Главная              Рефераты - Математика

Сетка Вульфа - контрольная работа

Сетка Вульфа или стереографическая сетка представляет собой проекцию меридианов и параллелей сферической поверхности на плоскость одного из меридианов, называемого в этом случае ОСНОВНЫМ. Центром проекции является точка ЭКВАТОРА сферы, удаленная от основного меридиана на ( ), например, если мы используем градусную систему счисления, то это будет .

Стереографическая проекция обладает тем важным свойством, что дуга любого круга на сфере изображается в этой проекции так же дугой круга.

Для определенности на сетке вводятся следующие названия

· Окружность сетки называют ее ОСНОВНЫМ МЕРИДИАНОМ. Напомню, что это может быть ЛЮБОЙ из возможных меридианов.


· Точки, в которых сходятся ВСЕ меридианы, называются ПОЛЮСАМИ СЕТКИ.

· Диаметр , проходящий через полюса сетки, называется ОСЬЮ СЕТКИ.


· Диаметр , перпендикулярный к оси сетки, называется ЭКВАТОРОМ СЕТКИ.

Методика построения сетки Вульфа

Построение линий меридианов

Исходные данные

В исходной окружности, радиус которой равен , линия меридиана, долгота которого равна , представляет собой дугу окружности, которая проходит через следующие точки:

· Точку B;

· Точку A;

· Точку C.

Точки В и С являются точками пересечения диаметра окружности с линией окружности. Точка А лежит на прямой, проходящей через центр окружности , и перпендикулярной диаметру ВС.


Положение точки А на прямой определяется, как точка пересечения этой прямой с одной из сторон вписанного угла,

· вершиной которого является точка В,

· одной из сторон которого является диаметр окружности - ВС

· другой стороной угла является луч, проходящий через точку D, лежащую на окружности и отстоящей от точки С на расстоянии, равном долготе меридиана . Это расстояние определяется длиной дуги


Таким образом, нам надо по положению трех точек (А, В. С) определить радиус некоторой окружности , так чтобы эти точки (А, В, С) лежали на окружности .

Решение.

Угол обозначим как

Угол обозначим как

Угол обозначим как

1. , как вписанный угол, опирающийся на дугу, длина которой равна

2. Треугольник - равнобедренный, так как точка А лежит на линии, которая

· Проходит через центр окружности

· Перпендикулярна диаметру

3. Отсюда: угол

Рассмотрим окружность и найдем длину дуги этой окружности

4. Угол является вписанным углом окружности . Значит, дуга окружности, на которую опирается этот угол, будет в два раза больше, чем сам угол.

5. Дуга является дополнением дуги до полной окружности. Таким образом, длина дуги определится как:

6. Угол является центральным углом окружности . Он опирается на дугу , следовательно:

Вычислим радиус окружности

7. Рассмотрим треугольник :

· Этот треугольник – прямоугольный.

· Катет равен радиусу исходной окружности , то есть

· Катет лежит против угла, равного

8. Отсюда получаем: Но, учитывая, что , окончательно имеем:

Построение линий параллелей

Исходные данные

В исходной окружности, радиус которой равен , линия параллели, широта которой равна , представляет собой дугу окружности, которая проходит через следующие точки:

· Точку B;

· Точку A;

· Точку C.

Точки В и С являются точками хорды , которая параллельна диаметру окружности , называемому ЭКВАТОРОМ. Хорда отстоит от экватора на расстоянии, определенном широтой параллели (угол ). Точка А лежит на прямой, проходящей через центр окружности , и перпендикулярной экватору.

Положение точки А на прямой определяется, как точка пересечения этой прямой с одной из сторон вписанного угла,

· вершиной которого является точка В,

· одной из сторон которого является хорда окружности - ВС

· другой стороной угла является луч, проходящий через точку пересечения экватора окружности с линией окружности (точка )

Таким образом, нам надо по положению трех точек (А, В. С) надо определить радиус некоторой окружности , так чтобы эти точки (А, В, С) лежали на окружности .

Решение.

Угол обозначим как

Угол обозначим как

Угол обозначим как

Угол обозначим как

1. Определим величину угла .

Рассмотрим угол . Он является вписанным углом окружности и опирается на дугу, длина которой равна . Следовательно, величина угла равна половине дуги, на которую он опирается.

Очевидно, что угол , как накрест лежащие углы. Значит

2. Определим величину угла .

Треугольник - равнобедренный, так как точка А лежит на линии, которая

· Проходит через центр окружности

· Перпендикулярна хорде , которая параллельна экватору окружности

Отсюда: угол

Рассмотрим окружность и найдем длину дуги этой окружности

3. Угол является вписанным углом окружности . Значит, дуга окружности, на которую опирается этот угол, будет в два раза больше, чем сам угол.

