Главная              Рефераты - Математика

Далекая Вселенная. Образование и эволюция звёздных скоплений - реферат

Далекая Вселенная. Образование и эволюция звёздных скоплений

Шаровые и рассеянные звездные скопления не являются бесстолкновительными системами. Вследствие большей плотности скоплений каждая звезда в них испытывает за время существования скопления, по крайней мере, несколько тесных сближений и множество далеких сближений с другими звездами. Время между «столкновениями» все же превышает время обращения звезд по орбитам, размеры которых сравнимы с размерами скопления, так что за один оборот звезда лишь с малой вероятностью испытает сближение с какой-либо другой звездой. Можно сказать, что длина свободного пробега звезды, т. е. путь между двумя сближениями с другими звездами, заметно больше размера всей системы. Эти обстоятельства и определяют характер эволюции звездных скоплений. В звездных скоплениях возможна релаксация посредством парных сближений звезд. Эти системы стремятся к состоянию равновесия и приближаются к нему настолько, насколько это вообще возможно в гравитирующих системах.

Звезды приобретают в результате распределение по скоростям, близкое к универсальному максвелловскому распределению, о котором мы уже упоминали. Но сближения звезд неизбежно приводят к тому, что время от времени какая-то одна из них случайно получает такую большую скорость, что, преодолев притяжение других звезд, оказывается способной уйти из системы. Поэтому, в отличие от газа, в распределении звезд по скоростям не хватает самых быстрых звезд на высокоскоростном «хвосте» их распределения. Дефицит быстрых звезд составляет примерно одну сотую от общего числа звезд системы. Такое неизбежное и неисчезающее отклонение от равновесного состояния, связанное с постоянным «испарением» звезд, — отличительная черта гравитирующей системы. В ходе «испарительной» эволюции звездные скопления становятся все более неоднородными по плотности, в них формируются компактные центральные области, ядра, окруженные сравнительно разреженными гало. Потеря звезд скоплением может завершиться со временем его полным распадом и рассеянием, как это впервые показал В. А. Амбарцумян в 1938 г.

Общая теория динамической эволюции звездных систем, сопровождающаяся релаксацией и «испарением» наиболее быстрых звезд, разрабатывалась в 40-е — 50-е годы Ш. Чандрасекаром, К. Ф. Огородниковым, Л. Э. Гуревичем, Б. Ю. Левиным, Т. А. Агекяном. Один из наиболее важных ее результатов состоит в том, что благодаря «испарительной» эволюции многие звездные скопления или группы, первоначально формировавшиеся в галактике, могли почти полностью разрушиться, а их звезды рассеяться и размешаться по общему объему системы, что и наблюдается в реальных галактиках. Иная судьба ожидала, по-видимому, плотные скопления звезд, формировавшиеся в центральных областях галактик. По мере «испарения» из них наиболее быстрых звезд происходило общее сжатие таких скоплений. Из-за этого парные сближения звезд случались в них все чаще и чаще, причем звезды в таких случаях довольно близко подходили уже друг к другу. Наконец, на определенной стадии эволюции системы стали возможны прямые столкновения звезд друг с другом. При таких столкновениях звезды приходят в непосредственный контакт, и ясно, что при этом может сильно измениться их внутреннее строение: звезды могут деформироваться, разбиться на части или, наоборот, слипнуться. Вероятнее всего «обдирание» внешних слоев звезд; освобождающийся при этом газ сначала рассеивается по системе, а затем должен оседать к ее центру, претерпевая там гравитационную конденсацию и фрагментацию.

В результате становится возможным формирование молодых звезд, образующих яркую и плотную, концентрированную подсистему. При определенных условиях (например, при высокой температуре газа) формируется не звездная подсистема, а единая сверхмассивная звезда. Если исходное звездное скопление было достаточно массивным и содержало, например, 109—1010 звезд, то и сверхмассивная звезда могла иметь массу 109—1010 солнечных масс. Главная особенность такой звезды — очень интенсивное излучение. При массе, например, 108 масс Солнца светимость звезды составляет 1039Вт, так что сверхмассивная звезда, образующаяся, если это оказывается возможным, в центральной плотной области такой звездной системы, как крупная эллиптическая галактика, может увеличить светимость системы в целом в десятки и сотни раз. (Напомним, что светимость нашей Галактики составляет приблизительно 3

1037Вт.) Сверхмассивная звезда светит за счет своей гравитационной потенциальной энергии, постепенно сжимаясь. На заключительном этапе сжатия наступает коллапс, т. е. неудержимое падение вещества к центру, не останавливаемое никаким противодавлением, и образуется черная дыра. Но и после этого центральная область системы может еще долго излучать энергию, которая черпается теперь из энергии газа и звезд, разгоняющихся до больших скоростей и сталкивающихся друг с другом при падении на такую сверхмассивную черную дыру. Картина эволюции звездных систем на стадии контактных столкновений включает в себя и еще целый ряд важных процессов. Так, столкновения звезд, когда они имеют неупругий характер, могут сопровождаться слипанием звезд.