Главная              Рефераты - Математика

О w-насыщенных формациях с п-разложимым дефектом 1 - курсовая работа

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет

имени Франциска Скорины»

Математический факультет

Кафедра алгебры и геометрии

Допущена к защите

Зав. кафедройШеметков Л.А.

« » 2007 г.

О ω -насыщенных формациях с -разложимым дефектом 1

Курсовая работа

Исполнитель:

Студент группы М-51А.И. Рябченко

Научный руководитель:

к.ф.- м.н., старший преподаватель В.Г. Сафонов

Гомель 2007


Оглавление

1. Введение

2. Основные понятия и обозначения

3. Используемые результаты

4. Основной результат

5 Заключение

Литература


1. Введение

Работа посвящена изучению решеточного строения частично насыщенных формаций конечных групп. Основным рабочим инструментом исследования является понятие H-дефекта ω -насыщенной формации. При этом, под H-дефектом ω -насыщенной формации F понимают длину решетки ω -насыщенных формаций, заключенных между формацией F H и F.

В случае, когда H – формация всех -разложимых групп, H-дефект ω -насыщенной формации F называют ее -разложимым lω -дефектом. Доказано, что -разложимый lω -дефект частично насыщенной формации F равен 1 в том и только в том случае, когда F представима в виде решеточного объединения минимальной ω -насыщенной не -разложимой подформации и некоторой ω -насыщенной -разложимой подформации формации F. Приведен ряд следствий.

Полученные результаты являются естественным развитием исследований, связанных с изучением решеточного строения частично насыщенных формаций, имеющих заданный нильпотентный или разрешимый lω -дефекты. Работа может быть полезна при изучении и классификации ω -насыщенных формаций с заданной структурой ω -насыщенных подформаций.

Рассматриваются только конечные группы. Используется терминология из [1–3].

В работе [4] было введено понятие H-дефекта насыщенной формации и получена классификация насыщенных формаций с нильпотентным дефектом 2. При этом под H-дефектом насыщенной формации F понимают длину решетки насыщенных формаций, заключенных между F H и F.

В дальнейшем этот результат получил развитие в разных направлениях, поскольку нашел широкое применение в теоретических исследованиях. Содной стороны, в качестве H стали рассматривать другие достаточно хорошо известные классы (А.Н.Скиба, 1991г., В.В.Аниськов, 1995-2003гг.). С другой стороны, исследовались решетки насыщенных формаций большей длины (В.Г.Сафонов 1996-2004г.). Кроме того, этот подход нашел широкое применение при изучении структурного строения формаций групп других типов (n -кратно насыщенные формации, тотально насыщенные формации и др.).

В теории ω -насыщенных формаций данный метод был использован Дж. Джехадом [5] и Н.Г.Жевновой [6] при изучении p -насыщенных и ω -насыщенных формаций с нильпотентным lω -дефектом 1. Классификация неразрешимых ω -насыщенных формаций, имеющих разрешимую максимальную ω -насыщенную подформацию, получена в [7].

Естественным развитием исследований в этом направлении является изучение решеточного строения частично насыщенных формаций, близких к N по тем или иным свойствам. Так в совместной работе авторов было дано описание не -нильпотентной ω -насыщенной формации с -нильпотентноймаксимальной ω -насыщенной подформацией [8].

В данной работе получена классификация частично насыщенных формаций -разложимого lω -дефекта 1.

Основным результатом является

Теорема 1. Пусть F – некоторая ω-насыщенная формация. Тогда в том и только в том случае -разложимый lω -дефект формации F равен 1, когда F=MVω H, где M – ω-насыщенная -разложимая подформация формации F, H – минимальная ω-насыщенная не -разложимая подформация формации F, при этом: 1) всякая ω-насыщенная -разложимая подформация из F входит в MVω (H X); 2) всякая ω-насыщенная не -разложимая подформация F1 из F имеет вид HVω (F1 X).

