Главная              Рефераты - Математика

Закономерность распределения простых чисел в ряду натуральных чисел - доклад

IX математический симпозиум.

Закономерность распределения простых чисел в ряду натуральных чисел.

г. Волжский.

05-11 октября 2008 года.

Белотелов В.А.

Нижегородская обл.

г. Заволжье

vbelotelov@mail. ru


Простые числа? – Это просто!?

Узнав о важной роли простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании и о том, что нужна закономерность распределения ПЧ в ряду натуральных чисел, не являясь математиком, всё же рискнул заняться решением этой задачи. Результат ниже.

Для начала выписал ряд ПЧ. Конечно же, это было сделано с целью заметить, хоть какую бы, закономерность. С этой же целью были вычислены разности между соседними числами ряда ПЧ. Было замечено, что иногда появлялась последовательность разностей 6-4-2-4-2-4-6-2. Там, где эта последовательность нарушалась, были введены составныё числа (СЧ). Результат представлен в таблице 1, СЧ в которой подчёркнуты. Числа 2, 3, 5, являясь ПЧ, из рассмотрения всё же были убраны. Это первое исключение из правил. Вторая вольность заключалась введением в рассмотрение числа 1, зная, что единица не является простым числом.

Целью же было найти закономерность среди ПЧ + СЧ, а потом уже найти закономерность среди ПЧ. Стратегия поиска закономерности ПЧ заключалась в следующей логической формуле:

(закономерность ПЧ+СЧ) – (закономерность СЧ) = закономерность ПЧ.

Из ПЧ + СЧ, представленных в таблице 1, была составлена система из восьми арифметических прогрессий. Результат представлен в таблице 2.

Разности всех восьми прогрессий равны 30 и их первые члены равны соответственно 1, 7, 11, 13, 17, 19, 23, 29, а сами ряды обозначены через R1, R7,R11, R13, R17, R19, R23, R29. СЧ, как и в таблице 1, подчёркнуты и сверху расписаны в виде произведений двух чисел. Можно сформулировать правило, по которому в любой из восьми арифметических прогрессий распределены СЧ.

Если в арифметической прогрессии, какой – либо член an можно представить в виде двух сомножителей fxp, то последующие члены этой прогрессии an+mf являются произведением fx(p+md), а члены an+kp произведением px(f+kd), где m и k любые натуральные

числа, а d – разность этой прогрессии.

Данное правило не нуждается в доказательстве, т. к. фактически следует из определения арифметической прогрессии. Но для обеспечения закономерности ПЧ имеет большое значение. Во - первых, оно запрещает поиск рядов ПЧ, подчиняющихся одной арифметической прогрессии, т. к. любое простое число an можно представить в виде anх1, и тогда в любом ряде через число членов an, появляется составное число anх(1+d).

Во – вторых, в любой арифметической прогрессии появление дополнительных составных чисел возможно только в сочетании с разностью именно этой прогрессии.

Это правило можно сформулировать для любого числа сомножителей, но в данном случае интерес представляет число сомножителей равное двум.

В качестве примера рассмотрим в ряде R1 четвёртый член равный 91=7х13. Ближайшим членом в ряде R1 кратным семи является число 301, отстоящее от числа 91 на семь номеров, соответственно, число 301 принадлежит ряду СЧ. Число 301 является произведением 7х43 (301=7х43), и с номера этого числа равного 11, каждое сорок третье число, тоже делится на 43 и, соответственно, принадлежит к ряду СЧ. Дальше это можно не описывать, т. к. это хорошо видно в таблице 2.

Расписав таблицу 2 в виде математических символов, удалось получить систему из восьми формул, расписанных в виде разности сумм, см. таблицу 3. Во всех восьми формулах системы, члены с рядами двойных сумм служат фильтрами, удаляющими СЧ из ряда ПЧ+СЧ, и задают работу фильтров в виде матриц.

В таблице 4 изображено распределение номеров СЧ в ряде R1, определяемых вторым членом формулы. Это матрица, в которой и по столбцам и по строкам арифметические прогрессии.

В формулах индексы и обозначают столбцы и строки подобных матриц, сами же и дополнительными индексами не отягощаю. Без и описать работу матриц не смог, а формальная фраза, что в выражении под суммой произведений подразумеваются всевозможные их комбинации в зависимости от значений a1 и с1, будет неверна. Ибо все члены с номерами при >1 и >1 из формулы выпадают.

Система формул арифметических прогрессий, позволяющая вычислять ПЧ, получилась достаточно громоздкой, но закономерность обозначена.

Данная статья была подготовлена для публикации в научном журнале с математическим уклоном. Пока шёл поиск данного журнала, путём несложных умозаключений, была составлена система рядов арифметических прогрессий с разностью 10. Результат в таблице 5 и 6. Всё было расписано по образцу и подобию предыдущего материала. В таблице 7 изображена матрица для номеров второго члена формулы 1 таблицы 6.

