ¦ ¦инсерция 33 н. -1; ¦ ¦

176801; 10q21-q22; ¦Просапозин ¦регуляторная мутация в ¦ ¦

PSAP.6; 20 кб, 13экз.¦ 511¦инициирующем кодоне -1 ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Лизосомальной кислой ¦ ¦ ¦Pohlmann et al.,1988 ¦

фосфатазы деф., ¦Кислая фосфата¦ ¦ ¦

171650; 11p12-p11; ¦за 2, лизосом-¦ ¦ ¦

ACP2.; кДНК-2.1 кб ¦ная 423¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Липидоз сфингомиелино¦Редко ¦Миссенс - 8; делеции -3¦Quintern et al.,1989 ¦

вый;Ниманна-Пика бо- ¦ ¦Мажорные:тип A евреи: ¦Levran et al.,1991 ¦

лезнь,тип A/B, ¦ ¦R496L,L302P,дел.1н.P330¦Schuchman et al.,1992 ¦

257200; 11p15.4-p15.1¦Сфингомиелина-¦в комплексе 65%; тип B ¦Suchi et al.,1992 ¦ ¦

SMPD1.11; ¦за 629¦Сев.Африка R608del->80%¦Takahashi et al.,1992 ¦

---------------------+--------------+-----------------------+------------------------+

Ниманна-Пика болезнь,¦Очень редко ¦ ¦Carstea et al.,1993 ¦

тип C, ¦ ¦ ¦Kurimasa et al,1993 ¦

257220; 18p; ¦ ¦ ¦ ¦

NPC.; ¦ ¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Ниманна-Пика болезнь,¦Очень редко ¦ ¦Winsor et al.,1978 ¦

тип D, ¦ ¦ ¦ ¦

257250; ¦ ¦ ¦ ¦

¦ ¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Маннозидоз, альфа B, ¦50-100 случаев¦ ¦Kaneda et al.,1987 ¦

лизосомальный, ¦Лизосомальная ¦ ¦ ¦

248500; 19p13.2-q12;¦альфа-D-манно-¦ ¦ ¦

MANB.; ¦зидаза B ¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Маннозидоз, бета, ¦Очень редко ¦ ¦Lundin,1987 ¦

¦Лизосомальная ¦ ¦ ¦

248510; chr.4?; ¦бета маннози- ¦ ¦ ¦

MANB1.; ¦даза ¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

MASA синдром (сложная¦Редко ¦ ¦Schrander-Stumpel ¦

спастическая парапле-¦ ¦ ¦et al.,1990 ¦ ¦

гия), 303350; Xq28; ¦Маннозосвязыва¦ ¦Rosenthal et al.,1992 ¦

MASA.; ¦ющий лектин248¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Мукополисахаридоз 1; ¦1:100 000, ¦Нонсенс -4; миссенс -3;¦Scott et al.,1991 ¦

Гурлера синдром;Шейе,¦1:600 000-Шейе¦сплайс. -1; дел. 1н. -1¦Scott et al.,1992 ¦

252800; 4p16.3; ¦Альфа-L-идуро-¦Мажорные: W402X (31%), ¦Moskowitz et al.,1993 ¦

IDUA.9; 19 кб, 14экз.¦нидаза 653¦Q70X (15%), P533R (3%) ¦Scott et al.,1993 ¦

---------------------+--------------+-----------------------+------------------------+

Мукополисахаридоз II;¦1:70 000 в Из-¦20% -крупные делеции,из¦Wilson et al.,1990 ¦

Хантера синдром, ¦раиле ¦них 4,5 % -всего гена; ¦Bunge et al.,1993 ¦

309900; Xq28; ¦Идуронат-2- ¦делеции 1-3н-7;миссенс-¦Flomen et al.,1993 ¦

IDS.29; 24 кб, 9 экз.¦сульфатаза 550¦13;нонсенс -4;сплайс.-5¦Hopwood et al.,1993 ¦

---------------------+--------------+-----------------------+------------------------+

Мукополисахаридоз ¦1 : 24 000 в ¦ ¦Kresse et al.,1971 ¦

IIIA,Санфилиппо синд-¦Нидерландах ¦ ¦ ¦

ром A, 252900; ¦(все типы A-D)¦ ¦ ¦

¦ ¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Мукополисахаридоз ¦Наиболее часто¦ ¦Pande et al.,1992 ¦

IIIB,Санфилиппо синд-¦на юге Европы ¦ ¦ ¦

ром B, 252920;Chr.17?¦ ¦ ¦ ¦

¦ ¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Мукополисахаридоз III¦Редко ¦ ¦Zaremba et al.,1992 ¦

C, Санфилиппо синдром¦ ¦ ¦ ¦

C, 252930;Chr.14 или ¦ ¦ ¦ ¦

21?; ¦ ¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Мукополисахаридоз III¦Редко ¦ ¦Robertson et al.,1988a ¦

Санфилиппо синдром D,¦N-ацитил-глюко¦ ¦Robertson et al.,1988b ¦

252940; 12q14; ¦зоамин-6-суль ¦ ¦ ¦

GNS.; ¦фатаза 552¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Мукополисахаридоз IYA¦1 : 300 000 ¦Миссенс - 3: N204K, ¦Tomatsu et al.,1991 ¦

Моркио синдром, ¦ ¦A138V, R386C; ¦Tomatsu et al.,1992 ¦

253000; 16q24.3; ¦Галактозамин-6¦делеция 2 н. - 1 ¦Masuno et al.,1993 ¦

GALNS.4; ¦сульфатаза 522¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Мукополисахаридоз YI;¦Редко ¦Миссенс - 4: C137V, ¦Litjens et al., 1989 ¦

Марото-Лами синдром, ¦ ¦C117R, L236P, C405Y; ¦Schuchman et al.,1990 ¦

253200; 5q11-q13; ¦Арилсульфатаза¦делеция 1н. - 1 ¦Jin et al.,1992 ¦

ARSB.5; ¦B 533¦ ¦Litjens et al., 1992 ¦

---------------------+--------------+-----------------------+------------------------+

Мукополисахаридоз YII¦Очень редко ¦Миссенс - 5: A619V, ¦Guise et al.,1985 ¦

Слая синдром, ¦ ¦R382C, R216W, R354W, ¦Oshima et al., 1987 ¦

253220, 7q21.11; ¦Бета-глюкуро- ¦R611W ¦Miller et al.,1990 ¦

GUSB.5; 21 кб, 12экз.¦нидаза 651¦ ¦Tomatsu et al.,1991 ¦

---------------------+--------------+-----------------------+------------------------+

Сиалидоз типы I и II;¦50-100 случаев¦ ¦Oohira et al.,1986 ¦

липомукополисахаридоз¦ ¦ ¦Klein et al.,1986 ¦

256550; 6p21.3; ¦Нейраминида- ¦ ¦Sasagasako et al.,1993 ¦

NEU.; ¦за-1 ¦ ¦ ¦

---------------------+--------------+-----------------------+------------------------+

Фукозидоз, ¦30-60 случаев ¦Нонсенс - 5:Q351X-мажор¦Fowler et al.,1986 ¦

¦Фукозидаза аль¦ная (20%), E375X, Q77X,¦Kretz et al.,1992 ¦

230000; 1p34; ¦фа-L-1,ткане- ¦W382X, Y211X;делеции -4¦Roychoudhuri et al.,1988¦

FUCA1.10; 23 кб, 8экз¦вая 461¦(экз2-1,1н-3);сплайс.-1¦Seo et al.,1993 ¦

---------------------+--------------+-----------------------+-------------------------

1) - через ";" указаны различные наименования болезней либо

аллельные варианты

2) - после наименования гена через "." указано количество

идентифицированных мутантных аллелей к июлю 1994г.

3) - размеры генов указаны в килобазах (кб), иногда вместо

размеров гена указаны размеры кДНК или мРНК

4) - размеры белка указаны в правом нижнем углу

5) - при количестве мутаций, меньшем 5, все они указываются

после знака ":", при большем количестве перечисляются

только типы мутаций

96) - частоты заимствованы из сводной таблицы Scriver et al., 189.

Сокращения - взр.- взрослые; дел.- делеция; дупл.- дуплика-

ция; инс. - инсерция; н.- нуклеотиды; сплайс. -

замена нуклеотидов в донорном или акцепторном

сайтах сплайсинга или мутации в интронных об-

ластях, создающие новый сайт сплайсинга; экз.-

экзон

Из таблицы 10.1 следует, что для 29 из 31 лизосомных

болезней определена хромосомная локализация гена, причем в

26 случаях - абсолютно однозначно. 23 лизосомных гена клони-

рованы. Для 20 лизосомных заболеваний описаны различные му-

тантные аллели, что подтверждает правильность идентификация

соответствующих генов (см.Главу III). Для 12 заболеваний на-

йены мажорные мутации в различных популяциях. Для 8 заболе-

ваний общее количество идентифицированных мутаций пока не

превысило шести и, возможно, мажорные мутации для них еще

будут идентифицированы.

Спектр мутаций в разных лизосомных генах очень разнооб-

разен. Так, при болезни Фабри наряду с явным преобладанием

миссенс мутаций обнаружено 14 внутригенных перестроек разме-

рами от 0.4 до 8 кб, многие из которых имеют точки разрыва в

экзоне 2 - области локализации большого числа Alu-повторов.

Сам ген GLA содержит 12 различных Alu-элементов, составляю-

щих около 30% его длины. В местах разрывов часто обнаружива-

ются короткие прямые и обращенные 2-6 нуклеотидные повторы.

Одним из возможных механизмов возникновения структурных пе-

рестроек в данном гене может быть незаконная Alu-Alu реком-

бинация или, что более вероятно, рекомбинация между коротки-

ми повторами. Участие Alu-элементов предполагается также при

возникновении 16-кб делеции промоторной области и первых 5-и

экзонов гена HEXB - мажорной мутации при болезни Зандхоффа.

Нарушение процесса рекомбинации является, по-видимому, при-

чиной возникновения очень большого числа крупных и мелких

делеций в IDS-гене при синдроме Хантера. Высокая концентра-

ция CpG динуклеотидов рассматривается как возможный эндоген-

ный механизм возникновения мажорной среди евреев-ашкенази

мутации P330FS в гене SPDM1 при болезни Ниманна-Пика типа B,

так как эта делеция возникает в районе, где из 10 остатков 9

составляют цистеины.

Делеции целых экзонов или инсерции интронных областей

возникают сравнительно часто в результате точковых мутаций в

донорных или акцепторных сайтах сплайсинга. Примерами являют-

ся мажорная в Японии сплайсинговая мутация, сопровождающаяся

делецией 7-го экзона гена- PPGB, приводящая к галактосиалидо-

зу и сплайсинговая мутация IVS2+1, обусловливающая вырезание

экзона 2 гена GBA при болезни Гоше. Появление в результате

точковой мутации в интронной области нового сайта сплайсинга

также может сопровождаться структурными перестройками. Тако-

ва, в частности, природа 33-нуклеотидной инсерции в гене PSAP

при метахроматической лейкодистрофии, обусловленной дефицитом

SAP1; 24-кб инсерции в гене HEXB при болезни Зандхоффа и

5-нуклеотидной инсерции в гене IDUA при синдроме Шейе. Важно

отметить, что подобные мутации совместимы с образованием не-

большого числа функционально активных мРНК, следствием чего

является относительно более мягкое течение соответствующих

форм заболеваний.

В некоторых случаях возникновению мутаций может

способствовать наличие псевдогена. Молекулярный анализ псев-

догена, тесно сцепленного с геном GBA, показал, что, по

крайней мере, 4 мутации, обнаруженные у пациентов с болезнью

Гоше, присутствуют в норме в псевдогене. Это 2 мажорные му-

тации - L444P и IVS2+1 и еще 2 миссенс мутации в 10-м экзоне

(A456P и V460V). Подобное сходство несомненно указывает на

фундаментальную роль псевдогена в образовании мутаций в

GBA-гене. В то же время само по себе присутствие псевдогена

не является мутагенным фактором, особенно если сам ген и его

псевдоген локализованы в разных хромосомах, как, например, в

случае генов GM2A и FUCA1, псевдогены которых находятся в

хромосоме 3 и в области 2q31-q32, соответственно.

Для двух лизосомных болезней - фукозидоза и синдрома

Гурлера, мажорными являются нонсенс мутации. Более того, при

фукосидозе все известные к настоящему времени мутации приво-

дят к полному отсутствию продукта FUCA1-гена. Так, наряду с

мажорной мутацией Q351X, представленной в 20% хромосом у

больных фукосидозом, описаны еще 4 нонсенс мутации и 4 деле-

ции со сдвигом рамки считывания. При синдроме Гурлера две

мажорные нонсенс мутации - W402X и Q70X, составляют около

50% всех известных мутантных аллелей гена IDUA. Кроме того,

при этом заболевании зарегистрированы еще 4 минорные по

частоте нонсенс мутации и 1 делеция со сдвигом рамки считы-

вания. 3 миссенс мутации и интронная мутация, создающая до-

полнителный сайт сплайсинга в гене IDUA, не приводят к пол-

ному блоку синтеза идуронидазы и реализуются в виде синдрома

Шейе. Уместно заметить, что оба заболевания - синдром Гурле-

ра и синдром Шейе, являются классическим примером фенотипи-

ческого разнообразия, обусловленного существованием аллель-

ных серий (см.Главу IV). Такой спектр крайне тяжелых мутаций

нельзя объяснить только повышенной частотой их возникнове-

ния. Более вероятным представляется предположение о том, что

кодируемые FUCA1- и IDUA-генами белки обнаруживают опреде-

ленную устойчивость к небольшим повреждениям и сохраняют

функциональную активность при определенных аминокислотных

заменах, то есть миссенс аллели в этих генах проявляют себя

как нейтральные мутации и не приводят к развитию заболева-

ний.

Хорошо известно, что распространение мутаций в популя-

циях определяется не только, и не столько повышенной часто-

той их возникновения, но многими другими популяционно-гене-

тическими факторами и, в первую очередь, связано с эффектом

основателя (см.Главу V). Типичным следствием эффекта основа-

теля, как известно, является наличие различных мажорных по

частоте мутаций одного и того же гена у пациентов разных

изолятов и этнических групп. Подобная картина наблюдается, в

частности, при ганглиозидозе GMI. Так, в Японии мажорными

при этом заболевании являются миссенс мутации I51T и R201C,

тогда как в Европе преобладают мутации R482H и W273L. Эффек-

том основателя можно объяснить высокую частоту аспартилглю-

козаминурии в Финляндии, так как в 98% случаев у пациентов

финского происхождения заболевание обусловлено присутствием

одной и той же миссенс мутации C163S, резко уменьшающей ак-

тивность аспартилглюкозаминидазы. Интересно отметить, что

эта мутация у больных находится в сильном неравновесном

сцеплении с другой миссенс мутацией в AGA-гене - R161Q, яв-

ляющейся, в свою очередь, редкой формой полиморфизма. Невоз-

можно, однако, исключить возможность комбинированного влия-

ния этих двух мутаций на фенотип.

Яркие примеры этнических различий по частоте и спектру

мажорных мутаций выявляются при анализе таких лизосомных бо-

лезней накопления как болезнь Тея-Сакса, Ниманна-Пика и бо-

лезнь Гоше. Прежде всего, эти заболевания особенно распрост-

ранены среди евреев-ашкенази, среди которых они встречаются

в десятки раз чаще, чем в других популяциях европейского или

азиатского происхождения. Наличие специфических мажорных му-

таций для всех трех заболеваний у 70 - 95% всех пациентов

еврейского происхождения скорее всего нельзя обьяснить толь-

ко эффектом основателя. Генетический дрейф, селективное пре-

имущество гетерозигот, характер миграции, социальные и рели-

гиозные особенности, обусловливающие ассортативность образо-

вания супружеских пар - вот те факторы, которые, по всей ви-

димости, лежат в основе этих различий. В этой связи инте-

ресно отметить, что среди пациентов других национальностей

мажорные мутации гомологичных генов, как правило, иные, чем

у евреев-ашкенази. Так, болезнь Ниманна-Пика типа B часто

встречается среди жителей стран, расположенных в западной

части Северной Африки. Однако, в 80% случаев заболевание

связано с делецией R608 в SMPD1-гене, которая не является

мажорной среди евреев-ашкенази.

На примере лизосомных болезней могут быть хорошо

прослежены корреляции между типами мутаций и клиническими

особенностями заболеваний. Выше уже упоминалось об аллельных

вариантах гена IDUA, приводящих либо к синдрому Гурлера, ли-

бо к синдрому Шейе. Разные миссенс мутации в гене NAGA при-

водят к болезни Шиндлера или к болезни Канзаки (Табл.

10.1.). Важное значение для анализа молекулярных основ пато-

генеза заболеваний имеют специфические мутации с поздней фе-

нотипической манифестацией (так называемые взрослые формы).

Такие мутации обнаружены в соответствующих генах при болез-

нях Тея-Сакса и галактосиалидозе. Очень интересен случай

различного фенотипического проявления на разном расовом ге-

нетческом фоне одной и той же мутации - мажорной 16-кб деле-

ции, обнаруживаемой у 27% пациентов с детской формой болезни

Зандхоффа (McInnes et al.,1992; Sidransky et al.,1994). В

частности, в одной франко-канадской семье эта мутация в ком-

паунде с миссенс мутацией P417L, описанной впервые в Японии

у пациента с подростковой формой заболевания, провлялась как

взрослая форма с очень мягким течением заболевания.

В ряде случаев удалось проанализировать молекулярную

природу совместного влияния двух аллелей одного гена на фе-

нотип. К примеру, при некоторых форм метахроматической лей-

кодистрофии трудность молекулярной диагностики заболевания

связана с существованем, так называемого, псевдодефицитного

аллеля ARSA-гена. Этот полиморфный аллель встречается в по-

пуляциях с достаточно высокой частотой, так что гомозиготы

по нему состаляют 1 - 2% всего населения. Оказалось, что

псевдодефицитный аллель представляет из себя сочетание двух

мутаций в цис-положении. Одна из них - 3'-концевая ругуля-

торная мутация в первом сайте после стоп кодона, изменяет

сигнал полиаденилирования. Другая - миссенс мутация в 6-м

экзоне, приводит к потере сайта N-гликозилирования. Попутно

отметим, что для гена ARSA (также как и для IDUA-гена) обна-

ружен альтернативный сплайсинг, в результате которого в фиб-

робластах и печени образуются 2 различных типа мРНК, разме-

ром 2.1 кб и 3.9 кб, соответственно. У гомозигот по псевдо-

дефицитному аллелю в фибробластах отсутствует 2.1 кб мРНК,

при этом клинических проявлений заболеваний не наблюдается.