2. Основные понятия и обозначения

Пусть ω – некоторое непустое множество простых чисел. Тогда через ω 'обозначают дополнение к ω во множестве всех простых чисел.

Всякую функцию вида f : ω {ω '} {формации групп} называют ω -локальным спутником. Если f –произвольный ω -локальный спутник, то LFω (f )={ G | G/Gωd f (ω ') и G/Fp (G ) f (p ) для всех p ω (G )}, где Gωd –наибольшая нормальная подгруппа группы G , у которой для любого ее композиционного фактора H/K имеет место (H/K ) ω Ø, Fp (G ) – наибольшая нормальная p -нильпотентная подгруппа группы G , равная пересечению централизаторов всех pd -главных факторов группы G .

Если формация F такова, что F=LFω (f) для некоторого ω -локального спутника f , то говорят, что F является ω -локальной формацией, а f ее ω -локальный спутник.Если при этом все значения f лежат в F, то f называют внутренним ω -локальным спутником.

Пусть X – произвольная совокупность групп и p – простое число. Тогда полагают, что X(Fp )=form(G /Fp (G ) | G ÎX), если p (X), X(Fp )=Ø, если p (X).

Формация F называется ω -насыщенной, если ей принадлежит всякая группа G , удовлетворяющая условию G /L F, где L Ф(G )∩O ω (G ).

Ввиду теоремы 1 [1, c. 118] формация является ω -локальной тогда и только тогда, когда она является ω -насыщенной.

Через lω обозначают совокупность всех ω -насыщенных формаций.

Полагают lω formFравным пересечению всех тех ω -насыщенных формаций,которые содержат совокупность групп F.

Для любых двух ω -насыщенных формаций M и H полагают M H=M∩H, а MVω H=lω form(M H). Всякое множество ω -насыщенных формаций, замкнутое относительно операций и Vω , является решеткой. Таковым, например, является множество lω всех ω -насыщенных формаций.

Через F/ω F∩H обозначают решетку ω -насыщенных формаций, заключенных между F∩H и F. Длину решетки F/ω F∩H обозначают|F:F∩H |ω и называют Hω -дефектом ω -насыщенной формации F.

ω -Насыщенная формация F называется минимальной ω -насыщенной не H-формацией, если F H, но все собственные ω -насыщенные подформации из Fсодержатся в H.

Пусть – некоторое непустое множество простых чисел.Группу G называют -специальной, если в ней существует нильпотентная нормальная -холлова подгруппа.Класс всех -специальных групп совпадает с классом N G ' .

Группу G называют -замкнутой, если она имеет нормальную -холлову подгруппу. Класс всех -замкнутых групп, очевидно, совпадает с G G'.

Группа называется -разложимой, если она одновременно -специальна и '-замкнута.

3. Используемые результаты

Ниже приведем некоторые известные факты теории формаций, сформулировав их в ввиде следующих лемм.

Лемма 1 [1]. Пусть F=MH, где M и H – формации, причем M=LFp(m) для некоторого внутреннего спутника m. Формация F является p-локальной в том и только том случае, когда выполняется следующее условие: либо p (M), либо формация H является p-локальной. Более того, при выполнении этого условия F=LFp(f), где f(p')=m(p')H и f(p)=m(p)H, если p (M), f(p)=h(p), если p (M).

Следствием теоремы 1.2.25 [3] является следующая

Лемма 2 [3]. Пусть X – полуформация и A F=formX. Тогда если A – монолитическая группа и A X, то в F найдется группа H с такими нормальными подгруппами N, M, N1, ..., Nt, M1, ..., Mt (t 2), что выполняются условия: (1) H/N A, M/N=Soc(H/N); (2) N1∩…∩ Nt=1; (3) H/Ni – монолитическая F-группа с монолитом Mi/Ni, который H-изоморфен M/N; (4) M1∩…∩ Mt M.

Лемма 3 [2]. Пусть M и N – нормальные подгруппы группы G, причем M CG(N). Тогда [N](G/M) formG.

