Главная              Рефераты - Математика

Похідні та диференціали функції багатьох змінних - реферат

ПОХІДНІ ТА ДИФЕРЕНЦІАЛИ ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ

1 Частинні похідні

Нехай функція визначена в деякому околі точки .
Надамо змінній x приросту , залишаючи змінну незмінною, так, щоб точка належала заданому околу.

Величина

називається частинним приростом функції за змінноюx.

Аналогічно вводиться частинний приріст функції за змінною :

.

Якщо існує границя

,

то вона називається частинною похідною функції в точці за змінною x і позначається одним із таких символів:

.

Аналогічно частинна похідна функції за визначається як границя

і позначається одним із символів:

.

Згідно з означенням при знаходженні частинної похідної обчислюють звичайну похідну функції однієї змінної x, вважаючи змінну сталою, а при знаходженні похідної сталою вважається змінна x. Тому частинні похідні знаходять за формулами і правилами обчислення похідних функцій однієї змінної.

Частинна похідна (або ) характеризує швидкість зміни функції в напрямі осі (або).

З’ясуємо геометричний зміст частинних похідних функції двох змінних. Графіком функції є деяка поверхня (рис 1). Графіком функції є лінія перетину цієї поверхні з площиною . Виходячи з геометричного змісту похідної для функції однієї змінної, отримаємо, що , де – кут між віссю і дотичною, проведеною до кривої в точці . Аналогічно.

Рисунок 1 – Геометричний зміст частинних похідних

Для функції n змінних можна знайти n частинних похідних:

,

де

,

.

Щоб знайти частинну похідну , необхідно взяти звичайну похідну функції за змінною , вважаючи решту змінних сталими.

Якщо функція задана в області і має частинні похідні в усіх точках , то ці похідні можна розглядати як нові функції, задані в області.

Якщо існує частинна похідна за x від функції , то її називають частинною похідною другого порядку від функції за змінною x і позначають або .

Таким чином, за означенням

або .

Якщо існує частинна похідна від функції за змінною , то цю похідну називають мішаною частинною похідною другого порядку від функції і позначають , або.

Отже, за означенням

або .

Для функції двох змінних можна розглядати чотири похідні другого порядку:

.

Якщо існують частинні похідні від частинних похідних другого порядку, то їх називають частинними похідними третього порядку функції , їх вісім:

.

Виникає запитання: чи залежить результат диференціювання від порядку диференціювання? Інакше кажучи, чи будуть рівними між собою мішані похідні, якщо вони взяті за одними і тими самими змінними, одне й те саме число разів, але в різному порядку? Наприклад, чи дорівнюють одна одній похідні

і або і?

У загальному випадку відповідь на це запитання негативна.

Проте справедлива теорема, яку вперше довів К.Г.Шварц.

Теорема (про мішані похідні).Якщо функція визначена разом із своїми похідними в деякому околі точки , причому похідні та неперервні в точці , то в цій точці

.

Аналогічна теорема справедлива для будь-яких неперервних мішаних похідних, які відрізняються між собою лише порядком диференціювання.

2 Диференційованість функції

похідна диференціал функція змінна

Нехай функція визначена в деякому околі точки . Виберемо прирости і так, щоб точка належала розглядуваному околу і знайдемо повний приріст функції в точці:

.

Функція називається диференційовною в точці М, якщо її повний приріст в цій точці можна подати у вигляді

, (1)

де та – дійсні числа, які не залежать від та , – нескінченно малі при і функції.

Відомо, що коли функція однієї змінної диференційовна в деякій точці, то вона в цій точці неперервна і має похідну. Перенесемо ці властивості на функції двох змінних.

Теорема 1 (неперервність диференційовної функції).

Якщо функція диференційовна в точці М, то вона неперервна в цій точці.

Доведення

Якщо функція диференційовна в точці М, то з рівності (1) випливає, що . Це означає, що функція неперервна в точці М.

Теорема 2 (існування частинних похідних диференційовної функції). Якщо функція диференційовна в точці , то вона має в цій точці похідні та і.

Доведення

Оскільки диференційовна в точці ,то справджується рівність (1). Поклавши в ній , отримаємо,

.