Однако, при наличии S96F мутации в ARSA-гене на фоне псевдо-

дефицитного аллеля развивается тяжелая форма лейкодистрофии.

В заключении раздела кратко рассмотрим состояние проб-

лемы генокоррекции лизосомных заболеваний. В литературе

отсутствуют сообщения об успешных клинических испытаниях

программ генотерапевтического лечения этих заболеваний, од-

нако, по крайней мере, для некоторых лизосомных болезней та-

кие программы уже разработаны и утверждены (см.Главу IX,

Табл.9.2). Имеются сведения о положительных результатах та-

ких исследований на культурах мутантных клеток и на модель-

ных животных. Так, в опытах in vitro был осуществлен успеш-

ный ретровирусный перенос нормальной кДНК гена GBA в культу-

рах мутантных фибробластов (Sorge et al.,1987) и в культурах

клеток крови пациентов с болезнью Гоше (Fink et al., 1990),

в результате чего была достигнута коррекция глюкоцеребрози-

дазной активности. Такая же коррекция метаболическоих дефек-

тов при болезни Ниманна-Пика и при синдроме Хантера была

достигнута путем введения в соответствующие мутантные линии

клеток нормальных кДНК генов SMPD1 и IDS соответственно. При

этом активность идуронат-2-сульфатазы после ретровирусной

трансдукции in vitro оказалась существенно выше нормальной и

рекомбинантный фермент активно участвовал в метаболизме глю-

козамногликанов. Генокоррекция первичного биохимического де-

фекта при мукополисахаридозе YII (синдром Слая) была получе-

на как in vitro, путем ретровирусного переноса нормального

гена GUSB в мутантные фибробласты человека, так и in vivo на

собаках и мышах. При этом у больных собак нормальный белок

(бета-глюкуронидаза) не только экспрессировался, но появ-

лялся в лизосомах и восстанавливал процессинг специфических

глюкозоаминогликанов (Wolf et al., 1990). Введение этого же

гена (GUSB) в мутантные стволовые клетки мышей приводило к

длительной экспрессии бета-глюкуронидазы, снижению лизосо-

мального накопления в печени и мозге и частичной коррекции

болезни у трансгенных животных (Wolf et al.,1992). В другом

эксперименте GUBS-кДНК вводили в культивируемые мутантные

фибробласты кожи мышей и затем трансдуцированные клетки имп-

лантировали подкожно мутантным мышам. У всех животных наблю-

дали экспрессию введенного гена и полное исчезновение ли-

зосомальных отложений в печени и в мозге (Sly, 1993). Полу-

ченные результаты подтверждают принципиальную возможность

лечения, по крайней мере, некоторых лизосомных болезней с

помощью методов генной терапии.

Раздел 10.3. Болезни экспансии, вызванные "динамически-

ми" мутациями.

Обнаруженный в 1991г. новый тип так называемых динами-

ческих мутаций и связанные с ними наследственные заболевания

частично рассматривались нами в Главе IV. Однако их уникаль-

ность, необычный механизм экспрессии, особенности наследова-

ния, быстрый рост нозологий, обусловленных подобными наруше-

ниями в последовательности ДНК, и, как оказалось, достаточно

широкая распространенность (см.Табл.9.2) делают целесообраз-

ным их более подробный анализ.

Как упоминалось, этот тип мутаций пока найден только у

человека и не зарегистрирован ни у одного вида млекопитающих

или других хорошо изученных организмов (дрозофила, нематоды

и пр.). Суть мутаций заключается в нарастании числа триплет-

ных повторов, расположенных в регуляторной или в кодирующей,

а значит и в транслируемой части генов. Впервые такой тип

мутации был обнаружен при молекулярном анализе синдрома фра-

гильной (ломкой) Х-хромосомы, наследственная передача кото-

рой не подчинялась обычным менделевским законам. В дальней-

шем аналогочные динамические мутации были описаны и при 7

других наследственных заболеваниях, контролируемых генами,

расположенными на разных хромосомах - Таблица 10.2. Вместе с

тем, все нижеперечисленные нозологии имеют ряд общих призна-

ков, позволяющих объеденить их в одну самостоятельную груп-

пу. Прежде всего, для триплетных повторов, экспансия которых

блокирует функцию гена, характерен выраженный популяционный

полиморфизм, причем число аллелей может варьировать от еди-

ниц до нескольких десятков. Другой их особенностью является

доминантный тип наследования, характерный как для Х-сцеплен-

ных генов, так и для генов, находящихся на аутосомах. Осо-

бенностью практически всех болезней "экспансии" является

также эффект антиципации (ожидания), смысл которого заключа-

ется в нарастании тяжести симптомов заболевания в последую-

щих поколениях, что, как оказалось, является результатом на-

копления ("экспансии") исходного числа триплетов после того

как их количество возрстает больше нормального. Характерными

для этих нозологий являются и особенности их передачи по-

томству: для некоторых заболеваний типична передача по мате-

ринской (Fra-X, миотоническая дистрофия), а для других -

преимущественно по отцовской линии (хорея Гентингтона).

Практически для всех "динамических" мутаций характерно пора-

жение головного мозга и особенно подкорковых структур, при-

чем тяжесть заболевания и его начало четко коррелируют с

числом повторов. Молекулярный анализ этих генов позволяет

предполагать определенное сходство механизма экспансии трип-

летов, которая, по всей вероятности, происходит в митозе,

затрагивает чаще аллели с начально большим числом повторов,

при этом нередко сигналом экспансии является утрата негомо-

логичного триплета, в норме разделяюего цепочку монотонных

повторов. Вместе с тем, патогенетические механизмы проявле-

ния мутаций экспансии принципиально различны. В случае раз-

личных вариантов FRAX мутаций наблюдается блок экспрессии

соответствующих генов вследствие стабильного метилирования

области CpG островка в промоторной части генов. При миотони-

ческой дистрофии нарушение экспрессии, по-видимому связано с

ошибками взаимодествия транскрибируемой нити ДНК с нуклеосо-

мами. В случае остальных сугубо нейродегенеративных заболе-

ваний (хорея Гентингтона, спинально-бульбарная мышечная ат-

рофия и др.) экспрессия гена не нарушена, однако, образую-

щийся белковый продукт с необычно длинной полиглутаминовой

цепочкой каким-то образом нарушает процессы нормального ме-

таболизма нервных клеток подкорковых отделов мозга.

Таким образом, причиной повреждающего действия одних

"динамических" мутаций является блок генной экспрессии, то

есть потеря функции (loss-of-function mutation), тогда как

другие мутации того же типа, связанные с нейродегенративными

заболеваниями, ведут к появлению белковых продуктов с ано-

мальными функциями ( мутации типа -gain-of-function). Инте-

ресно отметить, что помимо динамических мутаций для каждого

названного гена обнаружены единичные точковые мутации, число

которых крайне невелико. Для каждой болезни "экспансии" раз-

работан свой вариант диагностики, основанный на ПЦР. Ампли-

фикация области триплетных повторов и дальнейший электрофо-

ретический анализ синтезированных продуктов позволяет опре-

делить число повторов, то есть провести генотипирование ал-

лелей. Вместе с тем, при числе повторов более 200, амплифи-

кация с помощью ПЦР обычно не достигается. В этих случаях

размеры участка повторов определяются методом блот-гибриди-

зации с соответствующими ДНК зондами. Например, используются

зонды StB12.3, Ох1.9 или Ох 0.55 в случае синдрома FRAXA;

зонд cDNA25 в случае миотонической дистрофии.

Подробней с этой интересной группой заболеваний можно

ознакомиться в ряде обзоров (Willems, 1994; Баранов и

др.,1993; Иллариошкин и др., 1995).

Таблица 10.2. Болезни экспансии, вызванные динамическими му-

тациями.

-----------------------T-----------T-------T-----T------T------T----------------------¬

Болезнь, номер по ¦ Ген, лока-¦Триплет¦Норма¦Прему-¦Мута- ¦Литература ¦

МакКьюсику (MIM) ¦ лизация ¦ ¦ ¦тация ¦ция ¦ ¦

-----------------------+-----------+-------+-----+------+------+----------------------+

Синдром ломкой X-хро- ¦FMR1, FRAXA¦(CGG)n ¦5-50 ¦50-90 ¦>90 ¦Rousseau et al.,1991 ¦

мосомы; 309550¦Xq27.3 ¦ ¦ ¦ ¦ ¦Hirst et al.,1991 ¦

-----------------------+-----------+-------+-----+------+------+----------------------+

Синдром ломкой X-хро- ¦FMR2, FRAXE¦(CGG)n ¦6-25 ¦25-200¦>200 ¦Knight et al.,1994 ¦

мосомы тип 2; 309548¦Xq27.3 ¦ ¦ ¦ ¦ ¦ ¦

-----------------------+-----------+-------+-----+------+------+----------------------+

Миотоническая дистро- ¦DM, MP-1 ¦(CTG)n ¦5-10 ¦19-30 ¦>30 ¦Shelbourne et al.,1992¦

фия; 160900¦19q13.3 ¦ ¦ ¦ ¦ ¦Wieringa,1994 ¦

-----------------------+-----------+-------+-----+------+------+----------------------+

Хорея Гентингтона; ¦HD, IT-15 ¦(CAG)n ¦6-37 ¦ ¦37-121¦Huntington's Dis. ¦

143100¦4p16.3 ¦ ¦ ¦ ¦ ¦Collab.Res.Group,1993 ¦

-----------------------+-----------+-------+-----+------+------+----------------------+

Спинально-мозжечковая ¦SCA1 ¦(CAG)n ¦6-39 ¦ ¦41-81 ¦Orr et al.,1993 ¦

атаксия тип 1; 164400¦6p21.3 ¦ ¦ ¦ ¦ ¦Chung et al.,1993 ¦

-----------------------+-----------+-------+-----+------+------+----------------------+

Денто-рубральная-палли-¦DRPLA, B-37¦(CAG)n ¦7-34 ¦ ¦54-75 ¦ Koide et al.,1994 ¦

до-люисовая дегенерация¦12pter-p12 ¦ ¦ ¦ ¦ ¦ Nagafuchi et al.,1994¦

125370¦ ¦ ¦ ¦ ¦ ¦ ¦

-----------------------+-----------+-------+-----+------+------+----------------------+

Спинально-бульбарная ¦AR ¦(CAG)n ¦12-33¦ ¦40-62 ¦La Spada et al.,1991 ¦

мышечная атрофия;313200¦Xq11-q12 ¦ ¦ ¦ ¦ ¦ ¦

-----------------------+-----------+-------+-----+------+------+----------------------+

Спинально-мозжечковая ¦MJD ¦(CAG)n ¦13-36¦ ¦68-79 ¦Kawaguchi et al.,1994 ¦

дегенерация Мачадо- ¦14q32.1 ¦ ¦ ¦ ¦ ¦ ¦

Джозефа ¦ ¦ ¦ ¦ ¦ ¦ ¦

-----------------------+-----------+-------+-----+------+------+-----------------------

Раздел 10.4. Моногенные наследственные болезни, диаг-

ностируемые молекулярными методами в России.

Сводка, представленная в таблице 10.3, составлена на

основании анализа работ основных отечественных лабораторий и

публикаций, связанных с проблемой молекулярной диагностики

наследственных болезней. Сводка не является исчерпывающей и

включает преимущественно те заболевания для которых возможна

или уже проводится диагностика на внутриутробных стадиях

развития (Баранов, 1994).

Таблица 10.3. Моногенные наследственные болезни, диагности-

руемые молекулярными методами и доступные пренатальной диаг-

ностике в России.

-----T-----------------------------------T------------------¬

¦N пп¦ Болезни ¦Медицинские центры¦

+----+-----------------------------------+------------------+

¦1 ¦ Муковисцидоз ¦ИАГ;ИЭМ РЦМГ; ТИМГ¦

¦2 ¦ Миодистрофия Дюшенна/Беккера ¦ИАГ;РЦМГ; ТИМГ ¦

¦3 ¦ Гемофилия А ¦ИАГ; ГНЦ; ¦

¦4 ¦ Гемофилия В ¦ИАГ; ГНЦ ¦

¦5 ¦ Фенилкетонурия ¦ИАГ; ГНЦ;ПМА;РЦМГ ¦

¦6 ¦ Синдром ломкой Х-хромосомы ¦ИАГ; ¦

¦7 ¦ Миотоническая дистрофия ¦ИАГ ¦

¦8 ¦ Болезнь Виллебранда ¦ИАГ;ГНЦ ¦

¦9 ¦ Хорея Гентингтона ¦ИАГ; РЦМГ; НИИН ¦

¦10 ¦ Болезнь Леш-Нихана ¦ИАГ ¦

¦11 ¦ Спинально-бульбарная мышечная ¦ИАГ; НИИН ¦

¦ ¦ атрофия ¦ ¦

¦12 ¦ Гепато-лентикулярная дегенерация ¦РЦМГ; ИАГ ¦

¦13 ¦ Болезнь Хантера ¦ИАГ ¦

¦14 ¦ Адрено-генитальный синдром ¦ЦОЗМиР; РЦМГ ¦

¦15 ¦ Атаксия Фридрейха ¦ГНЦ ¦

¦16 ¦ в- Талассемия ¦ГНЦ; ПМА ¦

¦17 ¦ Болезнь Верднига-Гоффмана ¦РЦМГ ¦

¦18 ¦ Дефицит альфа-1-антитрипсина ¦ИЭМ ¦

¦19 ¦ Семейная гиперхолестеринемия ¦ИЭМ; ПМА ¦

¦20 ¦ Предрасположенность к инсулин- ¦ПМА ¦

¦ ¦ зависимому диабету ¦ ¦

¦21 ¦ Дефицит ацил-СоА дегидрогеназы ¦ПМА ¦

L----+-----------------------------------+-------------------

ИАГ - Институт Акушерства и Гинекологии РАМН, Санкт Петербург

ИЭМ - Институт Экспериментальной Медицины РАМН, Санкт Петербург

ПМА - Педиатрическая Медицинская Академия, Санкт Петербург

РЦМГ- Российский Центр Медцинской Генетики РАМН, Москва

ГНЦ - Гематалогический Научный Центр МЗ РФ, Москва

ТИМГ- Томский Институт Медицинской Генетики, Томск

НИИН- Научно-исследовательский Институт Неврологии РАМН, Москва

ЦОЗМиР- Центр Охраны Здоровья Матери и Ребенка, Москва

Молекулярные характеристики некоторых из приведенных в

таблице заболеваний уже были рассмотрены в разделах 10.1 и

10.2. Отдельные аспекты, касающиеся идентификации соот-

ветстующих генов, их картирования, клонирования и сканирова-

ния мутаций уже упоминались в качестве примеров при изложе-

нии соответствующих вводных глав монографии (см.Главы II,

III, IV, V). В этой части нам представляется целесообразным

суммировать эти разрозненные сведения и охарактеризовать те

наиболее частые, социально значимые моногенные заболевания,

в отношении которых у нас накоплен достаточно большой

собственный опыт молекулярных исследований. Список этих но-

зологий, их частоты и основные молекулярные характеристики

приведены в Таблице 10.4.

Таблица 10.4. Основные молекулярно-генетические характе-

ристики моногенных болезней, диагностируемых

в Лаборатории пренатальной диагностики ИАГ

РАМН, Санкт-Петербург.

(примечания в конце таблицы те же, что в Табл.10.1).

---------------------T--------------T-----------------------T------------------------¬

Синдромы 1), номер по¦Встречаемость,¦Типы и количество му- ¦Литература ¦

МакКьюсику; хромосом-¦белок, ¦таций 4), мажорные мута¦(локализация и структура¦

ная локализация; ген ¦размеры в ами-¦ции -в скобках указаны ¦генов,клонирование кДНК,¦

2),размеры 3), экзоны¦нокислотах ¦частоты аллелей у б-ных¦идентификация мутаций). ¦

---------------------+--------------+-----------------------+------------------------+

Муковисцидоз; врожден¦1:2500- Европа¦Точковые-преобладающие;¦Rommens et al., 1989 ¦

ное отсутствие vas de¦1:3800 -Россия¦небольшие дел.и дупл.; ¦Kerem et al., 1989 ¦

ferens, ¦CF-трансмемб- ¦Мажорные:delF508-30-90%¦Riordan et al., 1989 ¦

219700; 7q31.2 ¦ранный регуля-¦W1272X-2-33%,3732delA -¦Горбунова и др., 1991 ¦

CFTR.500; 260кб,27экз¦тор 1480¦4%,394delTT,G542X,R117H¦Баранов и др., 1995 ¦

---------------------+--------------+-----------------------+------------------------+

Миопатия Дюшенна; Бек¦1:3500 мальчи-¦Делеции протяженные - ¦Kunkel et al.,1985 ¦

кера;кардиомиопатия ¦ков ¦60%; дупликации - 6-7%;¦Kunkel et al.,1986 ¦

делеционная, ¦ ¦делеции нескольких н. -¦Koenig et al.,1988 ¦

310200; Xp21.2 ¦Дистрофин ¦7; нонсенс - 9; сплайс.¦Roberts et al.,1992a;b ¦

DMD.21; 2000кб,73экз ¦ 3685¦-3; миссенс -1; инс.-1 ¦Ahn et al.,1993 ¦

---------------------+--------------+-----------------------+------------------------+

Гемофилия А, ¦1:6500 мальч. ¦Делеции экз. - 31; мис-¦Wood et al, 1984 ¦

фактора YIII деф.; ¦Фактор YIII ¦сенс - 21; нонсенс -8 ¦Toole et al., 1984 ¦

306700; Xq28 ¦свертываемости¦Мажорные: инверсия 26 -¦Higuchi et al.,1991 ¦

F8C.66; 186 кб, 26экз¦крови 2351¦25 экзонов - 45% семей ¦Naylor et al., 1993 ¦

---------------------+--------------+-----------------------+------------------------+

Гемофилия B, Кристма-¦1:20000 мальч.¦Миссенс и нонсенс более¦Kurachi et al., 1982 ¦

са, фактора IX деф.; ¦Фактор IX ¦60%; сплайс.-10%; регу-¦Jagadeeswaran et al,1984¦