Не начав переписывать статью заново, в связи с открытием новой системы уравнений, опять же путём размышлений, были расписаны арифметические прогрессии с разностью 2 и 1, т.е. при разности единица ПЧ были напрямую увязаны с натуральным рядом. Результат в таблице 8 и 9.

Всё расписано, как и в случаях с системами уравнений арифметических прогрессий разностей 30 и 10. И после этого наступил момент истины.

Оказалось, что подобных уравнений можно составить бесконечное множество. Навскидку – это арифметические прогрессии с разностью 1, 2, 4, 6, 10, 12, 18, 20, 30, 36, 60, и т.д. Даже в перечисленном до разности 60 указаны не все.

Обобщающий вывод:

ПЧ можно представить комбинацией арифметических прогрессий. Таких комбинаций бесконечное множество. Но каждая из комбинаций систем арифметических прогрессий позволяет только единственное представление ПЧ при заданной разности прогрессий задающий ряды ПЧ+СЧ.


1

7

11

13

17

19

23

29

31

37

41

43

47

49

53

59

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

61

67

71

73

77

79

83

89

91

97

101

103

107

109

113

119

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

121

127

131

133

137

139

143

149

151

157

161

163

167

169

173

179

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

181

187

191

193

197

199

203

209

211

217

221

223

227

229

233

239

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

241

247

251

253

257

259

263

269

271

277

281

283

287

289

293

299

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

301

307

311

313

317

319

323

329

331

337

341

343

347

349

353

359

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

361

367

371

373

377

379

383

389

391

397

401

403

407

409

413

419

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

421

427

431

433

437

439

443

449

451

457

461

463

467

469

473

479

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

481

487

491

493

497

499

503

509

511

517

521

523

527

529

533

539

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

541

547

551

553

557

559

563

569

571

577

581

583

587

589

593

599

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

601

607

611

613

617

619

623

629

631

637

641

643

647

649

653

659

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

661

667

671

673

677

679

683

689

691

697

701

703

707

709

713

719

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2

721

727

731

733

737

739

743

749

751

757

761

763

767

769

773

779

6

4

2

4

2

4

6

2

6

4

2

4

2

4

6

2



7х13

11х11

7х43

19х19

17х23

11х41

13х37

7х73

1

31

61

91

121

151

181

211

241

271

301

331

361

391

421

451

481

511

541

571

11х17

7х31

13х19

7х61

11х47

7

37

67

97

127

157

187

217

247

277

307

337

367

397

427

457

487

517

547

577

7х23

13х17

11х31

7х53

19х29

7х83

11

41

71

101

131

161

191

221

251

281

311

341

371

401

431

461

491

521

551

581

7х19

11х23

7х49

13х31

17х29

7х79

11х53

13

43

73

103

133

163

193

223

253

283

313

343

373

403

433

463

493

523

553

583

7х11

7х41

13х29

11х37

19х23

7х71

17х31

17

47

77

107

137

167

197

227

257

287

317

347

377

407

437

467

497

527

557

587

7х7

13х13

7х37

17х17

11х29

7х67

23х23

13х43

19х31

19

49

79

109

139

169

199

229

259

289

319

349

379

409

439

469

499

529

559

589

11х13

7х29

17х19

7х59

11х43

13х41

23

53

83

113

143

173

203

233

263

293

323

353

383

413

443

473

503

533

563

593

7х17

11х19

13х23

7х47

11х49

7х77

29

59

89

119

149

179

209

239

269

299

329

359

389

419

449

479

509

539

569

599



7х103

11х71

29х29

13х67

17х53

19х49

7х133

31х31

23х47

11х101

7х163

601

631

661

691

721

751

781

811

841

871

901

931

961

991

1021

1051

1081

1111

1141

1171

13х49

7х91

23х29

17х41

19х43

11х77

7х121

13х79

7х151

31х37

11х107

607

637

667

697

727

757

787

817

847

877

907

937

967

997

1027

1057

1087

1117

1147

1177

13х47

11х61

17х43

7х113

23х37

13х77

11х91

7х143

19х59

611

641

671

701

731

761

791

821

851

881

911

941

971

1001

1031

1061

1091

1121

1151

1181

19х37

7х109

13х61

11х83

23х41

7х139

17х59

13х91

7х169

613

643

673

703

733

763

793

823

853

883

913

943

973

1003

1033

1063

1093

1123

1153

1183

7х101

11х67

13х59

7х131

19х53

17х61

11х97

23х49

7х161

13х89

617

647

677

707

737

767

797

827

857

887

917

947

977

1007

1037

1067

1097

1127

1157

1187

11х59

7х97

17х47

7х127

13х73

11х89

7х157

19х61

29х41

619

649

679

709

739

769

799

829

859

889

919

949

979

1009

1039

1069

1099

1129

1159

1189

7х89

23х31

11х73

17х49

7х119

19х47

13х71

7х149

29х37

11х103

623

653

683

713

743

773

803

833

863

893

923

953

983

1013

1043

1073

1103

1133

1163

1193

17х37

13х53

7х107

19х41

11х79

29х31