Поділимо обидві частини цієї рівності на і перейдемо до границі при :

.

Отже, в точці існує частинна похідна . Аналогічно доводиться, що в точці існує частинна похідна.

Твердження, обернені до теорем 1 і 2, взагалі кажучи, неправильні, тобто із неперервності функції або існування її частинних похідних ще не випливає диференційовність. Наприклад, функція неперервна в точці , але не диференційовна в цій точці. Справді, границі

не існує, тому не існує й похідної . Аналогічно впевнюємося, що не існує також похідної . Оскільки задана функція в точці не має частинних похідних, то вона в цій точці не диференційовна.

Більш того, відомо приклади функцій, які є неперервними в деяких точках і мають в них частинні похідні, але не є в цих точках диференційовними.

Теорема 3 (достатні умови диференційовності ).

Якщо функція має частинні похідні в деякому околі точки і ці похідні неперервні в точці М, то функція диференційовна в точці М.

Доведення

Надамо змінним x і приростів , таких, щоб точка належала даному околу точки . Повний приріст функції запишемо у вигляді

. (2)

Вираз у перших квадратних дужках рівності (2) можна розглядати як приріст функції однієї змінної x, а в других – як приріст функції змінної . Оскільки дана функція має частинні похідні, то за теоремою Лагранжа отримаємо:

.

Похідні та неперервні в точці М, тому

,

.

Звідси випливає, що

,

,

де , – нескінченно малі функції при і.

Підставляючи ці вирази у рівність (2), знаходимо

, а це й означає, що функція диференційовна в точці .

З теорем 2 і 3 випливає такий наслідок: щоб функція була диференційовною в точці, необхідно, щоб вона мала в цій точці частинні похідні, і достатньо, щоб вона мала в цій точці неперервні частинні похідні.

Зазначимо, що для функції однієї змінної існування похідної в точці є необхідною і достатньою умовою її диференційовності в цій точці.

3 Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків

Нагадаємо, що коли функція диференційовна в точці , то її повний приріст у цій точці можна подати у вигляді

,

де і при .

Повним диференціалом диференційовної в точці функції називається лінійна відносно та частина повного приросту цієї функції в точці M, тобто

. (3)

Диференціалами незалежних змінних x та назвемо прирости цих змінних . Тоді з урахуванням теореми 2 рівність (3) можна записати так:

. (4)


Аналогічна формула має місце для диференційовної функції трьох змінних :

. (5)

З формул (4) і (5) може здатися, що повний диференціал існуватиме у кожній точці, в якій існують частинні похідні. Але це не так. Згідно з означенням, повний диференціал можна розглядати лише стосовно диференційовної функції.

Теореми та формули для диференціалів функції однієї змінної повністю зберігаються і для диференціалів функцій двох, трьох і т.д. змінних . Так, незалежно від того, від яких аргументів залежать функції u і , завжди справедливі рівності

Покажемо, що різниця між повним приростом і диференціалом при і є нескінченно мала величина вищого порядку, ніж величина.

Дійсно, з формул (1) і (3) маємо

,

оскільки функції – нескінченно малі при , , а та – обмежені функції:

.

Отже, різниця – нескінченно мала величина вищого порядку, ніж . Тому повний диференціал називають також головною частиною повного приросту диференційовної функції. При цьому виконується наближена рівність або

. (6)

Ця рівність тим точніша, чим менша величина . Рівність (6) широко використовується у наближених обчисленнях, оскільки диференціал функції обчислюється простіше, ніж повний приріст.

Покажемо, як за допомогою диференціала можна оцінити похибку в обчисленнях.

Нехай задана диференційовна функція , незалежні змінні якої виміряні з точністю . Потрібно знайти похибку, з якою обчислюється u.

Природно вважати, що ця похибка дорівнює величині

.

Для малих значень маємо

,

звідки

.

Якщо через позначити максимальну абсолютну похибку змінної , то можна отримати значення максимальної абсолютної похибки функції :

. (7)

Щоб оцінити максимальну відносну похибку функції u, поділимо обидві частини рівності (7) на :

.