306900, Xq27.1-q27.2 ¦свертываемости¦лят.- 3.5%; делеции -до¦Green et al., 1991 ¦

F9.400; 34 кб, 8 экз ¦крови 461¦40% при тяжелых формах ¦Giannelli et al., 1993 ¦

---------------------+--------------+-----------------------+------------------------+

фон Виллебранда бо- ¦1: 5 - 20 000 ¦Тип I и II-миссенс; Ма-¦Lynch et al., 1985 ¦

лезнь, ¦Фактор Y111R ¦жорные:R543W,R545C,V553¦Bonthorn et al., 1986 ¦

193400; 12pter-p12 ¦свертываемости¦M,R578Q.Тип III-делеции¦Cooney et al., 1991 ¦

F8VWF.22; 178кб,52экз¦крови ¦1 н.в 28экз; нонсенс -4¦Randi et al., 1991 ¦

---------------------+--------------+-----------------------+------------------------+

Фенилкетонурия; гипер¦1 : 10 -15 000¦Миссенс -62%; нонсенс -¦Guttler, Woo, 1986 ¦

фенилаланинемия, мяг-¦Фенилаланин- ¦13%;сплайс.-13%;делеций¦DiLella et al., 1986 ¦

кая, 261600; 12q24.1¦гидроксилаза ¦9%; Мажорные: IVS12+1, ¦Cotton, 1990 ¦

PAH.70; 90 кб, 13 экз¦ 452¦R408W,R261Q,R158Q,IVS10¦Барановская и др. 1995 ¦

---------------------+--------------+-----------------------+------------------------+

Леш-Нихана синдром; ¦ ¦Миссенс -53%;небольшие ¦Jolly et al., 1983 ¦

HPRT-родств. подагра,¦Гипоксантин- ¦структ.перестройки -40%¦Edwards et al., 1990 ¦

308000; Xq26-q27.2 ¦фосфорибозил ¦сплайс. -5%; нонсенс-2%¦Rossiter et al., 1991 ¦

HPRT.100; 44 кб,9 экз¦трансфераза217¦Мажорные: R170TER (15%)¦Sculley et al., 1992 ¦

---------------------+--------------+-----------------------+------------------------+

Гепато-лентикулярная ¦ ¦Миссенс -15; делеции/ ¦Bull et al., 1993 ¦

дегенерация Вильсона-¦ ¦инсерция -14;Мажорные -¦Petruchin et al., 1993 ¦

Коновалова, ¦Медь-транспор-¦H714Q - 31% в Америке, ¦Tanzi et al., 1993 ¦

277900; 13q14.3-q21.1¦тирующая АТФа ¦22% в России; 1 н. дел.¦Thomas et al., 1995 ¦

ATP7B.34; ¦за P типа 1434¦H1070Gl-28%;Gl1267L 10%¦ ¦

---------------------+--------------+-----------------------+-------------------------

Многим из приведенных в Табл.9.4 заболеваний посвящены

обстоятельные обзоры, руководства и монографии, включающие

наряду с клиническими данными специальные разделы, посвящен-

ные молекулярной природе патологического процесса, характе-

ристике гена, его мутаций, их фенотипических проявлений, а

так же последним достижениям и перспективам лечения, включая

генную терапию. Некоторые из этих публикаций уже были упомя-

нуты в предыдущих разделах книги, другие будут процитированы

в соответствующих подразделах этой главы. Следует так же

упомянуть, что все приведенные нозологии были первыми моно-

генными болезнями, которые были исследованы молекулярными

методами в нашей стране и для которых, в итоге , были разра-

ботаны и оптимизированы с учетом этнических и национальных

особенностей аллельного полиморфизма, частот и паттерна му-

таций оптимальные схемы молекулярной обследования семей

высокого риска с целью пренатальной диагностики и выявления

гетерозиготного носительства. Практически все эти исследова-

ния проводились в рамках основных научных программ ГКНТ "Ге-

ном Человека" и "Приоритетные направления генетики". Обзор

отечественных работ по молекулярной диагностике наследствен-

ных болезней представлен в ряде научных сводок (Баранов,

1992; 1994; Baranov, 1993; Баранов и др., 1994; Евграфов,

1993).

10.4.1 Муковисцидоз.

Муковисцидоз (кистозный фиброз поджелудочной железы) -

самое распространенное моногенное наследственное заболевание

у представителей белой расы. Это первая "генная" болезнь,

молекулярные основы которой определены методами позиционного

клонирования без использования каких-либо данных о структур-

ных перестройках в области локализации предполагаемого гена.

Напомним, что обнаружение пациентов с транслокациями или

крупными делециями, затрагивающими исследуемый ген, значи-

тельно облегчает его картирование и идентификацию, как это

было при миопатии Дюшенна, ретинобластоме или хроническом

грануломатозе. В области локализации гена муковисцидоза хро-

мосомные перестройки, практически, отсутствуют. Подробно об

истории открытия гена, его структуре, клонировании, анализе

функций, идентификации мутаций можно ознакомиться в следую-

щих отечественных работах (Гембицкая, Баранов, 1991; Бара-

нов, Гинтер, 1994).

Белковый продукт гена -трансмембранный регуляторный бе-

лок муковисцидоза -ТРБМ (cystic fibrosis transmembrane

regulator -CFTR), как оказалось, является белком хлорных ка-

налов, регулирующих обмен ионов хлора через апикальные мемб-

раны всех эпителиальных клеток организма. В зависимости от

типа мутаций, их локализации функция гена ТРБМ при муко-

висцидозе может быть полностью или частично нарушенной.

К началу 1995г. в гене ТРБМ идентифицировано более 500

мутаций, несколько делеций и дупликаций. Наболее распростра-

ненной у жителей Западной Европы и Северной Америки является

мутация delF508, приводящая к отстутсвию фенилаланина в 508

положении белка ЕРМБ. В этих странах частота delF508 нахо-

дится в пределах 70-85%. В Европе частота мутации обнаружи-

вает определенный градиент распространения с севера на юг и

с запада на восток, достигая 85% в Дании она уменьшается до

50% в Италии и до 20-30% в Турции. В Европейской части

России она составляет около 50% всех мутантных (CF) хро-

мосом. У евреев-ашкенази доминируюшей по частоте является

мутация W1282X (33%).

Биохимический анализ клеток пациентов, больных муко-

висцидозом, позволил выяснить фенотипические особенности

экспрессии мутантных аллелей гена ТРБМ, установить опреде-

ленный градиент патологических нарушений на мембранном, кле-

точном и организменном уровнях в зависимости от типа мута-

ции, её локализации и структуры аномального белкового про-

дукта (Баранов, Гинтер,1994). Так, было установлено, что не-

которые CFTR- мутации, в том числе и delF508, не препятствуя

трансляции, нарушают процессинг белка так, что он не дости-

гает апикальной мембраны и не создает хлорный поток. Этим

объясняется тяжелая клиника муковисцидоза при подобных нару-

шениях (Sheppard et al.,1993). Другие мутации ( R117H, R334W

и R347P), выявленные при более мягких формах заболевания, не

затрагивают процессинга белка, хлорный канал формируется, но

функционирует менее эффективно, чем в норме. Сопоставление

процессинга, локализации и функционирования белка в 3-х ли-

ниях L-клеток, трансдуцированных нормальным CFTR-геном и

двумя его аллельными вариантами, показало, что дефект одной

из мажорных мутаций - G551D, связан с частичной инактивацией

функции хлорного канала, в то время как delF508, как оказа-

лось, обладает комбинированным эффектом - нарушает локализа-

цию и стабильность белка и снижает эффективность его функци-

онирования в качестве хлорого канала (Yang et al., 1993).

Интересно, что мутация R117H в гомозиготном состоянии, чаще

в компаунде с другими аллелями, в том числе с delF508, обна-

руживается у пациентов с врожденным отсутствием семявыводя-

щих канальцев (vas deferens). При этом клиника муковисцидоза

у таких пациентов, как правило, отсутствует или очень стер-

та. Это еще один из примеров фенотипического разнообразия,

обусловленного аллельными сериями.

В настоящее время в России доступны идентификации по

наличию известных мутаций около 65% больных муковисцидозом

(Иващенко,1992; Потапова,1994). Диагностическая ценность

основных мажорных мутаций в порядке убывания их частоты сле-

дующая delF508 (50%), 3732delA (4,3%), W1282X (2,4%),

394delTT (2,1%); G542X (2,0%) (Иващенко, 1992). Cогласно на-

шим данным (Баранов, 1994) молекулярная диагностика муко-

висцидоза прямыми методами возможна примерно в 55 -60% се-

мей. В случае непрямой диагностики используются полиморфные

сайты локусов ДНК, расположенные в непосредственной близости

(IRP, D7S8, D7S23, MET) или внутри самого гена CFTR - ми-

нисателлитные последовательности в интронах 6, 8, 17b гена

СFTR (Zielenski et al., 1991; Morral et al., 1991; Chehab et

al., 1991; Агбангла и др., 1992; Potapova et al., 1994). При

отсутствии мажорных мутаций и информативности по полиморфным

сайтам молекулярные исследования могут быть дополнены биохи-

мическим анализом амниотической жидкости на содержание фер-

ментов микроворсинок кишечника плода (Гобунова и др.,1989;

Баранов и др.,1991).

Методами направленного мутагенеза (gene targeting

см. Главу VIII) в различных лаборатория США и Великобритании

осуществлено успешное конструирование трансгенных моделей

муковисцидоза на мышах (Clarke, et al., 1992; Colledge et

al., 1992; Dorin et al., 1992; Snouwaert et al., 1992). Вы-

яснены признаки сходства и некоторые межвидовые различия

проявления мутации гена CFTR у мышей и человека. Показано,

что различные мутации этого гена по-разному реализуются в

фенотипе СFTR дефицитных мышей. Так, в одной из трансгенных

линий отмечено преимущественное поржаение легких, у других -

поджелудочной железы и кишечника. В одной мутантной линии

наблюдается гибель большого числа зародышей от причин, сход-

ных с мекониальным илеусом. Таким образом, эти линии

представляют собой идеальные модели для исследования молеку-

лярных основ патогенеза муковисцидоза, а также для разработ-

ки и испытания терапевтических мероприятий, включая геноте-

рапию. Как уже отмечалось в предыдущей главе, программы ге-

нотерапии муковисцидоза реализуются по крайней мере в 7

центрах США и двух центрах Западной Европы (Великобритания и

Франция). Уже успешно осуществлены не только апробации ген-

ноинженерных конструкций на мутантных культурах клеток и мо-

дельных животных, но начаты и успешно проводятся клинические

испытания генотерапевтического лечения муковисцидоза на 70

пациентах. Исследования по генотерапии муковисцидоза, нача-

тые в нашей стране пока проводятся на уровне клеточных куль-

тур.

10.4.2 Миодистрофия Дюшенна.

Миодистрофия Дюшенна - сцепленная с полом мышечная

дистрофия; выделяют две клинические формы: тяжелую - мио-

дистрофию Дюшенна (МД) и гораздо более мягкую - миодистрофию

Беккера (МБ). Ген миодистрофии Дюшенна (DMD) - один из самых

крупных известных генов человека, кодирует белок дистрофин,

входящий в состав сарколеммы мышечного волокна. При МД дист-

рофин либо полностью отсутствует, либо деградирует вскоре

после синтеза. При форме Беккера, как правило, дистрофин

присутствует, хотя и в измененном, чаще всего в укороченном

состоянии.

В соответствии с современными представлениями (Ahn,

Kunkel, 1993) огромный DMD-ген находится под контролем слож-

ной системы регуляции транскрипции и сплайсинга. По крайней

мере, 5 независимых промоторов осуществляют альтернативную

специфическую транскрипцию первых экзонов в разных тканях и

на разных стадиях эмбрионального развития. 3 промотора

экспрессируют полноразмерную молекулу дистрофина, в то время

как 2 осущесвляют экспрессию последних доменов взаимоисклю-

чающим способом. Высоко консервативные последовательности 6-

и экзонов, кодирующих C-конец белка, альтернативно сплайси-

руются, образуя несколько структурно различающихся форм

дистрофина, осуществляющих различные функции. Так, идентифи-

цирована 6.5-кб мРНК, транскрибируемая с DMD-гена и являюще-

еся, по-видимому, его основным продуктом в не-мышечных тка-

нях, включая мозг (Bar et al.,.1990). Соответствующий белок

значительно отличается от дистрофина и его уровень в некото-

рых не-мышечных тканях сопоставим с количеством дистрофина в

мышцах. Описан также 4.8-кб транскрипт того же локуса,

экспрессирующийся во многих типах тканей, но особенно в

Шванновских клетках проводящей нервной системы, где сам

дистрофин отсутствует (Blake et al., 1992). Этот белок полу-

чил название апо-дистрофин-1. Клонирован и секвенирован еще

один 2.2-кб транскрипт DMD-гена, кодирующий аподистро-

фин-3, экспрессирующийся в позднем эмбриогенезе (Tinsley et

al., 1993).

В 60% случаев в гене DMD у больных мальчиков обнаружи-

ваются протяженные делеции, захватывающие от одного до

нескольких соседних экзонов и сосредоточеные, обычно, в двух

"горячих" районах - в области 5'-конца гена (экзоны 6-19) и

в 3'- конце (экзоны 40-53), при этом 30% делеций локализова-

ны в проксимальной части гена и 70% - в дистальной. Прокси-

мальные делеции возникают, по-видимому, в раннем эмбриогене-

зе и имеют больше шансов стать "семейными" мутациями.

Дистальные делеции возникают позднее и чаще встречаются, как

изолированные случаи. Считается, что в спорадических случаях

повторный риск рождения больного ребенка при проксимальной

делеции составляет 30%, тогда как при дистальной - только 4%

(Passos-Bueno et al., 1992).

Отмечены популяционные особенности паттерна делеций в

разных европейских популяциях, а также в популяциях России и

стран СНГ (Baranov et al., 1993). У некоторых пациентов де-

летирован не только весь ген, но достаточно протяженные

соседние области. Очень часто концы делеций локализованы в

центральной части дистрофинового гена. Так в интроне 44,

протяженностью 160-180 кб, расположено около 30% точек раз-

рыва всех делеций. Показано, что проксимальный конец одной

из делеций в интроне 43 расположен внутри транспозон-подоб-

ного элемента, принадлежащего THE-1 семейству ретротранспо-

зонов (Pizzuti et al.,1992). Описан еще один пациент, у ко-

торого делеция оканчивается в THE-1 элементе. Эти элементы,

размером 2.3 кб, фланкированные 350-нуклеотидными LTR, пов-

торены около 10 000 раз в геноме человека. Гипотеза неста-

бильности DMD-гена, вызванная присутствием транспозон-подоб-

ного элемента, привлекается также для обьяснения нескольких

случаев обнаружения различий в молекулярном дефекте у паци-

ентов, принадлежащих одной и той же родословной, то есть

имеющих мутацию общего происхождения (Miciak et al.,1992). В

2-х случаях дупликаций из 8, для которых был проведен сик-

венс концевых участков, показано присутствие Alu-элементов.

В остальных 6 случаях рекомбинация осуществлялась между не-

гомологичными последовательностями (Hu, Worton, 1992).

Прямой корреляции между тяжестью течения заболевания и

протяженностью делеции не отмечается, но различия между фор-

мами Дюшенна и Беккера, в общем случае, связаны с наличием

или отсутствием сдвига рамки считывания. Ген дистрофина мо-

жет быть вовлечен также в другие структурные перестройки -

дупликации, транслокации. Так, примерно 5% мутаций гена

дистрофина составляют дупликации и около 35%-точечные мута-

ции, преимущественно, микроделеции (от 1 до нескольких нук-

леотидов), а также нонсенс мутации. Относительно высокий

процент нонсенс мутаций в гене дистрофина связывают с

присутствием большого количества глютаминовых триплетов, му-

тации в котором часто приводят к образованию стоп-кодона.

Крайне редки миссенс мутации. Считается, что в 30% семей с

МД и МБ мутации спонтанного происхождения и возникают преи-

мущественно в оогенезе, в остальных семьях это наследствен-

ные формы.

Разработаны очень эффективные методы диагностики деле-

ций в DMD-гене, основанные на мультиплексной ПЦР. Одновре-

менное тестирование 18 экзонов + промоторной части гена поз-

воляет выявить до 98% всех крупных делеций гена (Baranov et

al., 1993). Для обнаружения гетерозиготного носительства де-

леций используется метод RT PCR, то есть изоляция эктопи-

ческой DMD-мРНК из клеток крови, обратная транскрипция, амп-

лификация кДНК, рестрикционный анализ и секвенирование

(Roberts et al.,1991). Для этой же цели применяется метод

иммунодетекции мутантного белка в белковом лизате мышц и на

гистологических срезах биоптатов мышц (Arahata et

al.,1989). При отсутствии идентифицируемой делеции применяют

косвенный метод ДНК-диагностики с использованием внутриген-

ных полиморфных сайтов: pERT87-8/Taq1; pERT87-15/BamH1;

124/Pst1;16intron/ Taq1, и аллельных вариантов динуклеотид-

ных СА повторов в интронах 49 и 50 - STR-49; STR-50 (Малыше-

ва и др., 1991; 1992; Евграфов, Макаров, 1987; Евграфов и

др., 1990).

Серьезную проблему для диагностики гетерозиготного

носительства и, следовательно, для медико-генетического

консультирования предствляют случаи, так называемого, гонад-

ного мозаицизма - присутствие в соматических клетках гонад

женщины-неносительницы мутаций гена дистрофина, что, в свою

очередь, приводит к появлению нескольких генераций (клонов)

половых клеток (ооцитов) с мутанынм и нормальным генами

дистрофина. Предполагается, что такие мутации могут возни-

кать еще на уровне первичных половых клеток, то есть на ран-

них стадиях внутриутробного развития будущей матери. По ори-

ентировочным оценкам примерно 6-7% всех спорадических случа-

ев являются следствием гонадного мозаицизма у матери. Оце-

нить величину аберрантного клона ооцитов практически не

представляется возможным. В связи с этим прогноз в отношении

здоровья следующего ребенка в семьях, в которых у матери

больного МД не удается определить гетерозиготное носительст-

во, весьма затруднен. Эмпирически определено, что при нали-

чии спорадического случая рождения ребенка с МД и при

отсутствии прямых молекулярных доказательств гетерозиготного

носительства мутации гена дистрофина у матери риск повторно-

го рождения больного ребенка может достигать 14% (Essen et

al.,1992).