Лемма 4 [9]. Пусть F – произвольная ω-насыщенная не -разложимая формация. Тогда в F имеется, по крайней мере, одна минимальная ω-насыщенная не -разложимая подформация.

Следствием леммы5.2.8 [3, c. 194] является

Лемма 5. Пусть F, M, X и H – ω-насыщенные формации, причем F=MVωX. Тогда если m, r и t соответственно Hω-дефекты формаций M, X и F и m, r< , то t m+r.

Лемма 6 [1]. Решетка всех ω-насыщенных формаций lω модулярна.

Лемма 7 [1]. Если F=lωformX и f – минимальный ω-локальный спутник формации F, то справедливы следующие утверждения: 1) f(ω ') = form(G/Gωd | G X); 2) f(p)=form(X(Fp)) для все p ω; 3) если F=LFω(h) и p – некоторый фиксированный элемент из ω, то F=LFω(f1), где f1(a)=h(a) для всех a (ω\{p}) {ω’}, f1(p)=form(G | G h(p)∩ F, Op(G)=1) и, кроме того, f1(p)=f(p); 4) F=LFω(G), где g(ω')=F и g(p)=f(p) для всех p ω.

Лемма 8 [1]. Пусть fi – такой внутренний ω-локальный спутник формации Fi, что fi(ω')=Fi, где i I. Тогда F=F1VωF2=LFω(f), где f=f1V f2.

Лемма 9 [10]. Тогда и только тогда F – минимальная ω-насыщенная не -разложимая формация, когда F=lωformG, где G – такая не -разложимая монолитическая группа с монолитом P, что (G)∩ =Ø и либо = (P)∩ω=Ø и P совпадает с -разложимым корадикалом группы G, либо Ø и выполняется одно из следующих условий: 1) группа P неабелева, причем, если ', то G/P – '-группа, если ={p} , то G/P – p-группа, если же ∩ω Ø и | |>1, то G=P – простая неабелева группа; 2) G – группа Шмидта: 3) G=[P]H, где P=CG(P) – минимальная нормальная подгруппа группы G, H – простая неабелева группа, причем (H)=Ø.

Лемма 10 [2, с. 41]. Пусть A монолитическая группа с неабелевым монолитом, M – некоторая полуформация и A formM. Тогда A M.

Лемма 11 [1]. Если формации M и H являются ω-насыщенными, то формация F=MH также является ω-насыщенной.

Лемма 12 [1]. Пусть F – ω-насыщенная формация и f – ее ω-локальный спутник. Если G/Op(G) f(p)∩F, то G F.

Следующая лемма является частным случаем леммы 5.2.7 [3, с. 193].

Лемма 13. Пусть M, F и H – ω-насыщенная формации и M F. Тогда |M:M∩H|ω |F:F∩H |ω.

Лемма 14 [3]. Пусть F – произвольная непустая формация и пусть у каждой группы G X F-корадикал GF не имеет фраттиниевых G-главных факторов. Тогда если A – монолитическая группа из form X\F, то A H(X).

4. Основной результат

В дальнейшем через X будем обозначать формацию всех -разложимых групп, а X-дефект ω-насыщенной формации F называть ее -разложимым lω-дефектом. Заметим, что класс всех -разложимых групп совпадает с классом G ’G ∩N G'.

Лемма 15. Пусть H – некоторая формация. Тогда формация NωH является ω-насыщенной.

Доказательство. Пусть F=NωH. Как известно, формация Nω является насыщенной и, следовательно, ω-насыщенной для всякого непустого множества простых чисел ω. В силу леммы 7 формация Nω имеет такой внутренний ω-локальный спутник n, что n(p)=1 для любого p ω и n(ω')=Nω.

Так как для любого pÎω справедливо включение, то применяя лемму 1 заметим, что F – p-локальная формация. Следовательно формация F является ω-локальной или ω-насыщенной. Лемма доказана.

Лемма 16. Пусть A – простая группа, M и X – некоторые непустые формации. Тогда если A MVX, то A M X.