Оскільки , то

,

або

,

тобто максимальна відносна похибка функції дорівнює максимальній абсолютній похибці її логарифма.

Введемо поняття диференціала вищого порядку.

Нехай функція незалежних змінних , . Повний диференціал цієї функції, знайдений за формулою (3), називають ще диференціалом
першого порядку. Диференціал другого порядку визначають за формулою

.

Тоді, якщо функція має неперервні частинні похідні, то

,

звідки

. (8)

Символічно це записують так:

.

Аналогічно можна отримати формулу для диференціала третього порядку:

.

Застосовуючи метод математичної індукції, можна отримати формулу для диференціала n-го порядку:

. (9)

Зазначимо, що формула (9) справедлива лише для випадку, коли змінні x і функції є незалежними змінними.

4 Похідна складеної функції. Повна похідна. Інваріантність форми повного диференціала

Нехай – функція двох змінних та , кожна з яких, у свою чергу, є функцією незалежної змінної :

тоді функція є складеною функцією змінної .

Теорема. Якщо функції диференційовні в точці , а функція диференційовна в точці , то складена функція також диференційовна в точці . Похідну цієї функції знаходять за формулою

. (10)

Доведення

За умовою теореми ,

де та при ,.

Поділимо на і перейдемо до границі при :

Аналогічно знаходять похідну, якщо число проміжних змінних більше двох. Наприклад, якщо , де , то

. (11)

Зокрема, якщо , а , то

,

а оскільки , то

. (12)

Цю формулу називають формулою для обчислення повної похідної
(на відміну від частинної похідної ).

Розглянемо загальніший випадок. Нехай функція двох змінних та , які, в свою чергу, залежать від змінних : , , тоді функція є складеною функцією незалежних змінних та , а змінні та – проміжні.

Аналогічно попередній теоремі доводиться таке твердження.

Якщо функції та диференційовні в точці , а функція диференційовна в точці , то складена функція диференційовна в точці і її частинні похідні знаходяться за формулами:

; . (13)


Формули (13) можна узагальнити на випадок більшого числа змінних. Якщо , де , то

Знайдемо диференціал складеної функції. Скориставшись формулами (13), отримаємо

Отже, диференціал функції , де , , визначається формулою

, (14)

де

.

Порівнявши формули (14) і (4) дійдемо висновку, що повний диференціал функції має інваріантну (незмінну) форму незалежно від того, чи є x та незалежними змінними, чи диференційовними функціями змінних u та v. Проте формули (4) і (14) однакові лише за формою, а по суті різні, бо у формулі (4) і – диференціали незалежних змінних, а у формулі (14) і – повні диференціали функцій та .

Диференціали вищих порядків властивості інваріантності не мають. Наприклад, якщо , де , , то

(15)

Формула (15) відрізняється від формули (8), оскільки для складеної функції диференціали та можуть і не дорівнювати нулю. Отже, для складеної функції , де , , формула (8) неправильна.

5 Диференціювання неявної функції

Нехай задано рівняння

, (16)

де – функція двох змінних.

Нагадаємо, що коли кожному значенню x з деякої множини відповідає єдине значення , яке разом з x задовольняє рівняння (16), то кажуть, що це рівняння задає на множині неявну функцію.

Таким чином, для неявної функції , заданої рівнянням (16), має місце тотожність

.

Які ж умови має задовольняти функція щоб рівняння (16) визначало неявну функцію і при тому єдину? Відповідь на це запитання дає така теорема існування неявної функції [8].

Теорема. Нехай функція і її похідні та визначені та неперервні у будь-якому околі точки і , а ; тоді існує окіл точки , в якому рівняння визначає єдину неявну функцію , неперервну та диференційовну в околі точки і таку, що .

Знайдемо похідну неявної функції. Нехай ліва частина рівняння (16) задовольняє зазначені в теоремі умови, тоді це рівняння задає неявну функцію , для якої на деякій множині точок x має місце тотожність . Оскільки похідна функції, що тотожно дорівнює нулю, також дорівнює нулю, то повна похідна . Але за формулою (12) маємо , тому , звідки

. (17)