У многих пациентов с миопатией Дюшенна при иммуногисто-

химическом окрашивании мышц обнаруживаются редкие дистро-

фин-положительные волокна. Однако, при использовании антител

с антигенными детерминантами, кодируемыми делетированным

участком гена, окрашивания не происходит и это позволяет от-

вергнуть гипотезу соматического мозаицизма. Наиболее вероят-

ный механизм такого явления - возникновение второй сомати-

ческой делеции в мышечных клетках, устраняющей сдвиг рамки

считывания, вызванный основной делецией. В результате му-

тантный ген может транскрибироваться с образованием стабиль-

ного, хотя и аномального дистрофина (Klein et al.,1992).

Имеется модельная линия мышей с миодистрофией Дюшенна -

mdx. Эта модель была получена в результате отбора мутации,

спонтанно возникшей в C57BL/10 линии (Bulfield et al.,

1984). В мышцах и в мозгу у мышей этой линии обнаруживается

резко сниженное количество Dmd-мРНК, однако дистрофин пол-

ностью отсутствует. Несмотря на это, никаких видимых клини-

ческих аномалий у mdx-мышей не наблюдаются. Идентифицирована

нонсенс мутация в mdx-гене, в результате которой у мышей

транслируется лишь 27% дистрофинового полипептида. Обнаруже-

на также сплайсинговая мутация, приводящая к вырезанию экзо-

на 7 DMD-гена у собак (Sharp et al., 1992).

В серии экспериментов на mdx-мышах доказана принципи-

альная возможность генокоррекции МД. Появление дистрофина

человека в сарколемме мышечных волокон mdx-мышей наблюдали

после введения ретровирусных или аденовирусных генноинженер-

ных конструкций, содержащих полноразмерную кДНК гена дистро-

фина (14 кб) или его делетированную, но функционально актив-

ную форму, так называемый мини-ген (6.3 кб) (Wells et al.,

1992; Cox et al., 1993; Aсsadi et al., 1995). После внутри-

венного введения фрагментов Dmd-гена в составе рекомбинант-

ного аденовируса наблюдали длительное присутствие экзогенной

ДНК в скелетных и сердечных мышцах животных

(Srataford-Perricaudet et al., 1992). Несмотря на эти оче-

видные успехи, проблема генноинженерной коррекции МД еще да-

лека от своего решения. До сих пор ведутся оживленные дебаты

исследователей о перспективности генной терапии МД по срав-

нению с клеточной терапией (пересадка здоровых эмбриональных

миобластов). Пока не утверждена ни одна программы клини-

ческих испытаний генотерапевтического подхода МД (см.Главу

IX). Основная сложность проблемы генокоррекции - необходи-

мость обеспечения системы эффективной доставки гена дистро-

фина в миофибриллы не только скелетных мышц, но, что особен-

но важно - в мышцы сердца и диафрагмы. В 1995г. исследования

по генотерапии МД начаты в рамках программы Геном человека и

в нашей стране.

10.4.3 Гемофилия А.

Гемофилия А - сцепленное с полом заболевание, вызванное

наследственным дефектом фактора VIII, важнейшего звена в

системе свертывания крови (cм. Табл. 10.4). Комплекс фактора

YIII с молекулярным весом более 1 миллиона состоит из 2-х

компонентов. Главный компонент - YIIIC, кодируется геном

F8C, локализованным в X-хромосоме. С YIIIC нековалентно свя-

зан фактор Виллебранда - YIIIR, кодирующийся аутосомным ге-

ном. Фактор Виллебранда стабилизирует фактор VIII и регули-

рует его активность.

Ген F8C - одним из очень крупных генов человека; содер-

жит 26 экзонов (размером от 69 до 3106 нуклеотидов). Общая

длина интронов соствляет 177 кб; около 20% этой ДНК прихо-

дится на интрон 22 (32.4 кб). мРНК гена F8С размером 9 009

нуклеотидов включает 5'нетранслируемую последовательность

(150 п.о.), 3'нетранслируемую последовательность (1 806

п.о.) и кодирующий фрагмент (7053 п.о.). Внутри гена F8 в

интроне 22 локализовано еще два других структурных гена не-

известной природы - F8А и F8В, что было обнаружено методами

молекулярный анализ. Ген F8A, целиком локализованный в инт-

роне 22 гена F8C, не содержит интронов и транскрибируется в

направлении, противоположном фактору VIII (3'-5'). Первый

экзон гена F8B также расположен в интороне 22, а следующие

его области распределены до экзонов 23-26; транскрибируется

он в том же направлении, что и ген F8C (5'-3'). Оба гена

экспрессируются во всех тканях (Levinson et al.,1990;

Freije,Schlessinger, 1992; Lakich et al., 1993). Интрон 22

оказался необычным и в том отношении, что содержит CpG-ост-

ровок на расстоянии около 10 кб от экзона 22 - предположи-

тельное место локализации бинаправленного промотора для ге-

нов F8A и F8B. Оказалось, что на расстоянии примерно 500 кб

в 5-'направлении от гена F8 находятся еще 2 транскрибируемые

копии гена F8A (Lakich et al.,1993).

Во время процессинга первичного белкового продукта гена

F8C от исходного пептида из 2 351 аминокислотных остатка от-

щепляется последовательность в 335 аминокислотных остатка. В

плазме крови фактор VIII существует в виде металлозависимого

гетеродимера, состоящего из С-концевой легкой цепи (80 кД) и

N-концевой тяжелой цепи (200 кД). Половина всех больных с

гемофилией A не имеют фактора VIII, 5%- имеют нормальное ко-

личество нефункционирующего белка и в остальных случаях ак-

тивность белка сохранена, но его количество резко снижено

(McGinnis et al.,1993).

Изолированные случаи гемофилии A составляют 30%; 70% -

семейные варианты. Показано, что мутации в гене F8 возникают

в сперматогенезе в 3 - 5 раз чаще, чем в оогенезе (Rosendaal

et al., 1990; Brocker-Vriends et al., 1991). Это означает,

что в 80-86% спорадических случаев матери являются носителя-

ми мутации, возникшей в зародышевых клетках их отца. Кроме

того, около 14% матерей, не являющихся носителями мутации,

могут быть соматическими или гонадными мозаиками, так что

вероятность повторного рождения больного ребенка у них также

повышена.

Около 10% всех идентифицированных мутаций в гене F8 яв-

ляются делециями одного или нескольких смежных экзонов. При-

мерно 5% всех мутаций составляют короткие делеции и дуплика-

ции гена, остальные мутации - точковые замены (Antonarakis

et al.,1995). Почти половина миссенс мутаций идентифицирова-

на в домене A2. Показано, что 35% всех известных мутаций ло-

кализовано в CpG динуклеотидах, причем свыше 90% из них

представляют собой C-T или G-A транзиции (Cooper,

Youssoufian, 1988). Подобные мутации в кодирующих районах

встречаются в 42 раза чаще, чем это можно было бы ожидать на

основании случайного характера мутагенеза. Для подавляющего

большинства мутаций гена F8C характерно практически полное

отсутствие "горячих" точек: каждая семья высокого риска по

гемофилии А имеет свою собственную мутацию. Исключение

составляет группа обнаруженных сравнительно недавно протя-

женных инверсий интрона 22, захватывающих экзоны 1-22 и пол-

ностью блокирующих функцию гена. Такие инверсии, как оказа-

лось, присутствуют в 45% семей с тяжелой формой гемофилии А

(Lakich et a.,1993). Причиной инверсий в этой области гена

является гомологичная рекомбинация между идентичными после-

довательностями гена F8А, расположенного в интроне 22

F8C-гена, и другими копиями этого же гена,находящимися на

расстоянии 500 кб от 5'конца гена F8 (см.выше).

Помимо инверсий и точечных мутаций в гене ФVIII заре-

гистрированы несколько случаев инсерционного мутагенеза,

связанных с перемещением в геноме транспазонподобных элемен-

тов типа LINE ( см. Главу II). У двух пациентов неродствен-

ного происхождения был идентифицирован инсертированный в эк-

зоне 14 F8C-гена длинный элемент LINE-1 (L1) (Kazazian et

al.,1988). В обеих семьях это были мутации de novo. L1

последовательности представляют собой специфическое для ге-

нома человека семейство длинных, размером от 2 до 4 кб, пов-

торяющихся элементов, распределенных по всем хромосомам и

состоящее, примерно, из 100 000 копий. Было показано что оба

L1 элемента, инсертированные в F8C-ген, родственны ретрот-

ранспозону, локализованному на хромосоме 22 (Dombroski et

al., 1991). В третьей семье инсертированный в интроне 10

F8C-гена L1 элемент не был связан с болезнью. Все 3 L1 эле-

мента имели открытые рамки считывания, а соответствующие ре-

конструируемые аминокислотные последовательности были высоко

идентичны друг другу с уровнем гомологии, превышающим 98%.

Таким образом, были получены еще одни косвенные подтвержде-

ния существования ряда функциональных L1 элементов, кодирую-

щих 1 или несколько белков, необходимых для их ретротранспо-

зиции.

Прямая диагностика протяженных инверсий в гене F8 осу-

ществляется путем блот-гибридизации с ДНК зондом р482.6 c

последующей рестрикцией эндонуклеазами Bcl1, Dra1, Nco1

(Lakich et al.,1993). В остальных случаях, в силу отсутствия

мажорных мутаций в гене F8C, чаще всего используют косвенные

методы молекулярной диагностики. С помощью ПЦР анализируют

полиморфные динуклеотидные СА-повторы экзона 13, HindIII по-

лиморфизм в интроне 19; HbaI полиморфизм в интроне 22 и вне-

генный полиморфизм локуса DXS52 (St14/TaqI) (Асеев и др.,

1989; Aseev et al., 1994; Сурин и др., 1990).

Учитывая наличие функционально активной формы белка

фактора VIII в плазме крови генноинженерые подходы в терапии

этого заболевания направлены на получение в чистом виде пол-

ноценного белкового продукта (заместительная терапия), либо

на введение в организм больного соответствующей кДНК,

обеспечивающей синтез ФVIII и его поступление в кровь. Осу-

ществленное 10 лет назад выделение и клонирование кДНК этого

гена сделало реальным оба эти подхода. Имеются сообщения о

получении трансгенных животных (коз), в геном которых введен

ген фактора VIII. Они могут быть использованы как продуценты

полноценного белкового продукта. Генная терапия этого забо-

левания находится на стадии экспериментальных разработок

(см.Главу IX). Успешно осуществлена трансдукция фибробластов

человека in vitro с помощью ретровирусного вектора. Основная

проблема в данном направлении заключается в выборе эффектив-

ного промотора и подборе клеток, в которых экспрессия гена

могла быть достаточно длительной. В настоящее время найдены

невирусные промоторы, обеспечивающие эффективную и длитель-

ную экспрессию гена фактора VIII in vivo. В качестве возмож-

ных клеток-мишеней используют мышечные клетки, фибробласты,

гепатоциты и клетки эндотелия сосудов. В 1994г. методом нап-

равленного мутагенеза (см.Главу VIII) получены трансгенные

модели гемофилии А на мышах. Есть все основания считать, что

клинические испытания генокоррекции этого заболевания нач-

нутся уже в ближайшем будущем.

10.4.4 Гемофилия B.

Гемоофилия B - сцепленное с полом заболевание, вызван-

ное наследственным дефектом фактора IX - важного компонента

средней фазы внутреннего каскада свертывания крови. Белок

(фактор IX) - гликопротеин, состоит из 415 аминокислотных

остатков, объединенных в 8 доменов, синтезируется в виде мо-

лекулы-предшественника клетками печени. В плазме крови фак-

тор IX находится в виде гетеродимера, состоящего из 2-х по-

липептидных цепей - легкой (L) и тяжелой (H), ковалентно

связанных между собой одним дисульфидным мостиком. Фактор IX

циркулирует в виде неактивного зимогена до тех пор, пока не

произойдет протеолитическое высвобождение его активирующего

пептида, что позволяет ему принять конформацию активной се-

риновой протеазы. Его роль в свертывании крови связана с ак-

тивацией фактора X посредством взаимодействий с ионами каль-

ция, фосфолипидами мембраны и фактором VIII.

Ген фактора IX транскрибируется в гепатоцитах с образо-

ванием мРНК размером 1 383 п.о. Для гена F9 характерна высо-

кая частота возникновения мутаций - 4.1*10!6 за поколение.

Также как и при гемофилии A мутации значительно чаще возни-

кают в сперматогенезе, чем в оогенезе (Montandon et

al.,1992). Считается, что вероятность получения мутации от

отца в 11 раз выше, чем от матери. Это означает, что в изо-

лированном случае вероятность гетерозиготного носительства

мутации у матери составвляет более 80%. Обнаружена четкая

корреляция между возрастом отца и вероятностью получения от

него новой мутации в гене F9. Так, средний возраст отца в

момент рождения дочери - носительницы новой мутации, состав-

ляет около 42 лет (King et al.,1992).

К 1994 г идентифицировано около 400 мутаций в гене ге-

мофилии B. Подавляющее большинство из них замены нуклеоти-

дов, приводящие к заменам аминокислот или к образованию

стоп-кодонов. Характерно, практически, полное отсутствие вы-

раженных мажорных мутаций и доминирующих областей повышенной

частоты мутирования. Только одна мутация - I397T, встрети-

лась в 7 самьях. Около 42% точечных мутаций возникает в CpG

динуклеотидах (Bottema et al., 1993). Показано, что частота

G-A или C-T транзиций в CpG cайтах в 24 раза выше, чем в

других местах гена (Koeberl et al., 1990). Кроме того, в CpG

динуклеотидах гена F9 в 7.7 раз чаще возникают трансверсии

(A-T, A-C, G-T или G-C). Это обьясняется тем, что содержание

(G+C) в кодирующих областях F9-гена составляет 40% (Bottema

et al., 1991).

В 40% случаев при тяжелых, ингибиторных формах гемофи-

лии В у пациентов обнаруживаются делеции различной протяжен-

ности. Около 10% точковых мутаций локализовано в донорных или

акцепторных сайтах сплайсинга или создают новые сайты

сплайсинга внутри интронов. В одной семье разрушение гена

произошло в результате инсерции Alu-элемента в экзон 5

(Vidaud et al., 1993). Описано 13 точковых мутаций в промо-

торной области гена F9. Именно с такими мутациями связана

Лейденовская (Leyden) форма заболевания, при которой к воз-

расту половозрелости наступает улучшение многих клинических

показателей и, в частности, исчезает кровоточащий диатез.

Обьясняется это тем, что мутации в промоторной области могут

приводить к переключению конститутивной экспрессии гена на

стероид-гармон-зависимую, нарушая связывание гепатоцитарного

ядерного фактора 4 (HNF-4), принадлежащего к суперсемейству

транскрипционных факторов для рецепторов стероидных гормонов.

Гемофилия B была использована как модель для выработки

стратегии генетического консультирования при моногенных за-

болеваниях, обладающих выраженной мутационной гетероген-

ностью (Giannelli et al., 1992). Основой такой стратегии яв-

ляется составление национальных баз данных молекулярных де-

фектов и специфических методов их диагностики. В частности,

основываясь на подобной информации, авторы провели характе-

ристику мутаций в группе из 170 неродственных индивидуумов с

гемофилией B шведского и английского происхождения и только

в одном случае им не удалось идентифицировать мутацию.

Молекулярная диагностика гемофилии В проводится как

непрямыми так и прямыми методами. Непрямая диагностика осно-

вана на анализе методом ПЦР внутригенных полиморфных сайтов:

Taq1 (в положении 11 109-11 113); инсерционного полиморфизма

в интроне А (рестриктазы Hinf1 и Dde1) ; Taq1 в интроне F в

положении 72. Метод ПДРФ анализа информативен только у

60-70% всех семей с гемофилией В (Aseev et al., 1994; Сурин

и др., 1994). Прямая диагностика гемофилии В включает ампли-

фикацию геномных фрагментов гена фактора IX с последующей

детекцией ошибок комплементации методом mismatch detection

(см.Главу IV) и прямое секвенирование продуктов амплификации

(Montadont et al.1990).

Сравнительно небольшие размеры гена, присутствие белко-

вого генопродукта в сыворотке крови и наличие естественных

биологических моделей способствовали быстрому прогрессу

исследований по генотерапия гемофилии В, которая в настоящее

время уже включена в программы клинических испытаний. Успеш-

ная трансдукция и коррекция генетического дефекта получена в

опытах in vitro и in vivo на самых различных модельных

системах (Culver, 1994; Gerrard et al., 1993). Так, при вве-

дении полноразмерной кДНК в составе ретровирусного вектора в

первичные культуры кератиноцитов человека наблюдали

экспрессию F9 и секрецию биологически активного фактора IX.

После трансплантации этих трансдуцированных клеток nu/nu мы-

шам человеческий фактор IX в небольшом количестве появлялся

в кроветоке и сохранялся там в течение недели (Gerrard et

al.,1993). На собаках, страдающих гемофилией B, осуществлена

трансдукция гепатоцитов in vivo путем прямой инфузии реком-

бинантного ретровирусного вектора в портальную вену. При

этом наблюдали устойчивую экспрессию фактора IX в течение

более 5 месяцев и улучшение биохимических показателей свер-

тываемости крови (Kay et al.,1993). Имеется сообщение об

успешной коррекции гемофилии В в Китае в 1992г. Двум больным

мальчикам в кожу спины трансплантировали культуру аутологич-

ных фибробластов, предварительно трансдуцированных ex vivo

рекомбинантной кДНК гена FVIII. Несмотря на определенный

скептицизм в оценке этого достижения со стороны специа-

листов, нет сомнения в том, что успешная генотерапия гемофи-

лии В - событие самого ближайшего будущего.

10.4.5 Болезнь Виллебранда.

Болезнь Виллебранда- аутосомно-доминантное (при некото-

рых формах рецессивное) заболевание, обусловленное

наследственным дефицитом белка VIIIR, родственного фактору

VIIIС свертывания крови (см.Гемофилия А) и известного, как

фактор фон Виллебранда. Этот большой гликопротеин синтезиру-

ется клетками эндотелия, в которых специфическая YIIIR-мРНК

составляет 0.3%, и поступает в кровь в виде двух мультимеров

с молекулярными весами от 850 кД до 20 миллионов дальтон.