Доказательство. Предположим, что A M X=F. Тогда в силу леммы 2 в F найдется группа H с такими нормальными подгруппами N, M, N1, ..., Nt, M1, ..., Mt (t 2), что выполняются условия: (1) H/N A, M/N=Soc(H/N); (2) N1∩…∩ Nt=1; (3) H/Ni – монолитическая F-группа с монолитом Mi/Ni, который H-изоморфен M/N; (4) M1∩…∩ Mt M.

Ввиду леммы 3 имеем [Mi/Ni]((H/Ni)/ ) form(H/Ni).

Пусть A – группа простого порядка. Тогда ввиду (1) M/N=H/N – абелев фактор.

Поэтому CH(M/N)=H. В силу условия (3) CH(Mi/Ni)=CH(M/N)=H. Поскольку =CH(Mi/Ni)/Ni, то (H/Ni)/

H/CH(Mi/Ni)=H/H=1. Значит, Mi/Ni form(H/Ni). Но ввиду (3) H/Ni F=M X. Поскольку M и X – формации, то A Mi/Ni MX.

Пусть теперь A – простая неабелева группа. Тогда в силу леммы 10 получаем A M X. Лемма доказана.

Доказательство теоремы 1. Необходимость. Пусть -разложимый lω-дефект формации F равен 1. Так как F не является -разложимой формацией, то по лемме 4 в F входит некоторая минимальная ω-насыщенная не -разложимая подформация H1. По условию M=X∩F – максимальная ω-насыщенная подформация в F. Значит, F=MVωH1.

Достаточность. Пусть F=MVωH1, где M – ω-насыщенная -разложимая подформация формации F, H1 – минимальная ω-насыщенная не -разложимая подформация F. Понятно, что F X. Пусть -разложимые lω-дефекты формаций F, M и H1 равны соответственно t, m и r. Поскольку M – ω-насыщенная -разложимая формация, то m=0. Так как H1 – минимальная ω-насыщенная не -разложимая формация, то ее -разложимый lω-дефект r равен 1. В силу леммы 5 для -разложимого lω-дефекта формации F имеет место неравенство t m+r = 0+1 = 1.

Если t = 0, то F – -разложимая формация, что противоречит условию F X. Таким образом, |F:F∩X |ω=1.

Докажем теперь справедливость утверждения 1) второй части теоремы.

Так как X∩H1 – максимальная ω-насыщенная подформация в H1, то, в силу леммы 6, имеет место решеточный изоморфизм

(((X∩H1)VωM)VωH1)/ω((X∩H1)VωM) H1/ωH1∩((X∩H1)VωM) =

= H1/ω(X∩H1)Vω(H1∩M) = H1/ωX∩H1.

Следовательно, (X∩H1)VωM – максимальная ω-насыщенная подформация в F.

Тогда, поскольку F X, то всякая ω-насыщенная -разложимая подформация из F входит в (X∩H1)VωM.

Для доказательства утверждения 2) покажем прежде, что в F нет минимальных ω-насыщенных не -разложимых подформаций, отличных от H1. Пусть M1=F∩X. Тогда M1 – -разложимая максимальная ω-насыщенная подформация формации F. Предположим обратное, т.е. что в F существует H2 – минимальная ω-насыщенная не -разложимая подформация, отличная от H1. Поскольку M1 является -разложимой формацией, то H2 M1. Значит, F=H2VωM1=H1VωM1.

Из леммы 9 следует, что Hi=lωformGi, где Gi – такая не -разложимая монолитическая группа с монолитом Pi, что (Gi)∩ =Ø и либо = (Pi)∩ω=Ø и Pi совпадает с -разложимым корадикалом группы Gi, либо Ø и выполняется одно из следующих условий: (1) группа Pi неабелева, причем, если ', то Gi/Pi – '-группа, если ={pi} , то Gi/Pi – p-группа, если же ∩ω Ø и | |>1, то Gi=Pi – простая неабелева группа; (2) Gi – группа Шмидта; (3) Gi=[Pi]Hi, где Pi= (Pi) – минимальная нормальная подгруппа группы Gi; Hi – простая неабелева группа, причем (Hi)=Ø.