4. Дуга является дополнением дуги до полной окружности. Таким образом, длина дуги определится как:

5. Угол является центральным углом окружности . Он опирается на дугу , следовательно:

Вычислим радиус окружности

6. Рассмотрим треугольник :

· Этот треугольник – прямоугольный.

· Катет равен половине хорды , длину которой обозначим как

· Катет лежит против угла, равного

7. Отсюда получаем:

Но, учитывая, что , имеем: , где . Подставив вместо его выражение, окончательно получим:

Как начертить линию меридиана, долгота которого

Решить эту задачу можно чисто графически, используя только циркуль и линейку. Но это “высший пилотаж”. Если Вы захотите попробовать, – пожелаю Вам успеха. Сейчас же мы воспользуемся теми выводами, которые получили ранее. Итак, начинаем. Нам потребуется БОЛЬШОЙ лист бумаги, карандаш, линейка, циркуль и калькулятор, которые может быть заменен тригонометрическими таблицами.

1. Задаем размер стереографической сетки, тем самым мы определяем величину радиуса стереографической сетки (или окружности )

2. По выведенной ранее формуле, вычисляем величину радиус окружности , дуга которой и будет отображать желаемую линию меридиана.


3. На листе бумаги обозначаем центр окружности стереографической проекции и чертим окружность, радиус которой равен , при этом мы не забываем провести в этой окружности линии ЭКВАТОРА СЕТКИ и ОСИ СЕТКИ.

4. Из одного из полюсов стереографической сетки при помощи циркуля, раствор которого равен величине радиуса , на продолжении линии экватора , делаем засеку. Это будет центром окружности, дуга которой и будет отображать линию искомого меридиана. Обозначим эту точку, как


5. Не меняя раствора циркуля, из точки , как центра окружности, чертим дугу окружности . Эта дуга будет изображать линию искомого меридиана.

Чтобы построить симметричную линию меридиана, долгота которого будет равна ( ), поступим аналогично тому, как мы поступали при построении линии меридиана, долгота которого равна .

6. Из одного из полюсов стереографической сетки при помощи циркуля, раствор которого равен величине радиуса , на продолжении линии экватора , делаем засеку. Это будет центром окружности, дуга которой и будет отображать линию искомого меридиана. Обозначим эту точку, как


7. Не меняя раствора циркуля, из точки , как центра окружности, чертим дугу окружности . Эта дуга будет изображать линию искомого меридиана.

Как начертить линию параллели, широта которой

Решить эту задачу можно чисто графически, используя только циркуль и линейку. Но это “высший пилотаж”. Если Вы захотите попробовать, – пожелаю Вам успеха.

Сейчас же мы воспользуемся теми выводами, которые получили ранее. Итак, начинаем. Нам потребуется БОЛЬШОЙ лист бумаги, карандаш, линейка, циркуль и калькулятор, которые может быть заменен тригонометрическими таблицами.

1. Задаем размер стереографической сетки, тем самым мы определяем величину радиуса стереографической сетки (или окружности )

2. По выведенной ранее формуле, вычисляем величину радиус окружности , дуга которой и будет отображать желаемую линию параллели.


3. На листе бумаги обозначаем центр окружности стереографической проекции и чертим окружность, радиус которой равен , при этом мы не забываем провести в этой окружности линии ЭКВАТОРА СЕТКИ и ОСИ СЕТКИ.

4. Из центра окружности под углом к линии экватора проводим луч. Точку пересечения луча с линией окружности обозначим как точку


5. Из точки при помощи циркуля, раствор которого равен величине радиуса , на продолжении линии оси сетки , делаем засеку. Это будет центром окружности, дуга которой и будет отображать линию искомой параллели. Обозначим эту точку, как

6. Не меняя раствора циркуля, из точки , как центра окружности, чертим дугу окружности. Эта дуга будет изображать линию искомой параллели

Чтобы построить симметричную линию параллели, широта которой будет равна ( ), поступим аналогично тому, как мы поступали при построении линии параллели, широта которой равна .

7. Из центра окружности под углом ( ) к линии экватора проводим луч. Точку пересечения луча с линией окружности обозначим как точку


8. Из точки при помощи циркуля, раствор которого равен величине радиуса , на продолжении линии оси сетки , делаем засеку. Это будет центром окружности, дуга которой и будет отображать линию искомой параллели. Обозначим эту точку, как

9. Не меняя раствора циркуля, из точки