Фактор VIIIR осуществляет взаимодействие между стенкой сосу-

дов и тромбоцитами, регулируя их адгезию в местах поврежде-

ния эндотелия. Фактор VIIIR участвует также в регуляции син-

теза и секреции фактора YIIIC и стабилизирует комплекс фак-

тора VIII.

Различают 7 типов болезни Виллебранда - I, IIA-IIE и

III (Zimmerman, Ruggeri, 1987). При типе I снижена концент-

рация всех мультимеров в плазме, но их качество не нарушено.

Генетически эта форма заболевания подразделяется на ре-

цессивные и доминантные варианты. Типы IIC и III - рецессив-

ны. Тип II характеризуется качественными аномалиями фактора

VIIIR, выражающимися в уменьшении способности формировать

большие мультимеры, (типы IIA и IIC) или в увеличении ско-

рости их выведения из плазмы (тип IIB).

Ген F8VWF достаточно протяженный и состоит из 52 экзонов,

размерами от 40 до 1379 п.о. (Mancuso et al., 1989). Величи-

на интронов варьирует в огромных пределах (от 100 до 20 000

пар нуклеотидов). Сигнальный пептид и пропептид кодируются

первыми 17 экзонами, в то время как зрелая субьединица

VIIIR- фактора и 3'нетранслируемая область - остальными 35

экзонами. Внутри гена идентифицированы повторяющиеся после-

довательности, включая 14 Alu-элементов и полиморфный TCTA

повтор размером около 670 п.о. в интроне 40. Районы гены,

кодирующие гомологичные домены, имеют сходную структуру. На

хромосоме 22q11-q13 обнаружен псевдоген длиной 21-29 кб,

соответствующий экзонам 23-34 F8VWF-гена (Mancuso et al.,

1991). Идентифицированные в нем сплайсинговые и нонсенс му-

тации препятствуют образованию функционального транскрипта.

Наибольшее число мутаций идентифицировано при типе II

болезни Виллебранда. Подавляющее большинство из них - замены

аминокислот, чаще всего происходящие в результате транзиций

в CpG динуклеотидах (Cooney et al., 1991; Randi et al.,

1991; Donner et al., 1992). Мутации при болезни типа IIA

кластерированы в A2 домене, где предположительно локализован

сайт протеолетического отщепления, в то время, как при типе

IIB - в домене, обеспечивающим взаимодействие с тромбоцитар-

ным гликопротеиновым комплексом (Ib-IX рецептором). Большая

группа мутаций при форме заболевания IIB локализована в сег-

менте из 11 аминокислот внутри единственного дисульфидного

изгиба (loop), соединяющего цистеины в 509 и 695 положениях.

При форме заболевания Нормандского типа, мимикриющей гемофи-

лию A, фактор Виллебранда структурно и функционально норма-

лен, за исключеним того, что нарушено его взаимодействие с

фактором YIII. У таких пациентов действительно идентифициру-

ются миссенс мутации, расположенные в области гена, кодирую-

щей сайты связывания фактора VIIIR с фактором VIIIС

(Mazurier, 1992).

Тип III представляет собой наиболее тяжелую форму забо-

левания, при которй фактор VIIIR, как правило, отсутствует.

Получены доказательства, что такие пациенты являются гомози-

готами или компаундами по нонсенс мутациям, обнаруживаемым в

одной дозе у больных типа I (Zhang et al., 1992). При этом

же типе заболевания выявлен кластер мутаций со сдвигом рамки

считывания, возникаюших в результате делеции одного из 6 ци-

тозинов в положении 2679-2684 экзона 18. Именно такая мута-

ция была обнаружена в семье, зарегистрированной впервые фон

Виллебрандом в 1926 году. У некоторых членов этой родослов-

ной как было установлено недавно, она находилась в компаунде

с мутацией P1266L, возникшей в результате рекомбинации между

геном F8VWF и псевдогеном (см. выше) (Zhang et al., 1993).

Выбор адекватного метода молекулярной диагностики бо-

лезни Виллебранда в значительной мере предопределяется пра-

вильностью предшествующей клинической и лабораторной диаг-

ностики и результатами медико-генетического консультирова-

ния, позволяющей достаточно четко определить характер насле-

дования заболевания в семье высокого риска и установить его

форму. К сожалению, достичь этого далеко не всегда возможно,

а отсутствие характерных мажорных мутаций значительно снижа-

ет эффективность прямой молекулярной диагностики. Вместе с

тем, по крайней мере, в некоторых популяций (Финляндия, Шве-

ция) обнаружены "горячие" точки мутаций, которыми являются

экзоны 18 и 42, при типе II болезни Виллебранда (Holmberg et

al,1993). В популяциях России такие "горячие " точки пока не

обнаружены, хотя исследования в этом направлении ведутся

(Асеев, Шауи Абдельрхани, 1995). Значительно более перспек-

тивной на современном этапе представляется непрямая диаг-

ностика. В промоторной части гена, в интронах

15, 17, 23, 40, 41, 49, а также в экзонах 26, 35, 39 иденти-

фицированы многочисленные полиморфные сайты рестрикции с

достаточно высоким уровнем полиморфизма. Особенно перспек-

тивным для диагностики является полиморфизм интрона

40, представляющий собой две области варьирующих по числу

тетрамерных повторов ТСТА на расстоянии 212 п.о. Амплифика-

ция этой части интрона 4О с помощью ПЦР, рестрикция AluI с

последующим электрофоретическим разделением позволяет иден-

тифицировать до 98 аллельных вариантов этого полиморфизма

(Mercter et al.,1991). Столь выраженный полиморфизм позволя-

ет с высокой эффективностью маркировать мутантную хромосому

(ген) и проследить её передачу в потомстве.

Сведения о генокоррекции болезни Виллебранда в доступ-

ной литературе не обнаружены.

10.4.6 Фенилкетонурия.

Фенилкетонурия (ФКУ) - одно из наиболее частых аутосом-

но-рецессивных заболеваний, обусловленных наследственным де-

фектом фенилаланингидроксилазы, приводящим при отсутствии

своевременной терапии к тяжелой умственной отсталости. В Ев-

ропе один больной ребенок встречается в среднем среди 10 -

17 000 новорожденных. В Ирландии и Шотландии частота ФКУ

достигает 1 на 4500 новоржденных (DiLella et al., 1986).

Распространена ФКУ также в Польше и в Белоруссии. В России

частота заболевания колеблется в пределах 1 : 8 - 10 000.

Очень важна ранняя диагностика ФКУ, так как при своевремен-

ном назначении пациенту диеты, не содержащей фенилаланин,

умственная ограниченность, как правило, не развивается или

имеет очень стертые формы. Разработаны биохимические скрини-

рующие тесты диагностики ФКУ у новорожденных.

Гидроксилирование фенилаланина является достаточно

сложным процессом, в котором участвуют, по крайней мере, 3

фермента. Фенилаланингидроксилаза (РАН), гомополимерный фер-

мент, состоящий из субъединиц с молекулярным весом 52 кД,

продуцируется клетками печени и регулирует превращение L-фе-

нилаланина в L-тирозин. Его дефицит приводит к накоплению

фенилаланина в сыворотке крови. Гиперфенилаланинемия может

возникать также при дефиците дигидроптеридинредуктазы и при

дефектах синтеза биоптерина. Однако, эти заболевания, хотя и

сопровождаются снижением активности РАН, значительно отлича-

ются от классической ФКУ и не коррегируются диетой, лишенной

фенилаланина.

PAH-ген транскрибируется в гепатоцитах с образованием

мРНК размером 2.4 кб. Наиболее распространенный тип мутаций

- однонуклеотдные замены (миссенс, нонсенс, мутации в сайтах

сплайсинга), причем часто эти мутации являются результатом

транзиций в 22-х обнаруженных в PAH-гене CpG динуклеотидах.

Крупных структурных перестроек не найдено, хотя имеется не-

большой процент точечных делеций. Отмечается неравномерный

характер внутригенной локализации мутаций (Scriver et

al.,1989). Так, наибольшее число миссенс мутаций встречается

в центральной части гена: в экзоне 7, кодирующем участок

связывания белка с кофактором, где располжено 5 CpG дупле-

тов, а также в экзонах 9 и 12. Преимущественный район лока-

лизации делеций - экзоны 1, 2 и 3.

Втури РАН-гена локализованоно более 10 полиморфных сай-

тов рестрикции, причем распределения гаплотипов по этим мар-

керам среди представителей разных рас и этнических групп

значительно различаются. Обнаружено сильное неравновесие по

сцеплению между определенными мутациями в PAH-гене и гапло-

типами по внутригенным сайтам рестрикции. Так, каждая из 5-и

наиболее частых в европейских популяциях мутаций ассоцииро-

вана только с одним из более, чем 70 гаплотипов по 8 рест-

рикционным полиморфизмам (Eisensmith et al., 1992). Мажорная

в западно-европейских популяциях сплайсинговая мутация в до-

норном сайте 12-го интрона сцеплена с гаплотипом 3 (DiLella

et al.,1986). В то же время другая мутация в экзоне 12 -

R408W, наиболее распространенная на востоке Европы, в част-

ности в Белоруссии и России, и не найденная в Японии и Ки-

тае, связана с гаплотипом 2 (DiLella et al.,1987). Мажорная в

Европе мутация R158Q в 40% сцеплена с гаплотипом 4, наиболее

частым среди жителей Японии и Китая. Распространенная в Тур-

ции сплайсинговая мутация в интроне 10, приводящая к

9-и-нуклеотидной инсерции, ассоциирована с "южными" гаплоти-

пами 6, 10 и 36.

Сопоставление частот различных гаплотипов по полиморф-

ным сайтам рестрикции и мутаций в PAH-гене в разных популя-

циях, национальностях и этнических группах позволяет сделать

вывод , что большинство из них, или даже все, произошли уже

после дивергенции рас. Распространение мажорных мутаций гена

РАН в различных популяциях и этнических группах связано с

эффектом основателя. По некоторым оценкам эти мутации воз-

никли однократно от нескольких сотен до нескольких тысяч лет

тому назад. Однако, в ряде случаев распределение мутаций не

может быть обьяснено в генетических терминах, сопоставимых с

демографической историей. Несомненно доказанными являются

примеры независимого и рекуррентного возникновения в разных

популяциях таких мутаций, как R261Q или R158Q. Высокие попу-

ляционные частоты специфических мутаций в PAH-гене связаны,

по-видимому, не только с эффектом основателя и/или с сущест-

вованием эндогенных механизмов повышенного мутагенеза, но и

с преимуществом гетерозигот. Высказано предположение, что

носительство РАН - мутаций повышает устойчивость организма к

токсическому эффекту охратоксина А, продуцируемого некоторы-

ми видами грибковой плесени (Aspergillus, Penicillium), раз-

вивающимися при хранении зерна и других продуктов

(Woolf,1986). Предполагается, что беременные женщины, гете-

розиготные пл РАН -мутациям имеют меньшую вероятность абор-

та, индуцированного действием этих микотоксинов. Возможно,

высокая частота ФКУ в Ирландии и Шотландии частично может

быть обьяснена мягким и влажным климатом этих стран,

способствующем росту таких грибов.

В медицинской практике используется как прямая, так и

косвенная диагностика мутаций в PAH-гене. Разработан очень

быстрый и эффективный метод ПЦР/StyI-диагностики cамой

частой в России (более 70%) мутации R408W (Ivaschenko,

Baranov, 1993; Иващенко и др., 1993). Дигностика других ма-

жорных мутаций в PAH-гене осуществляется методами ПЦР+АСО,

аллель-специфической амплификации (ARMS), методом одноните-

вого конформационного полиморфизма (SSCP) (см. Главу IY).

При первичном обследовании семьи черезвычайно удобно исполь-

зовать три полиморфные нейтральные мутации в кодонах 232,

245 и 385, сцепленные в Кавказских популяциях с определенны-

ми ПДРФ-гаплотипами, а значит и со специфическими мутантными

аллелями. Каждая из этих мутаций создает новый сайт рестрик-

ции и поэтому их аллельное состояние может быть легко проти-

пировано с помощью амплификации и рестрикции (Kalaydjieva et

al., 1991). При анализе семьи, в которой отсутствуют легко

идентифицируемые прямыми методами мутации, молекулярная ди-

агностика может быть проведена с помощью внутригенных поли-

морфных сайтов рестрикции. Удобен, в частности, Msp1-поли-

морфизм в 8-м экзоне, анализ которого может быть осуществлен

методом ПЦР/рестрикции (Wedmeyer et al., 1993). В последнее

время появились даные о наличии высокополиморфных сайтов

внутри интронов гена РАН, которые оказались особенно удобны-

ми для молекулярного маркирования мутантных аллелей (Goltzov

et al.1994).

Генокоррекция ФКУ успешно осуществлена в опытах in

vitro и в настоящее время находится на стадии эксперимен-

тальной разработки (Табл.9.2. Глава IX).

10.4.7 Синдром Леш-Нихана.

Синдром Леш-Нихана - рецессивное сцепленное с полом за-

болевание, обусловленное наследственной недостаточностью ги-

поксантин-гуанин фосфорибозилтрансферазы (HPRT) и сопровож-

дающееся тяжелыми поражениями центральной нервной системы.

Фермент HPRT участвует в регуляции метаболизма пуринов,

контролируя превращение гуанина и инозина в соответствующие

рибонуклеотиды. Ген HPRT экспрессируется во всех типах кле-

ток с образованием мРНК размером 654 п.о.. Культивируемые

линии клеток, дефектные по HPRT, устойчивы к 8-азагуанину и

6-тиогуанину, и таким образом, могут быть отобраны на соот-

ветствующих селективных средах. Гетерозиготные носители му-

таций по HPRT-гену могут быть легко выявлены по наличию 2-х

типов клеток - устойчивых и чувствительных к 8-азагуанину, в

первичной культуре фибробластов или в клетках волосяных лу-

ковиц. В большинстве мутантных клеточных линий количество

мРНК нормально, а белок отсутствует. У части пациентов хотя

и транскрибируется достаточно много мРНК, но в этих молеку-

лах обнаруживаются структурные и функциональные аномалии. В

небольшом проценте случаев у больных не удается выявить ни

белка, ни мРНК.

В 15% хромосом у больных с синдромом Леш Нихана ген

HPRT вовлечен в крупные структурные перестройки, корторые

могут быть выявлены методами Саузерн или Нозерн блот-гибри-

дизации. Синдром Леш Нихана одно из первых моногенных

наследственных заболеваний, для которых была проведена моле-

кулярная идентификация точечных мутантных аллелей. Именно на

этой моделе впервые был разработан и опробован метод анализа

мутаций, основанный на расщеплении РНК-ДНК гибридов рибонук-

леазой А в местах негомологичноно спаривания (метод расщеп-

ления рибонуклеазой А - см.Главу VI, Gibbs, Caskey, 1987).

Комбинация методов блот-гибридизации и расщепления рибонук-

леазой А позволяет выявить до 50% мутаций. В настоящее время

в гене HPRT найдено более 100 спорадических мутаций, полови-

на которых - однонуклеотидные замены типа миссенс, нонсенс и

в сайтах сплайсинга. Около 40% мутантных хромосом имеют

структурные аномалии, в том числе крупные делеции, нехватки

отдельных зкзонов и микроделеции одного или нескольких нук-

леотидов. В HPRT-гене, практически, отсутствуют мутации, до-

мининирующие по частоте в каких-либо популяциях. Исключение

составляет нонсенс мутация R170TER, которая составляет около

15% всех нуклеотидных замен (Gibbs et al., 1989). Также как

и при гемофилиях мутации гена HPRT чаще возникают в сперма-

тогенезе, чем в оогенезе. Вероятность мутирования возрастает

с возрастом отца. Идентифицировано 3 HPRT-псевдогена в хро-

мосомах 3, 5 и 11 (Stout, Caskey, 1984).

Описаны редкие случаи синдрома Леш Нихана у гетерози-

готных девочек. При этом, как правило, болезнь развивается

вследствие неслучайной инактивации X-хромосомы, не содержа-

щей мутации (Ogasawara et al., 1989). Однако, у 3-х женщин -

облигатных носительниц мутаций в HPRT-гене, селективный тест

не выявил присутствия мутантных клеток в культивируемых фиб-

робластах и волосяных луковицах. В связи с этим высказано

предположение, что определенные мутации гена HPRT находятся

в неравновесном сцеплении с неидентифицированной летальной

мутацией в X-хромосоме, что и приводит к селекции клона кле-

ток только с одной (мутантной или немутантной по гену HPRT)

X-хромосомой (Marcus et al., 1992).

Молекулярная диагностика болезни Леш-Нихана возможна

прямыми и непрямыми методами. Прямой вариант основан на про-

ведении обратной транскрипции мРНК, ее амплификации,

SSCP-анализе одноцепочечных ДНК фрагментов с их последующим

секвенированием (см.Глава VI). Косвенная диагностика пре-

дусматривает маркирование мутантной хромосомы при помощи по-

лиморфных сайтов (в частности, локуса DXS52 - зонд

St14/TaqI).

Как мы уже отмечали (Главы VII,VIII), первая трансген-

ная животная модель наследственного заболевания человека,

сконструированная путем направленного переноса мутациий в

культивируемые эмбриональные стволовые клетки, была получена

для синдрома Леш-Нихана (Hooper et al., 1987; Kuehn et al.,

1987). На этой моделе впервые была проведена генокоррекция

наследственного дефекта in vivo. Эти успехи в значительной

степени связаны с существованием селективных сред, позволяю-

щих вести автоматический отбор мутантных клеток. Вообще,

синдром Леш-Нихана представляет собой идеальную систему не

только для изучения пуринового метаболизма, но и для решения

многих теоретических вопросов биологии и медицины

(Seegmiller, 1989; Maraus et al., 1993; Boyel et al., 1993).

Сложность генокоррекции заболевания, однако, заключается в

необходимости обеспечения эффективной доставки гена HPRT

(или его кДНК) непосредственно в мутантные нервные клет-

ки. Эта проблема еще не решена. Поэтому реальные клинические

программы генотерапии этого заболевания на сегоднешний день

отсутствуют (см.Главу IX).

10.4.8 Болезнь Вильсона-Коновалова.