По лемме 7 формации Hi и M1 имеют такие внутренние ω-локальные спутники hi и m соответственно, что hi(a)=form(Gi/Fa(Gi) | Gi Hi), если a ω∩ (Gi), hi(a)=Hi, если a=ω', hi(a)=Ø, если a ω\ (Gi), где i=1,2 и m(a)=form(A/Fa(A) | A M1), если a ω∩ (M1), m(a)=M1, если a=ω', m(a)=Ø, если a ω\(M1).

Тогда по лемме 8 получаем, что формация F имеет такой ω-локальный спутник f, что f(p)=hi(p)V m(p) для всех p ω и f(ω')=HiVM1=form(H1 M1) F.

Пусть G2 удовлетворяет условию (1), т.е. P2 – неабелева ωd-группа. Обозначим через R формацию, равную form(H1 M1). Поскольку, по лемме 15, NωR – ω-насыщенная формация и H1 M1 R NωR, то F=lωform(H1 M1) NωR. Но G2 F. Следовательно G2 NωR. Значит, R-корадикал группы G2 содержится в Nω.

Пусть G2R 1. Так как R-корадикал – нормальная в G2 подгруппа и P2 – единственная минимальная нормальная подгруппа в G2, верно включение P2 GR. Тогда получаем, что P2 – неабелева минимальная нормальная подгруппа в G2, содержится в нильпотентной подгруппе G2R группы G2. Противоречие.

Следовательно, G2R=1. Поэтому G2 R=form(H1 M1). Применяя теперь лемму 10, имеем G2 H1 M1. Тогда, так как G2 M1, то G2 H1. Поэтому H2=lωformG2H1.

Поскольку H2 – минимальная ω-насыщенная не X-формация, то H1=H2. Противоречие.

Пусть группа G2 удовлетворяет условию (2), т.е. G2 является группой Шмидта и P2 – ωd-группа. Поскольку для любой группы A имеет место lωformA=lωform(A/Ф(A)∩Oω(A)), то группу Gi (i=1,2) можно считать группой Шмидта с тривиальной подгруппой Фраттини, т.е. Gi=[Pi] Hi, где группа Hi имеет простой порядок qi, Pi= (Pi) – минимальная нормальная pi-подгруппа группы Gi.

Так как G2/P2 F∩X=M1, G2 M1, то P2=G2M1. Из того, что M1 Np2M1 и P2 Np2, следует G2 Np2M1.

По лемме 11 формация Np2M1 является ω-насыщенной формацией. Так как H2=lωformG2, то H2 Np2M1. Тогда F Np2M1, так как F – наименьшая ω-насыщенная формация, содержащая M1 и H2. Следовательно, G1 Np2M1. Поскольку, G1/P1 M1 и G1 M1, то P1=G1M1 Np2, т.е. P1 является p2-группой. Так как G2 F, то G2/Fp2(G2) f(p2)=h1(p2)Vm(p2). Но H2 G2/P2=G2/Fp2(G2). Поэтому H2h1(p2)Vm(p2).

Ввиду пункта 18.20. [2], леммы 7 и замечания 1 [1] формация X всех -разложимых групп имеет такой максимальный внутренний ω-локальный спутник x, что x(p)=Np, если p ∩ω и x(p)=G ’ если p ω\.

Так как m(p2) – внутренний спутник формации M1 X, то H2 h1(p2)V m(p2) h1(p2)V x(p2). Заметим также, что h1(p2)=form(G1/Fp2(G1))=formH1. Кроме того p2 ∩ω. Таким образом, H2 formH1Vx(p2) = formH1VNp2 = form(formH1 Np2). Применяя лемму 16, получаем, что H2 formH1Np2.