Болезнь Вильсона-Коновалова (БВК) - гепатолентикулярная

дегенерация - аутосомно-рецессивное заболевание, обусловлен-

ное наследственным дефектом одной из медь-транспортирующих

АТФаз. У больных резко снижена концентрация основного

медь-содержащего белка плазмы крови - церулоплазмина и в

меньшей степени - цитохромоксидазы, еще одного белка, участ-

вующего в метаболизме меди. Выделяют, по крайней мере, 3

формы БВК (Cox et al. , 1972). При редкой атипичной форме,

предположительно Германского происхождения, у гетерозигот

содержание церулоплазмина снижено, по крайней мере, в два

раза. При двух других, типичных формах - славянской и юве-

нильной, содержание церулоплазмина у гетерозигот находится в

пределах нормы. Славянский тип БВК характеризуется сравни-

тельно поздним началом и преимущественно неврологической

симптоматикой. Ювенильная форма чаще встречается в Западной

Европе и ведущими в этиологии заболевания являются печеноч-

ные нарушения. Среди евреев-ашкенази встречается БВК с позд-

ним началом и почти нормальным содержанием церулоплазмина в

сыворотке крови больных.

Ген БВК, идентифицированный в 1993г. независимо сразу в

2х лабораториях США, представляет собой медь-транспортирую-

щую АТФазу P типа с 6-ю металл-связывающими районами. Ген

имеет 60% гомологию по нуклеотидному составу с ранее иденти-

фицированным геном АТФ-азы (АТР7А), мутантном при болезни

Менкеса (Bull et al., 1993; Petruchin et al., 1993; Tanzi et

al., 1993). По аналогии с геном болезни Менкеса, также

обусловленной нарушением транспорта меди, ген БВК назван

АТР7В. Два пациента с БВК оказались гомозиготными по 7-нукле-

отидной делеции в кодирующей области гена ATP7B , что дока-

зывало его идентичность гену БВК (Petruchin et al, 1993).

Ген экспрессируется в клетках печени, мозга, почках, лимфо-

узлах. Типичным для экспрессии АТР7В оказался альтернативный

сплайсинг двух и более экзонов центральной части гена

(6, 7, 8, 12 и 13).

Кодируемый ATP7B-геном белок содержит несколько мемб-

ранных доменов, АТФ-консенсусную последовательность, сайт

фосфорилирования и, по крайней мере, 2 медь-связывающих сай-

та. В мозге, печени, почках и ломфоузлах обнаружены изоформы

белка, соответствующие продуктам альтернативного сплайсинга

гена АТР7В. Их назначение и функции пока неизвесты. В гене

АТР7В идентифицированы полиморфные микросателлитные маркеры,

а также около 10 полиморфных сайтов рестрикции. В настоящее

время в гене АТР7В идентифицированы более 30 мутаций, в том

числе 14 мелких делеций/инсерций, 2 - нонсенс мутации, 15 -

миссенс мутаций, 3 - сплайсинговые мутации. Диагностическую

ценность для европейцев представляют мутации His1070Gln и

Gly1267Lys, зарегистрованные в 28% и 10% всех мутантных хро-

мосом, соответственно (Thomas et al., 1995).

В заключении данного раздела представляется целесооб-

разным кратко рассмотреть другие достаточно частые моноген-

ные заболевания, для которых показана и проводится молеку-

лярная диагностика, в том числе и пренатальная, в других ме-

дико-генетических центрах России и, прежде всего, в Лабора-

тории молекулярной диагностики Институтата клинической гене-

тики РАМН (Москва).

10.4.9 Адрено-генитальный синдром.

Адрено-генитальный синдром - (врожденный дефицит

21-гидроксилазы) - достаточно распространенное аутосомно-ре-

цессивное заболевание. Частота "классических" форм 1:10 000

новоржденных, "неклассической" - около 1% в популяции. В за-

висимости от характера нарушения функции гена и, соот-

ветственно клинических проявлений "классическая форма" под-

разделляется на два варианта: 1. летальная сольтеряющая фор-

ма; 2. нелетальная - вирилизирующая форма, связанная c из-

бытком андрогенов (Morel, Miller, 1991).

В локусе 6р21.3, внутри сложного супергенетического

комплекса HLA идентифицированы два тандемно расположенных

21-гидроксилазных гена - функционально активный CYP21B и

псвдоген - CYP21А, неактивный вследствие делеции в 3-м экзо-

не, инсерции со сдвигом рамки считывания в 7-м экзоне и

нонсенс мутаций - в 8-м экзоне. Ген и псевдоген разделены

смысловой последовательностью гена С4В, кодирующей 4-й фак-

тор комплемента. Оба гена состоят из 10 экзонов, имеют длину

3,4 кб и отличаются только по 87 нуклеотидам. Высокая сте-

пень гомологии и тандемное расположение указвают на общность

эволюционного происхождения этих генов. Любопытно отметить,

что такие же тандемно расположенные гены 21-гидроксилазы

(называемые также Р450с21) обнаружены и у других млекопитаю-

щих, причем у мышей, в отличие от человека, активен только

ген CYP21A, но не CYP21B, тогда как у крупного рогатого ско-

та функционально активны оба гена.

Белок- 21-гидроксилаза ( Р450с21- микросомальный цитох-

ром 450) обеспечивает превращение 17-гидроксипрогестерона в

11-дезоксикортизол и прогестерона - в дезоксикортикостерон.

В первом случае возникает дефицит глюкокортикоидов и, прежде

всего, кортизола, что в свою очередь стимулирует синтез

АКТГ, и ведет к гиперплазии коры надпочечников (вирилирующая

форма). Нарушение превращения прогестерона в дезоксипрогесте-

рон ведет к дефициту альдостерона, что в свою очередь нару-

шает способность почек удерживать ионы натрия и приводит к

быстрой потере соли плазмой крови (соль теряющая форма).

Как и в случае гемофилии А, наличие рядом с кодирующим

геном гомологичной ДНК последовательности зачастую ведет к

нарушениям спаривания в мейозе и, как следствие этого, к

конверсии генов (перемещения фрагмента активного гена на

псевдоген), либо к делеции части смыслового гена. В обоих

случаях функция активного гена нарушается. На долю делеций

приходится около 40% мутаций, на долю конверсий - 20% и при-

мерно 25% составляют точечные мутации. Согласно отечествен-

ным данным в случае наиболее тяжелой сольтеряющей формы АГС,

на долю конверсий приходится более 20% мутантных хромосом,

на долю делеций - около 10% (Evgrafov et al., 1995).

Непрямая диагностика АГС возможна с помощью типирования

тесно сцепленных с геном CYP21B аллелей HLA A и HLA B генов,

а также алелей гена HLA DQA1. Прямая ДНК диагностика АГС

основана на амплификакции с помощью ПЦР отдельных фрагментов

генов CYP21B и CYP21A, их рестрикции эндонуклеазами HaeIII

или RsaI и анализе полученных фрагментов после электрофореза

(Evgrafov et al., 1995).

10.4.10 Спинальная мышечная атрофия.

Спинальная мышечная атрофия (СМА) - аутосомно-рецессив-

ное заболевание, характеризуется поражением моторных нейро-

нов передних рогов спинного мозга, в результате чего разви-

ваются симметричные параличи конечностей и мышц туловища.

Это - второе после муковисцидоза наиболее частое летальное

моногенное заболевание (частота 1: 6 000 новорожденных).

СМА подразделяется на три клинические формы. Тип I. Острая

форма (болезнь Верднига-Гоффмана), проявляется в первые 6 ме-

сяцев жизни и приводит к смерти уже в первые два года; Тип

II. Средняя (промежуточная) форма, пациенты не могут стоять,

но обычно живут более 4-х лет; Тип III. Ювенильная форма

(болезнь Кугельберга-Веландера) - прогрессирующая мышечная

слабость после 2-х лет. Все три формы представляют собой ал-

лельные варианты мутаций одного гена SMN (survival motor

neurons), картированного в локусе D5S125 (5q13) и идентифи-

цированного методом позиционного клонирования (см.Главу III)

в 1995г (Lefebvre et al. 1995). В этой пока единственой ра-

боте показано, что ген SMN размером всего 20 000 п.о.состоит

из 8 экзонов. мРНК этого гена содержит 1 700 п.о. и кодирует

ранее неизвестный белок из 294 аминокислотных остатков с

молекулярным весом 32 КилоДальтона.

Ген дуплицирован. Его копия (возможно вариант псевдоге-

на) располагается несколько ближе к центромере и отличается

от гена SMN наличием 5-и точечных мутаций, позволяющих отли-

чить оба гена путем амплификации экзонов 7 и 8 и их исследо-

ванием методом SSCP анализа (см.Главу IV). Ген назван

сBCD541, по аналогии с первоначальным вариантом названия для

теломерной копии, т 4о 0е 4сть 0гена SMN, tBCD541. Ген cBCD541

экспрессируется, но в отличие от гена SMN его сДНК подверга-

ется альтернативному сплайсингу с утратой экзона 7.

Отсутствие гена SMN (tBCD541) у 93% больных (213 из 229),

его разорванная (interrupted) структура у 13 обследованных

пациентов (5.6%) и наличие серьезных мутаций у оставшихся

3-х больных дали основание именно данную теломерную копию

гена считать ответственной за заболевание. Существенно отме-

тить, что центромерная копия гена обнаружена у 95 4. 05% боль-

ных, 4тогд 0а 4как 0 отсутств 4ует она 0 только у 4,4% 4 пациентов 0.

В непосредственной близости от теломерного конца гена

SMN идентифицирован еще один ген - ген белка-ингибитора зап-

рогаммированной гибели нейронов (neuronal apoptosis

inhibitory protein -NAIP). При тяжелых клинических формах

СМА (Тип I), обусловленных делециями, по-видимому, нередко

происходит утрата гена NAIP.

Согласно гипотезе авторов СМА возникает при гомозигот-

ном состоянии мутаций (обычно-делеций) в гене SMN, 4при этом

различ 4ия между 0форм 4ами 0СМА определяются двумя основными фак-

торами: 1. числом копий гена cBCD541 (две - в случае Типа I

и четыре (возникающих вследствие конверсии между SMN и

cBCD541) - в случае Типа III), 2. наличием или отсутствием

ген 4а 0NAIP. 4С 0реди всех обследованных СМА-больных 4не

4обнаружены 0случа 4и одновременной 0делеции обоих гомологичных

генов 4- 0SMN (tBCD541) и сBCD541 4, что 0указывает, по мнению

авторов, 4на то, 0что такая аберрация должна проявляться как

доминантная леталь еще в эмбриогенезе.

Некоторые положения этой, безусловно, основополагающей

работы французских авторов, по-видимому, еще требуют уточне-

ния, однако, уже сейчас она сделала возможной прямую молеку-

лярную диагностику СМА у 98,6% больных. С этой целью прово-

дится амплификация экона 7, который отсутствует у подавляю-

щего большинства больных. Нормальный экзон 7 (ген SMN) диф-

ференцируют от мутантного варианта (ген cBCD541) c помощью

SSCP анализа. При необходимости возможна косвенная диаг-

ностика - ПЦР анализ динуклеотидных (CA) повторов ДНК ло-

кусов D5S125; D5S112; D5S127; ПДРФ-анализ с фланкирующими

ДНК-зондами MU, 105-153RA; 153-6741 GT.

10.4.11 Атаксия Фридрейха.

Атаксия Фридрейха (АФ) - сравнительно редкое (1 : 22

-25 000) аутосомно-рецессивное заболевание, характеризующе-

еся прогрессивной дегенерацией нервных клеток мозжечка. Ген

АФ не идентифицирован, но достаточно точно картирован на

хромосомных (9q13-q21) и физических картах ДНК-маркеров. На-

иболее тесное сцепление гена АФ показано для локуса D9S5

(зонд 26Р). Сконструированы космидные библиотеки и

составлены подробные физические карты области 4 0геномной ДНК

хромосомы 9, включающей локус D9S7 и, предположительно, ген

АФ. Определено положение гена ФА по отношению к другим флан-

кирующим молекулярным маркерам (Fujita etal., 1991; Wilkes

et al., 1991) 4. 0В настоящее время известно, по крайней мере,

5 таких ДНК маркеров: GS4, MCT-112, GS2 -дистальные и мик-

росателлитные маркеры FD1 (на расстоянии 80 кб 4) 0и MLS1 (на

расстоянии 150 кб) - проксимальные. Изучены особенности ал-

лельного полиморфизма этих систем для различных популяций

Западной Европы. Для всех 5 молекулярных маркеров выяснены

гаплотипы, сцепленные с заболеванием. Гаплотипы обоих мик-

росателлитных маркеров оказались в абсолютном генетическом

неравновесии с АФ, что доказывет их весьма близкое располо-

жение на генетической карте по отношению к мутантному гену

АФ (Pianese et al., 1994).

Диагностика АФ пока возможна только непрямыми методами.

ПДРФ анализ с помощью ДНК-зондов на дистальные полиморфные

сайты, либо ПЦР анализ полиморфизма проксимальных по отноше-

нию к гену АФ микросателлитных маркеров MLS1 или FD1.

Нами рассмотрены лишь некоторые моногенные наследствен-

ные болезни, условно разделенные на три подгруппы, исходя,

главным образом, из того насколько они изучены с молекулярно

-генетических позиций, их актуальности для пренатальной ди-

агностики и в какой мере они важны для медико-генетической

службы нашей страны. Более того, исторически сложилось так,

что именно такие заболевания как муковисцидоз, миодистрофия

Дюшенна, гемофилия А, фенилкетонурия, то 4 0есть 4 0социально наи-

более значимые, раньше других генных болезней стали предме-

том детального молекулярного анализа в нашей лаборатории и в

других медико-генетических центрах и научно-практических

подразделениях России (см. Баранов, 1991, 1994;

Baranov,1993; Евграфов, Макаров, 1987).

Естественно, что рассмотренными нозологиями отнюдь не

исчерпывается список тех болезней, которые являются объекта-

ми молекулярных исследований в нашей стране. Например, из

обзора выпали такие моногенные 4 0болезни как гиперхолестерине-

мия, гемоглобинопатии, дефицит альфа-1 антитрипсина, мито-

хондриальные болезни. 4 0Для многих из них разработаны и широко

применяются эффективные методы молекулярной диагностики, ве-

дутся исследования по генотерапии. 4 0Мы не касались также ра-

бот проводимых, 4 0главным образом, 4 0в возглавляемой профессором

Е.И.Шварцем лаборатории молекулярной диагностики ПИЯФ РАН и

посвященных молекулярному анализу мультифакториальных забо-

леваний, 4 0таких как диабет, гипертония, ишемия сердца. Ре-

зультаты этих 4 0исследований 4 0будут, по-видимому, предметом

следующих обзоров и монографий.

ГЛАВА I

СТРУКТУРА И МЕТОДЫ АНАЛИЗА ДНК.

Раздел 1.1 Общие представления, центральная догма, гене-

тический код.

Универсальная генетическая субстанция или "энциклопедия

жизни", ДНК, содержит информацию, необходимую для синтеза

белков и нуклеиновых кислот, присутствующих во всех типах

клеток как про- так и эукариот. Дезоксирибонуклеиновые кис-

лоты (ДНК) - это нитевидные молекулы, состоящие из четырех

расположенных в варьирующем порядке нуклеотидов: пуринов -

аденина и гуанина, и пиримидинов - цитозина и тимина, соеди-

ненных в полинуклеотидную цепь с остовом из чередующихся ос-

татков сахара - дезоксирибозы, и фосфата. Последовательность

нуклеотидов ДНК или пар оснований составляет информационную

емкость молекулы, определяя порядок синтеза и аминокислотную

последовательность белков в соответствии с универсальным для

всех живых существ трехбуквенным - триплетным, генетическим

кодом (Табл.1.1). Дезоксирибонуклеиновые кислоты представля-

ют собой единственный тип молекул, способных к самовоспроиз-

водству или репликации, что и обеспечивает преемственность

генетической информации в ряду поколений. Записывается

последовательность ДНК слева направо (5' - 3') первыми заг-

лавными буквами соответствующих нуклеотидов, являющихся од-

новременно единицами измерения молекулы. Размеры ДНК могут

меняться в гигантских пределах от нескольких нуклеотидов до

миллиардов пар оснований (п.о.). В качестве единиц измерения

размеров ДНК используются также килобазы (kb) и мегабазы

(mb) - последовательности, соответствующие тысячи и миллиону

пар оснований, соответственно.

ДНК могут существовать как в виде однонитевых, так и в

виде двухнитевых молекул. Двухнитевые или двухцепочечные мо-

лекулы образуются за счет химического комплементарного спа-

ривания между аденином и тимином (А - Т) и между гуанином и

цитозином (Г - Ц). Эти водородные связи между парами нуклео-

тидов достаточно непрочные, так что цепи ДНК могут легко

диссоциировать - разделяться, и ассоциировать - соединяться,

при изменении температуры или солевых концентраций. При каж-

дом цикле ассоциаци - диссоциации или, как еще говорят, от-

жиге - плавлении, будет точно воспроизводиться двухнитевая

структура - дуплекс, устойчивость которого определяется со-

ответствием нуклеотидных пар. Наиболее устойчивы структуры,

представленные полностью комплементарными нитями ДНК. Про-

цесс образования дуплексов носит название гибридизации. Спо-

собность к комплементарному спариванию оснований - одно из

самых замечательных свойств ДНК, определяющих возможность ее

саморепликации и точного выбора специфических участков акти-

вации молекулы в процессе считывания генетической информа-

ции. Это свойтво широко используется в молекулярной биологии

для поиска и идентификации нужных последовательностей в ог-

ромных молекулах ДНК при использовании в качестве зондов ее

сравнительно небольших меченых фрагментов.

У человека большая часть ДНК- 3.2 миллиарда пар основа-

ний, находится в ядрах клеток в виде 46 плотно упакованных,

суперскрученных за счет взаимодействий с ядерными белками

структур, называемых хромосомами. Сравнительно небольшая

часть ДНК - около 5%, пристствует в митохондриях - органел-

лах цитоплазмы, обеспечивающих процессы дыхания и энерегети-

ческого обмена клеток эукариот. В большинстве соматических

клеток ДНК представлена в двух копиях - по одной в каждой

хромосоме. Таким образом, в клетках присутствуют 23 пары

хромосом, 22 из которых гомологичны друг другу - аутосомы, и

одна пара (X и Y) - половые хромосомы. Наличие Y хромосомы

определяет мужской пол особи. При записи нормального карио-

типа индивидуума указывается общее число хромосом и тип по-

ловых хромосом. Таким образом, нормальный кариотип мужчины -

46,XY, а женщины -46,XX. В процессе гаметогенеза происходит

случайное расхождение гомологичных хромосом в мейозе и в

каждой зрелой половой клетке - гамете, остается только 23

хромосомы, то есть гаплоидный набор хромосом. При этом в

каждой гамете сохраняется лишь одна половая хромосома - го-

носома. В яйцеклетках это X хромосома, тогда как сперматозо-

иды с равной вероятностью несут как X, так и Y хромосому, то

есть пол будущей особи детерминируется геномом сперматозои-

да. При оплодотворении диплоидный набор хромосом восстанав-

ливается. В соответствии с современными представлениями ге-

ном человека состоит из 25 хромосом, 22 из которых аутосомы,

2 половые хромосомы и одна митохондриальная . В каждой клет-

ках присутствует порядка 1000 митохондрий, а в каждом мито-

хондрионе содержится около 10 кольцевых митохондриальных

хромосом, сходнах с хромосомами бактерий. Таким образом, в

клетках присутствует около 1000 копий митохондриальных хро-

мосом.

В хромосомах эукариот ДНК находится в двухнитевой форме,

что обеспечивает возможность ее точной репликации при каждом

цикле деления клетки. Одна нить кодирующая или смысловая,

комплементарная ей нить - антисмысловая. Декодирование ин-

формации, заключенной в молекуле ДНК, или процесс транскрип-

ции, осуществляется за счет избирательного синтеза молекул

РНК, комплементарных определенным участкам ДНК, так называе-

мых первичных РНК транскриптов. Транскрибируемые участки ДНК

носят название генов. Рибонуклеиновые кислоты (РНК) по своей

структуре очень сходны с молекулами ДНК. Они также состоят

из четырех нуклеотидов, только одно из пиримидиновых основа-

ний - тимин, заменено на урацил и в сахарозном остове вместо

дезоксирибозы представлена рибоза. Молекулы РНК существуют

только в однонитевой форме, но могут образовывать дуплексы с

молекулами ДНК. После синтеза молекулы РНК претерпевают

достаточно сложную модификацию - процессинг. При этом про-

исходят изменения в концевых участках молекул и вырезаются

области, гомологичные интронам - некодирующим частям гена.

Этот процесс называется сплайсингом. В результате из первич-

ных РНК транскриптов образуются молекулы информационной или

матричной РНК (мРНК), представляющие собой непрерывную

последовательность нуклеотидов, гомологичную только экзонам

- смысловым участкам гена. Молекулы мРНК в виде рибонуклео-

протеиновых гранул выходят из ядра в цитоплазму и соединяют-

ся с рибосомами, где происходит процесс трансляции - синтез

полипептидной цепи. Трансляция мРНК происходит в точном со-

ответствии с генетическим кодом, согласно которому последо-

вательность из трех нуклеотидов РНК - кодон, соответствует

определенной аминокислоте или сигналу терминации синтеза по-

липептидной цепи (Табл.1.1). Реализация генетического кода

осуществляется с участием 20-ти типов транспортных РНК

(тРНК), единственных нуклеиновых кислот, содержащих в своем

составе наряду с нуклеотидами одну из аминокислот. тРНК име-

ют кленовообразную форму, в хвостовой части молекулы распо-

ложена определенная аминокислота, в точном соответствии с

последовательности из трех нуклеотидов в области, называемой

антикодоном. Прохождение мРНК по рибосоме является сигналом

приближения к рибонуклеопротеидному комплексу той тРНК, у

которой последовательность нуклеотидов в антикодоне компле-

ментарна кодирующему триплету мРНК. Таким образом транспор-

тируется соответствующая аминокислота и осуществляется пос-

ледовательный синтез полипептидной цепи. Митохондрии имеют

свою автономную систему белкового синтеза: рибосомальные

РНК, мРНК и транспортные РНК.

Генетический код универсален для всех живых существ -

это одно из его главных свойств. Небольшие отличия в струк-

туре кода найдены только для митохондриальной ДНК. Так в ми-

тохондриальном генетическом коде стоп кодонами являются

триплеты АГА и АГЦ, кодирующие аргинин в ядерной ДНК

(Табл.1.1). Универсальность генетического кода служит наибо-

лее веским аргументом в пользу гипотезы об едином источнике

возникновения жизни на земле и о филогенетическом родстве

всех видов живых существ. Кроме того, именно это свойство

обеспечивает возможность прочтения в любых модельных клеточ-

ных системах искусственно введенной генетической информации,

сконструированной из фрагментов ДНК разного видового про-

исхожденеия. Таким образом, вся генная инженерия основана на

универсальности генетического кода. Другим свойством генети-

ческого кода является его вырожденность, заключающаяся в

том, что все аминокислоты кроме двух кодируются несколькими

вариантами триплетов. Действительно, из 64 возможных комби-

наций нуклеотидных триплетов РНК три соответствуют термини-

рующим кодонам - ochre, amber и opal, остальные варианты

(61) кодируют 20 аминокислот, причем триплеты, кодирующие

одну и ту же аминокислоту, как правило, различаются по

третьему нуклеотиду в кодоне. Таким образом, зная нуклеотид-

ную последовательность кодирующего участка ДНК, можно одноз-

начно прогнозировать аминокислотную последовательность соот-

ветствующего полипептидного фрагмента, тогда как одна и та

же аминокислотная последовательность может кодироваться раз-

личным образом. При этом, число возможных вариантов кодирую-

щих ДНК резко возрастает с увеличением длины полипептида.

На следующем этапе полипептидные цепи транспортируются

к специфическим органеллам клетки и модифицируются с образо-

ванием зрелого функционально активного белка. В некоторых

случаях информация с молекул РНК может обратно транскрибиро-

ваться в молекулы ДНК. В частности, при обратной транскрип-

ции мРНК образуются молекулы комплементарной ДНК - кДНК, в

которой в зависимости от полноты процесса представлены

частично или полностью все смысловые кодирующие последова-

тельности гена. Рассмотренная схема реализации однонаправ-

ленного потока информации ДНК-РНК-Белок составляет основу

центральной молекулярно-биологической догмы - рис.1.1.

Более детально с процессами репликации, транскрипции,

процессинга и трансляции можно ознакомиться в многочисленных

руководствах по молекулярной биологии, цитологии и генетике

(Стент, Кэлиндер, 1981; Зенгер, 1987; Льюин, 1987).

1.2 Выделение ДНК, ее синтез и рестрикция.

ДНК может быть изолирована из любого типа тканей и кле-

ток, содержащих ядра. Этапы выделения ДНК включают быстрый

лизис клеток, удаление с помощью центрифугирования фрагмен-

тов клеточных органелл и мембран, ферментативное разрушение

белков и их экстрагирование из раствора с помощью фенола и

хлороформа, концентрирование молекул ДНК путем преципитации

в этаноле. Из 1 грамма сырой ткани или из 10!9 клеток обычно

получают 2 миллиграмма ДНК. У человека ДНК, чаще всего, вы-

деляют из лейкоцитов крови, для чего собирают от 5 до 20 мл

венозной крови в стерильную пробирку с раствором, пре-

пятствующим коагуляции (например, с глюгециром или гепари-

ном). Затем отделяют лейкоциты и разрушают клеточные и ядер-

ные мембраны добавлением буферных растворов, содержащих де-

натурирующие агенты. Наилучшие результаты при выделении ДНК

дает применение протеиназы-К с последующей фенол - хлоро-

формной экстракцией разрушенных белков. ДНК осаждают в эта-

ноле и растворяют в буферном растворе. Оценку качества экс-

трагированной ДНК проводят на основании измерения оптической

плотности раствора ДНК в области белкового и нуклеинового

спектров поглощения. В чистых образцах ДНК соотношение

А(260)/A(280) > 1.8. В противном случае процедуру очистки

необходимо повторять, так как для успешного использования и

хранения ДНK белки должны быть полностью удалены. Более под-

робно с методами выделения и очистки ДНК из различных тканей

можно ознакомиться в работах и руководствах, приведенных в

конце книги (Маниатис и др., 1984; Дейвис, 1990; Горбунова и

др., 1991).

В процессе сложного и многообразного функционирования

различные участки хромосом и ДНК претерпевают разнообразные

регулируемые и, в основе своей, обратимые изменения. Эти мо-

дификации осуществляются с помощью специальных белков - фер-

ментов. Описание ферментативного аппарата репликации, транс-

крипции, репарации - системы защиты и восстановления повреж-

денных участков ДНК, рекомбинации, то есть обмена участками

гомологичных хромосом и ДНК, далеко выходит за рамки нашего

изложения. Мы кратко ознакомимся только с двумя классами

ферментов ДНК - полимеразами и рестриктазами, особенно важ-

ными для понимания основ современной молекулярной диагности-

ки.

Ферменты, осуществляющие синтез ДНК, называются ДНК-по-

лимеразами. И в бактериальных клетках, и в клетках эукариот

содержатся три различные формы ДНК-полимераз, все они обла-

дают синтезирующей активностью и способны удлинять цепи ДНК

в направлении 5' - 3', последовательно наращивая по одному

нуклеотиду к 3'-OH концу, причем точность синтеза определя-

ется специфичностью спаривания оснований. Таким образом, для

работы ДНК-полимеразы необходима однонитевая матричная ДНК с

двухнитевым участком на 3'- конце молекулы. Кроме того, в

среде должны присутствовать четыре типа трифосфатов (dATP,

dCTP, dGTP и dTTP) - молекул, состоящих из основания -A,C,G

или T, сахара - дезоксирибозы (d) и трех фосфатных остатков

(P). В клетках эукариот репликацию осуществляет ДНК-полиме-

раза альфа, а в клетках E. coli - ДНК-полимераза 111.

ДНК-полимеразы обладают различными активностями, в том числе

и экзонуклеазной в направлении 3' - 5', что позволяет им

исправлять - репарировать, дефекты, допущенные при подборе

комплементарных оснований. ДНК-полимераза 1 E. coli способна

инициировать репликацию в месте разрыва ДНК и замещать гомо-

логичный участок в двойной цепи ДНК. Это свойство использу-

ется для введения в ДНК меченых нуклеотидов методом

ник-трансляции.

Открытие бактериальных ферментов, обладающих эндонукле-

азной активностью - рестрикционных эндонуклеаз или рестрик-

таз, значительно продвинуло исследование структуры ДНК и

возможности генноинженерного манипулирования с молекулами

ДНК. In vivo эти ферменты участвуют в системе распознования

и защиты "своих" и уничтожении чужеродных ДНК. Рестриктазы

узнают специфические последовательности из 4 - 6, реже 8 -

12 нуклеотидов в двухцепочечной молекуле ДНК и разрезают ее

на фрагменты в местах локализации этих последовательностей,

называемых сайтами рестрикции. Количество образующихся рест-

рикционных фрагментов ДНК определяется частотой встречаемос-

ти сайтов рестрикции, а их размер - характером распределения

этих сайтов по длине исходной молекулы ДНК. Чем чаще распо-

ложены сайты рестрикции, тем короче фрагменты ДНК после

рестрикции. В настоящее время известно более 500 различных

типов рестриктаз бактериального происхождения, причем каждый

из этих ферметов узнает свою специфическую последователь-

ность. Рестриктазы выделяют путем биохимической очистки из

различных видов бактерий и обозначают тремя буквами, соот-

ветствующими первым трем буквам латинского названия вида

бактерий, и римской цифрой, соответствующей хронологии отк-

рытия этого фермента у данного вида бактерий. В зависимости

от частоты встречаемости сайтов рестрикции в молекуле ДНК

различают три класса рестриктаз часто-, средне- и редкощепя-

щие. Естественно, что рестриктазы, узнающие длинные специфи-

ческие последовательности (8-12 п.о.), как правило, являются

редкощепящими (например Nor1), а узнающие короткие (4-5

п.о.) - частощепящими (Taq1, EcoR1).

Сайты рестрикции могут быть использованы в качестве

генетических маркеров ДНК. Действительно, образующиеся в ре-

зультатае рестрикции фрагменты ДНК могут быть упорядочены по

длине путем электрофореза в агарозном или полиакриломидном

геле, и тем самым может быть определена их молекулярная мас-

са, а, значит, и физическое расстояние между сайтами. Напом-

ним, что обычным методом выявления ДНК в геле, также как и

РНК, является ее специфическое окрашивание, чаще всего эти-

диумом бромидом, и просмотр геля в проходящем ультрофиолете.

При этих условиях места локализации ДНК имеют красную окрас-

ку. При использовании для рестрикции нескольких эндонуклеаз

с последующим электрофоретическим анализом перекрывающихся

аддитивных по длине фрагментов ДНК можно добиться полного

упорядочивания сайтов узнавания для каждого из ферментов от-

носительно друг друга и каких-то иных маркеров, присутствую-

щих в исследуемой молекуле ДНК. Процесс этот называется фи-

зическим картированием и является обязательным элементом

анализа плазмидных, вирусных, бактериальных ДНК и относи-

тельно небольших фрагментов ДНК эукариот. На рис.1.2. предс-

тавлен простейший пример такого картирования в том случае,

когда в исследуемой молекуле ДНК присутствует по одному сай-

ту рестрикции для двух эндонуклеаз. После обработки исходной

ДНК отдельно каждой из рестриктаз образуется два фрагмента,

соответствующих по длине расстоянию от концов молекулы ДНК

до сайтов рестрикции. При совместной обработке обеими эндо-

нуклеазами на электрофореграмме появляется новый фрагмент,

размер которого соответствует расстоянию между сайтами рест-

рикции. Очевидно, что эти данные еще не позволяют однозначно

определить положение сайтов рестрикции по отношению к концам

молекулы ДНК. Однако, достаточно знать расположение хотя бы

одного маркера для того, чтобы произвести точное физическое

картирование исходной молекулы ДНК независимо от количества

локализованных в ней сайтов рестрикции.

При обработке тотальной геномной эукариотической ДНК, в

частности ДНК человека, часто- или среднещепящими эндонукле-

азами образуется так много фрагментов различной длины (в

среднем, порядка 1 миллиона), что их не удается разделить с

помощью электрофореза, то есть не удается визуально иденти-

фицировать отдельные фрагменты ДНК на электрофореграмме.

После электрофореза рестрцированной геномной ДНК получается

равномерное окрашивание по всей длине геля - так называемый

шмер. Идентификация нужных фрагментов ДНК в таком геле воз-

можна только путем гибридизации с мечеными ДНК-зондами. Это

достигается при помощи метода блот-гибридизации по Саузерну.

1.3. Блот-гибридизация по Саузерну, гибридизация in situ.

Одним из наиболее эффективных методов идентификации

определенных молекул ДНК среди электрофоретически разделен-

ных фрагментов является ставший уже классическим метод

блот-гибридизации по Саузерну, по фамилии автора Edцuard So-

uthern, предложившего данный метод в 1975г . Последователь-

ные этапы данного метода представлены на Рис.1.3. Суть мето-

да заключается в том, что геномная ДНК подвергается рестрик-

ции одной или несколькими рестриктазами, после чего образую-

щиеся фрагменты разделяются по молекулярному весу в агароз-

ном или акриламидном гелях. Затем ДНК подвергается денатура-

ции in situ и переносится с геля на плотный носитель (обычно

нитроцеллюлозный фильтр или нейлоновую мембрану). Сам пере-

нос (блоттинг) осуществляется за счет действия капиллярных

сил, электрического поля или вакуума. Фиксированную на филь-

тре ДНК гибридизуют с радиоактивномеченым ДНК или РНК зон-

дом. Методом авторадиографии определяют положение искомого

фрагмента геномной ДНК на электрофореграмме. Блот-гибридиза-

ция - высоко чувствительный метод идентификации специфичес-

ких последовательностей ДНК. При достаточно длительной экс-

позиции (в течение несколько дней) и при высокой удельной

радиоактивности ДНК-зонда (более 10!9 расп/ мин/микроГ) этот

метод позволяет выявлять менее, чем 0,1 пикоГ ДНК. Так при

использовании зонда размерами в несколько сот оснований уни-

кальная последовательность в 1 000 п.о. может быть выявлена

в 10 микроГ геномной рестрицированной ДНК в виде отдельной

полосы на радиоавтографе после его экспозиции в течение 12

часов. Метод позволяет работать и с очень короткими олиго-

нуклеотидными зондами (20 п.о.), однако требует особенно хо-

рошего мечения и длительной экспозиции фильтра. Необходи-

мость работы с чистыми препаратами ДНК, применение высокоме-

ченых радиоактивных зондов, длительность и трудоемкость всей

процедуры делают её весьма дорогостоящей. Тем не менее, в

ряде случаев и сегодня метод не потерял своего значения в

том числе и для диагностики генных болезней. В последнее

время для этих целей нередко используют различные варианты

нерадиоактивного мечения или окраску ДНК азотно-кислым се-

ребром.

Гибридизация с меченым ДНК-зондом препаратов ДНК или

РНК, нанесенных капельно на твердый матрикс без предвари-

тельной рестрикции и электрофореза носит название дот- или

слот-гибридизации в зависимости от конфигурации пятна ДНК на

фильтре, округлой или продолговатой, соответственно. На

рис.1.3 также изображены последовательные этапы этих мето-

дов. Попутно отметим, что метод гибридизации ДНК-зондов с

электрофоретически разделенными молекулами РНК носит назва-

ние Нозерн блот, тогда как Вестерн блот или иммуноблот - это

связывание электрофоретически разделенных белков, фиксиро-

ванных на фильтрах, с мечеными антителами. Название этих ме-

тодов - дань уважения молекулярных генетиков профессору Сау-

зерну, внесшему неоценимый вклад в разработку эксперимен-

тальных подходов, используемых для анализа ДНК.

В ряде случаев для проведения гибридизации с ДНК зонда-

ми не требуется предварительного выделения и очистки ДНК.