Заметим, что G1 удовлетворяет либо условию (2), либо условию (3). Следовательно H1 является простой группой. Поскольку H2 – q2-группа и q2 p2, то H2 H1.

Но тогда G2/Op2(G2)=G2/P2 H2 H1 G1/Fp2(G1) h1(p2) H1. Применяя лемму 12, получаем, что G2 H1. Следовательно, H1=H2. Противоречие.

Пусть теперь для группы G2 выполняется условие(3), т.е. G2=[P2]H2, где P2=CG(P2) – минимальная нормальная подгруппа группы G2, H2 – простая неабелева группа, причем (H2)=Ø.

Рассуждая аналогично случаю (2) получаем, что P1 является p2-группой и H2 h1(p2)VNp2 = formH1VNp2 = form(formH1 Np2). Но H2 – простая неабелева группа. Значит, в силу леммы 16 получаем H2 formH1 Np2 и H2 formH1. Следовательно, H1=H2. Противоречие.

Пусть теперь P2 – ω'-группа. Заметим, что если P2 – неабелева, то этот случай аналогичен (1). Значит, P2 – абелева p2-группа.

Рассмотрим формацию H=H1VωH2. Поскольку формация H1 содержится в формации H и -разложимый lω-дефект формации H1 равен 1, то по лемме 13 получаем, что |H:H∩X |ω 1. С другой стороны, так как H F и -разложимый lω-дефект формации F равен 1, то по лемме 13, |H:H∩X |ω 1. Значит, -разложимый lω-дефект формации H равен 1. Поэтому в H существует -разложимая максимальная ω-насыщенная подформация L. Понятно, что L=H∩X. Тогда H=LVωH1=LVωH2. Поскольку P2 является абелевой p2-группой и единственной минимальной нормальной подгруппой в G2 такой, что G2/P2 L=H∩X, то G2L=P2. Это означает, что G2 Np2L. Следовательно, H2 Np2L. Кроме того, L Np2L. А так как по лемме 11 формация Np2L является ω-насыщенной формацией и H=LVωH2, то H Np2L. Поэтому H=LVωH1 Np2L и G1 Np2L. Таким образом, аналогично получаем, что P1 является p2-группой.

Рассмотрим решетку HVωX/ωX. Ввиду леммы 6 HVωX/ωX H/ωX∩H=H/ωL.

Таким образом, X является максимальной ω-насыщенной подформацией в HVωX. Тогда H1VωX=HVωX=H2VωX. Значит G1 H2VωX. Следовательно, G1 lωform(H2 X)=lωform({G2} X) Nωform({G2}X).

Так как P1 – p2-группа и p2 ω', то G1 form({G2} X). По условию P2=GX. Поэтому P2 Ф(G2). Но G1 X. Значит, G1 form({G2} X)\X. Поскольку для любой группы A из {G2} X, подгруппа AX не содержит фраттиниевых A-главных факторов, то по лемме 14 получаем G1 H({G2} X). Так как G1 X и G2/P2 X, то G1 G2. Следовательно, H1=H2. Противоречие.

Таким образом, в формации F нет минимальных ω-насыщенных не -разложимых подформаций, отличных от H1.

Пусть теперь F1 – произвольная не -разложимая ω-насыщенная подформация из F. Тогда в силу уже доказанного и леммы получаем, что H1 F1. Следовательно, применяя лемму 4, получаем F1=F1∩F=F1∩(H1VωM)=H1Vω(F1∩M). Теорема доказана.

Приведем некоторые следствия доказанной теоремы.

Если ω={p}, а – множество всех простых чисел, то из теоремы 1 вытекает

Следствие 1. В том и только том случае p-насыщенная ненильпотентная формация F имеет нильпотентную максимальную p-насыщенную подформацию, когда F= MVpH, где M – p-насыщенная нильпотентная формация, H – минимальная p-насыщенная ненильпотентная формация, при этом: 1) всякая p-насыщенная нильпотентная подформация из F входит в MVp( H∩N ); 2) всякая p-насыщенная ненильпотентная подформация F1 из F имеет вид HVp(F1∩N).