Процедуру гибридизации можно проводить не только на геле, на

фильтрах или в растворе, но и на гистологических или хромо-

сомных препаратах. Этот метод носит название гибридизации in

situ. Вариант метода, при котором в качестве зондов исполь-

зуются препараты ДНК или РНК, меченые флюорохромами, называ-

ется FISH (flurescein in situ hybridization). Меченый

ДНК-зонд наносят на препараты дифференциально окрашенных и

подготовленных для гибридизации (денатурированных) метафаз-

ных хромосом. Предварительная обработка хромосом направлена

на облегчение доступа зонда к геномной ДНК. Важное значение

имеет также подбор условий, максимально способствующих про-

цедуре гибридизации. После отмывки несвязавшихся молекул ДНК

и нанесения светочувствительной эмульсии (при использовании

радиоактивной метки), либо проведения соответствующей обра-

ботки (при использовании биотин- или флюоресцеин-меченых ДНК

зондов) места локализации последовательностей ДНК, компле-

ментарных использованному ДНК-зонду, можно непосредственно

наблюдать в микроскоп в виде характерных точек над соответс-

твующими участками определенных хромосом (Рис.1.4).

Гибридизация in situ, является одним из наиболее эф-

фективных методов картирования комплементарных ДНК-зонду

последовательностей ДНК на хромосомах. Эта методика особенно

эффективна при исследовании распределения по геному повторя-

ющихся последовательностей ДНК, клонированных последователь-

ностей ДНК анонимного происхождения, при определении не

только хромосомной принадлежности, но и внутри-хромосомной

локализациии уникальных генов в тех случаях, когда имеются

соответствующие ДНК-зонды. При этом разрешающая способность

метода может достигать нескольких хромосомных бэндов. Сог-

ласно последним данным, в экспериментах на специально приго-

товленных и растянутых интерфазных хромосомах человека раз-

решающая способность метода FISH может достигать 50 kb, что

составляет всего около 1/20 величины среднего хромосомного

бэнда. Проблемы взаиморасположения клонированных фрагментов

ДНК даже в пределах одного хромосомного локуса также с успе-

хом решаются методом FISH.

Гибридизация in situ между молекулами РНК и кДНК-овыми

зондами, проводимая на гистологических препаратах, является

одним из наиболее эффективных методов анализа тканеспецифи-

ческого распределения и внутриклеточной локализации мРНК

(Манк, 1990). Подробно с этим и другими современными мето-

дом молекулярного и цитогенетического анализа, а также с их

многочисленными модификациями и вариантами можно ознако-

миться в серии работ, руководств и обзоров (Маниатис и др.,

1984; Дейвис, 1990; Sambrook et al., 1989).

1.4 ДНК-зонды, клонирование, векторные системы.

ДНК-зондом может служить любая однонитевая ДНК огра-

ниченного размера, используемая для поиска комплементарных

последовательностей в молекуле большего размера или среди

пула разнообразных молекул ДНК. В ряде случаев в качестве

зондов используют искусственным образом синтезированные оли-

гонуклеотидные последовательности ДНК, размер которых обычно

не превышает 30 нуклеотидов. Зондом также могут служить вы-

деленные из генома последовательности ДНК. Однако значитель-

но чаще такие последовательности предварительно клонируют,

чтобы иметь возможность получать их в любое время и в неог-

раниченном количестве. Клонирование предполагает встраивание

(инсерцию) чужеродной экзогенной ДНК в векторную молекулу

ДНК, обеспечивающую проникновение этой конструкции в бакте-

риальные клетки хозяина (Рис 1.5). Химерные молекулы ДНК,

составленные из фрагментов разного происхождения, носят наз-

вание рекомбинантных ДНК. В качестве клонирующих векторов

используют модифицированные плазмиды, фаги, космиды, ретро-

и аденовирусы, а также некоторые другие генетические конс-

трукции. Размеры клонированных ДНК-зондов составляют от со-

тен до нескольких тысяч нуклеотидов, что определяется, глав-

ным образом, способностью вектора удерживать чужеродный

фрагмент ДНК. Особенно широко применяют в качестве векторов

плазмидную ДНК.

Плазмиды - это небольшие кольцевые двухцепочечные мо-

лекулы ДНК, которые могут присутствовать в различном числе

копий в бактериальных клетках. Открытие плазмид связано с

изучением генетической природы антибиотикоустойчивости. Ока-

залось, что именно плазмиды могут нести гены, сообщающие

клеткам устойчивость к различным антибиотикам, и потеря

чувствительности инфекционных бактерий к их действию как раз

и происходит за счет отбора тех штаммов, в которых имеются

плазмиды с соответствующей генетической информацией. Заме-

тим, что присутствие плазмиды в бактериальной клетке вовсе

не обязательно для обеспечения ее жизнедеятельности, так как

при отсутствии антибиотиков в среде обитания бактерий штам-

мы, не содержащие плазмид, вполне жизнеспособны. Плазмиды

имеют автономную систему контроля репликации, обеспечивающую

поддержание их количества в клетке на определенном уровне -

от одного до нескольких сотен плазмидных геномов на клетку.

Обычно для клонирования выбирают плазмиды с ослабленным

контролем репликации, что позволяет им накапливаться в клет-

ке в большом числе копий. Конструирование плазмидных клони-

рующих векторов заключается во внесении изменений в систему

контроля репликации и в добавлении или вырезании генов анти-

биотикоустойчивости или удобных для клонирования иных гене-

тических элементов: специфических сайтов рестрикции, инициа-

ции и регуляции транскрипции и т.п. Чаще всего для клониро-

вания используют плазмиды pBR322, ColE1 или их производные.

Кольцевую молекулу плазмидной ДНК можно легко перевести

в линейную форму путем единичного разрыва в месте локализа-

ции уникального сайта рестрикции. Присоединение (встраива-

ние, инсерция) фрагмента чужеродной ДНК к концам линейной

молекулы осуществляется с помощью специфических ферментов

-лигаз, после чего гибридная плазмида вновь принимает коль-

цевую форму. Разработаны достаточно простые и эффективные

методы трансформации бактерий, то есть искусственного введе-

ния плазмид в бактериальные клетки. При этом, присутствующие

в плазмидах гены антибиотикоустойчивости используют в ка-

честве маркеров трансформированных бактерий для их отбора на

соответствующих селективных средах. При размножении

трансформированных бактерий происходит увеличение числа ко-

пий инсертированного фрагмента ДНК. Таким образом, этот чу-

жеродный для бактерий генетический материал может быть полу-

чен, практически, в любых количествах. Выделенная из бакте-

рий плазмидная ДНК или изолированный из плазмиды инсертиро-

ванный фрагмент могут быть в дальнейшем использованы в ка-

честве ДНК-зондов.

Для некоторых целей в качестве клонирующих векторов

оказалось удобнее использовать фаги - бактериальные вирусы.

Фаговая ДНК существует только в линейной форме, поэтому при

ее рестрикции образуются два фрагмента, которые сшивают с

чужеродной ДНК с образованием химерного фага. Чисто техни-

чески эта операция проще, чем инсерция в плазмиду. Однако,

размеры встраимовой ДНК ограничены пакующей способностью го-

ловки фага. Поэтому при конструировании вектора вырезают

последовательности фаговой ДНК, не имеющие критического зна-

чения для жизнеобеспечения фага. Такой бактериофаг может су-

ществовать только в том случае, если в него встроена чуже-

родная ДНК, по размерам сопоставимая с вырезанной фаговой

ДНК. Наиболее удачные конструкции векторов были получены на

основе фага лямбда - лямбда gt10, лямбда gt11, лямбда Zap.

Многие проблемы молекулярной генетики успешно решаются

с использованием экспрессионных векторов, содержащих в своем

составе регуляторные последовательности, обеспечивающие син-

тез чужеродных белков в клетках хозяина. Так в случае лямбда

gt11 фаги могут быть выращены в, так называемых, репликатив-

ных условиях, обеспечивающих экспрессию инсертированной ДНК.

Так как обычно ДНК встраивают в район локализации маркерного

гена, позволяющего вести селекцию химерных фагов, то

экспрессироваться будет слитый белок, в котором часть поли-

пептидной цепи будет соответствовать маркерному белку, а

часть цепи будет транслироваться в соответствии с информаци-

ей, заключенной во встроенном фрагменте ДНК. Этот белок мо-

жет быть идентифицирован путем детекции фрагмента маркерного

белка либо с помощью антител к специфическим участкам, коди-

руемым чужеродной ДНК.

В последнее время большое распространение получило

клонирование в космидах - конструкциях, обьединяющих в себе

преимущества плазмид и фагов. Космиды получены на основе

плазмид, но в них введены генетические элементы фага лямбда,

отвечающие за упаковку ДНК в фаговой частице. Такие векторы

могут существовать не только в виде плазмид, но и в виде фа-

говых частиц in vitro. Космиды обладают большей клонирующей

способностью по сравнению с плазмидными и фаговыми векторами

и могут нести до 40-45 тысяч пар оснований инсертированной

ДНК. Все вышеперечисленные векторы используются для клониро-

вания в прокариотических системах.

Векторы, пригодные для направленного переноса в эука-

риотические клетки, конструируют на основе прокариотических

или дрожжевых плазмид - единственных плазмид, найденных в

клетках эукариот, а также используют различные эукариоти-

ческие вирусы, чаще всего ретровирусы, аденовирусы или аде-

ноассоциированные вирусы. При использовании плазмид в ка-

честве клонирующих векторов в них вводят вирусные последова-

тельности, ответственные за начало репликации. Введение век-

торов в эукариотические клетки часто осуществляют путем

ко-трансформации, то-есть одновременно вводят плазмиду и

сегмент чужеродной ДНК. Векторные последовательности, вве-

денные в клетки эукариот, могут сохраняться там в течение

нескольких дней в виде суперскрученных кольцевых молекул -

эписом. В редких случаях возможна интеграция экзогенной ДНК

в хромосомную ДНК. В этих случаях введенные последователь-

ности устойчиво сохраняются в геноме клеток хозяина и насле-

дуются по менделевскому типу (см. Глава VIII).

Для клонирования субхромосомальных фрагментов ДНК, со-

держащих целые гены, разработана система дрожжевых минихро-

мосом. Искусственные дрожжевые хромосомы (YAC - artificial

yeast chromosomes) конструирют на основе плазмидных векто-

ров, содержащих в своем составе известные центромерные и те-

ломерные последовательности хромосом дрожжей, необходимые

для поддержания и репликации векторов в клетках хозяина. Та-

кие системы способны удерживать фрагменты чужеродной ДНК

размером в несколько сотен тысяч и даже миллионов пар осно-

ваний.

Остановимся коротко на методах введения векторов в клетки

хозяина. Но прежде всего, определим основные термины. Как

уже упоминалось, введение плазмидной ДНК в бактериальные

клетки назвается трансформацией. Если перенос генов осущест-

вляется с помощью фага, то говорят о трансдукциии. Процесс

введения экзогенной ДНК в эукариотические клетки называется

трансфекцией. Все эти методы основаны на подборе условий,

облегчающих прохождение плазмидной или фаговой ДНК через

клеточные и ядерные мембраны. Для повышения проницаемости

мембран используют два разных подхода. В первом случае про-

водят обработку векторной ДНК и клеток хозяина буферными

растворами, повышающими проницаемость клеточных и ядерных

мембран (метод кальций-фосфатной преципитации,

DEAE-декстран-опосредованная трансфекция). Во втором случае

используют краткосрочное физическое воздействие на клетки

для создания в мембранах микропор, проходимых для макромоле-

кул ДНК (метод электропорации - воздействие высоковольтным

электрическим полем, "бомбардировка" частицами золота и

т.п.). Более подробно проблемы векторов и методы генетичес-

кой трансфрмации (трансдукции) рассмотрены в Главе IX. Воп-

росам молекулярного клонирования также посвящена обширная

литература (Гловер, 1988; 1989; Шишкин, Калинин, 1992; Мани-

атис и др., 1984; Дейвис, 1990; Sambrook et al., 1989).

1.5 Геномные и к-ДНК-овые библиотеки генов, их скрининг.

Рассмотрим более подробно методы выделения и идентифи-

кации фрагментов ДНК, необходимых для анализа или для

использования в качестве ДНК-зондов. Основным источником

этих фрагментов являются искусственным образом сконструиро-

ванные библиотеки генов, в которых осуществляют поиск или

скрининг нужных последовательностей ДНК разными методами в

зависимости от специфических особенностей этих последова-

тельностей. Библиотека генов это полный набор клонированных

перекрывающихся фрагментов ДНК, полученных в результате

рестрикции или механического разрезания тотальной ДНК, выде-

ленной из какого-либо специфического источника. В зависи-

мости от происхождения ДНК различают геномные и кДНК-овые

библиотеки генов. Для конструирования геномных библиотек ис-

пользуют ДНК, выделенную из тканей, культур клеток, из от-

дельных хромосом или из их фрагментов. При создании кДНК

-овых библиотек выделяют тотальную мРНК из тканей или куль-

тивируемых клеток, в которых заведомо экспрессируются инте-

ресующие исследователя гены. На следующем этапе методом об-

ратной транскрипции (РНК-ДНК) синтезируют кДНК. Затем её

разрезают и упаковывают в выбранный для клонирования вектор.

Схема конструирования геномных и кДНК-овых библиотек предс-

тавлена на рис.1.6. Как видно на схеме в геномных библиоте-

ках присутствуют не только кодирующие последовательности ге-

нов, но также несмысловые внутригенные последовательности -

интроны и межгенные участки ДНК, причем удельный вес некоди-

рующих фрагментов ДНК значительно выше. кДНК-овые библиотеки

состоят только из кодирующих - экзонных, областей генов. На-

иболее удобный размер инсертируемой ДНК сопоставим со сред-

ним размером гена млекопитающих и составляет 15 - 25 тысяч

пар оснований (kb). Оптимальный по размеру набор перекрываю-

щихся последовательностей геномной ДНК человека получается

после ее переваривания частощепящими рестриктазами Sau3a или

Mbo1. Информационная емкость каждой библиотеки, то есть ко-

личество клонов с различными инсертированными фрагментами

ДНК, определяется размерами исходного генома и необходи-

мостью присутствия каждой его последовательности хотя бы в

одном клоне. Поэтому достаточно представительные геномные

библиотеки млекопитающих обычно содержат не менее 8*10!5 -

10!6 различных клонов.

Чаще библиотеки конструируют на основе фаговых или

космидных клонирующих векторов, так как в таком виде легче

хранить большие количества химерных ДНК. Для создания библи-

отек генов человека особенно удобны векторы, полученные на

основе фага лямбда, такие как EMBL3 или EMBL4. Пакующая

способность этих векторов от 9 до 23 кб, они содержат много

удобных клонирующих сайтов, так что для инсерции ДНК могут

быть использованы разные рестриктазы. Кроме того, эти векто-

ры не содержат последовательностей плазмид, наиболее часто

используемых для клонирования : pBR322 и ColE1. Это позволя-

ет проводить отбор нужных клонов с помощью фаговой ДНК, не

вырезая предварительно инсертированный в нее фрагмент. Для

создания библиотек клонов, содержащих большие районы ДНК,

используется технология искусственных дрожжевых хромосом

-YAC. Последние представляют собой крупные (до 1 млн п.о.)

фрагмены геномной ДНК человека, сшитые с центромерными райо-

нами хромосом дрожжей. После идентификации в таких библиоте-

ках нужных клонов с инсертированными фрагментами чужеродных

ДНК последние могут быть субклонированы в фаговых или

космидных библиотеках.

Скрининг библиотек проводят путем гибридизации на

фильтрах с олигонуклеотидными, кДНК-овыми или любыми иными

ДНК-зондами, а также с помощью антител, если библиотека

сконструирована на основе экспрессионного вектора (рис.1.7).

Для этого химерные фаги, составляющие библиотеку, высевают

на плотно растущий в чашках Петри газон бактерий таким обра-

зом, чтобы образовались отдельные литические бляшки в ре-

зультате инфецирования клеток одним рекомбинантным фагом.

Все культуры дублируют путем отпечатка - реплики, на другие

чашки Петри. Затем на исходные культуры накладывают фильтры

и переносят на них растущие и лизированные колонии, проводят

их разрушение, фиксацию белков и ДНК на фильтре и блот гиб-

ридизацию с меченым ДНК-зондом или иммуноблот с мечеными ан-

тителами (для экспрессионных библиотек). После отмывки филь-

тров от несвязавшихся меченых зондов и радиоавтографии на

рентгеновской пленке проявятся темные пятна в местах локали-

зации колоний, содержащих в инсертированном фрагменте ДНК

последовательности, комплементарные зонду, или специфические

антигены. Отбор положительных колоний фагов на дублированных

культурах производят именно в тех местах, где произошло по-

темнение пленки. Чтобы избежать возможного загрязнения,

отобранные колонии размножают и вновь подвергают скринирова-

нию. Обычно, инсертированную ДНК изолируют из бактериофага и

субклонируют в плазмидном векторе, позволяющем наращивать

большие количества этой ДНК.

1.6 Секвенирование последовательностей ДНК.

Следующими этапами анализа отобранного и клонированного

ДНК фрагмента являются его физическое картирование и опреде-

ление нуклеотидной последовательности, то есть секвенирова-

ние. Методология секвенирования достаточна проста и заключа-

ется в том, чтобы получить серию комплементарных молекул

ДНК, различающихся по длине на одно основание. На практике,

однако, определение нуклеотидной последовательности протя-

женных молекул ДНК представляет собой весьма трудоемкую за-

дачу. Существует два основных метода секвенирования: хими-

ческое - метод Максама-Гильберта и дидезоксисеквенирование -

метод Сэнджера. В первом случае используют химическое

расщепление ДНК по одному основанию, во втором - синтезируют

нужную цепь ДНК in vitro, специфически останавливая синтез

на заданном основании.

Чаще при секвенировании используют метод Сэнджера, так

как он более надежный и простой в исполнении. Принцип данно-

го метода показан на рис.1.8. На первом этапе ДНК денатури-

руют, чтобы получить однонитевые молекулы. Затем добавляют

секвенирующий праймер - искусственно синтезированную олиго-

нуклеотидную последовательность, комплементарную определен-

ному участку исходной молекулы ДНК. Создают условия для гиб-

ридизации праймера, то есть для образования двухцепочечного

участка, и инициируют синтез ДНК, добавляя в реакционную

смесь ДНК-полимеразу и трифосфаты - dATP, dCTP, dGTP и dTTP,

один из которых является радиоактивным. Синтез ведут в четы-

рех параллельных пробирках, в каждую из которых добавляют

один из специфических дидезоксинуклеотидов или терминаторов

- ddATP, ddCTP, ddGTP или ddTTP. При встраивании ddNTP на

место соответствующего нуклеотида синтез ДНК прекращается.

Таким образом, в каждой из пробирок получают набор различаю-

щихся по длине радиоактивномеченых фрагментов ДНК с одним и