Если – множество всех простых чисел, то из теоремы 1 вытекает

Следствие 2. В том и только том случае ω-насыщенная ненильпотентная формация F имеет нильпотентную максимальную ω-насыщенную подформацию, когда F= MVωH, где M – ω-насыщенная нильпотентная формация, H – минимальная ω-насыщенная ненильпотентная формация, при этом: 1) всякая ω-насыщенная нильпотентная подформация из F входит в MVω(H∩N); 2) всякая ω-насыщенная ненильпотентная подформация F1 из F имеет вид HVω(F1∩N).

Если ω и равны множеству всех простых чисел, то из теоремы 1 получаем

Следствие 3 [4]. В точности тогда нильпотентный дефект локальной формации F равен 1, когда F=MVlH, где M – нильпотентная локальная формация, H – минимальная локальная ненильпотентная формация, при этом: 1) всякая нильпотентная подформация из F входит в MVl(H∩N); 2) всякая ненильпотентная локальная подформация F1 из F имеет вид HVl(F1∩N).

Если ω – множество всех простых чисел, из теоремы 1 вытекает

Следствие 4. В точности тогда -разложимый дефект локальной формации F равен 1, когда F=MVlH, где M – -разложимая локальная формация, H – минимальная локальная не -разложимая формация, при этом: 1) всякая -разложимая подформация из F входит в MVl(H∩X); 2) всякая не -разложимая локальная подформация F1 из F имеет вид HVl(F1∩X).


5 Заключение

В данной работе получено описание не -разложимых ω-насыщенных формаций с -разложимой максимальной ω-насыщенной подформацией. Результаты работы, являются новыми и связаны с исследованием структурного строения и классификацией частично насыщенных формаций конечных групп. В доказательствах используются методы абстрактной теории групп, общей теории решеток, а также методы теории формаций конечных групп. Результаты работы и методы исследования могут быть использованы при изучении внутреннего строения частично насыщенных формаций.


Литература

1 Скиба, А.Н. Кратно ω-локальные формации и классы Фиттинга конечных групп / А.Н. Скиба, Л.А. Шеметков // Матем. Труды. –1999. –Т.2, №2. – С. 114–147.

2 Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. – М.: Наука, 1989. – 256 с.

3 Скиба, А.Н. Алгебра формаций / А.Н. Скиба. – Мн.: Беларуская навука, 1997. –240 c.

4 Скиба, А.Н. Классификация локальных формаций конечных групп с нильпотентным дефектом 2 / А.Н.Скиба, Е.А. Таргонский // Математ. заметки. –1987. –Т.41, .№ 4. – С. 490–499.

5 Джехад, Дж. Классификация p-локальных формаций длины 3: автореф. … дис. канд. физ.-мат. наук: 02.12.01 / Дж. Джехад; Гом. гос. ун-т им.Ф.Скорины. – Гомель, 1996. – 15 с.

6 Жевнова, Н.Г. ω-Локальные формации с дополняемыми подформациями: автореф. … дис. канд. физ.-мат. наук: 02.12.01 / Н.Г. Жевнова; Гом. гос. ун-т им. Ф.Скорины. – Гомель, 1997. – 17 с.

7 Сафонов, В.Г. О приводимых ω-насыщенных формациях с разрешимым дефектом 2 / В.Г. Сафонов, И.Н. Сафонова // Изв. Гом. гос. ун-та им. Ф.Скорины. – 2005. – №5(32). – С. 162–165.

8 Сафонов, В.Г. Частично насыщенные формации с -нильпотентным дефектом 1 / В.Г. Сафонов, А.И. Рябченко // Вестн. Мозырьского гос. пед. ун-та. – 2005. – № 2(13). – С. 16–20.

9 Сафонова, И.Н. О существовании Hω-критических формаций / И.Н. Сафонова // Изв. Гом. гос. ун-та им. Ф.Скорины. – 1999. – №1. – С. 118–126.