Главная              Рефераты - Логистика

Учебное пособие: Теория и практика управления судном

Содержание

Пояснительная записка

Образец титульного листа

Контрольная работа №1

Расчет пройденного расстояния и времени при пассивном и активном торможении

Расчет безопасной якорной стоянки

Учет инерции судна при швартовных операциях и определение положения мгновенного центра вращения неподвижного судна

Расчет увеличения осадки судна от крена, изменения плотности воды, проседания на мелководье и расчет безопасной ширины фарватера

Контрольная работа №2

Определение положения судна относительно резонансных зон, длины волны и построение резонансных зон

Буксировка судов

1 Расчет однородной буксирной линии

2 Расчет неоднородной симметричной буксирной линии

3 Расчет неоднородной несимметричной буксирной линии

4 Определение высоты волн для безопасной буксировки

5 Определение весовой игры буксирной линии

Снятие

1 Снятие судов с мели стягиванием

2 Снятие судов с мели способом отгрузки

3 Снятие судна с мели при наличии крена, когда внешняя

кромка банки лежит позади миделя

4 Снятие судна с мели дифферентованием в случае, когда лишь носовая часть киля лежит на грунте, а под остальной частью

киля имеется достаточный запас глубины

5 Снятие судна с мели с помощью выгрузки после предварительного перемещения груза с носа в корму, когда лишь носовая часть киля лежит на грунте, а под остальной частью киля имеется достаточный запас глубин

6 Снятие судна с мели дифферентованием, если часть груза снята, и когда лишь носовая часть киля лежит на грунте, а под остальной частью киля имеется достаточный запас глубин

7 Снятие судна с мели при отсутствии запаса глубины под килем с учетом работы машины на задний ход

8 Определение начальной скорости буксировщика при снятии с мели способом рывка

Пояснительная записка к выполнению контрольных работ

Студенты 5-го и 6-го курса заочной формы обучения по дисциплине «Теория и практика управления судном» согласно учебному плану должны выполнить 2 контрольные работы: №1 - на 5-м курсе и №2 - на 6-м .

Номер первой задачи выбирается по последней цифре шифра, а все последующие номера задач определяются путем прибавления к номеру первой задачи числа 10. Например: номер первой задачи 8, второй – 18, третьей - 28 и т.д.

Для всех видов задач приведены примеры их решения.

При выборе примера для решения задач, связанных с пассивным и активным торможением, следует обратить внимание на конструкцию винта (ВФШ, ВРШ) и на начальную скорость торможения.

При вычислениях записи делаются по форме: формула - числовое значение величин (без промежуточных вычислений) - результат.

При графическом решении задач на диаграммах и номограммах, последние должны быть приложены к контрольной работе.

На чистом поле листов диаграмм и номограмм надлежит указать фамилию студента и номер задачи.

Листы контрольной работы должны быть пронумерованы и подшиты.

Образец титульного листа прилагается.

Контрольная работа должна быть зарегистрирована на кафедре и передана для проверки преподавателю до начала экзаменационной сессии.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

КИЇВСЬКА ДЕРЖАВНА АКАДЕМІЯ ВОДНОГО ТРАНСПОРТУ

імені гетьмана Петра Конашевича-Сагайдачного

Зразок

Контрольна робота № 1

з дисципліни:

“Теорія і практика управління судном”

Студента 5 курсу

заочної форми навчання

факультету судноводіння

Разгуліна В.В.

шифр 057040

Київ-2007

КОНТРОЛЬНАЯ РАБОТА № 1

Тема: “Расчет пройденного расстояния и времени при пассивном и активном торможении судна”

Примеры решения

Пример 1

Определить время падения скорости до V = 0,2 · Vo судна с ВФШ и ДВС после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна).

Масса судна m = 10000т, скорость полного хода Vo = 7,5 м/с, сопротивление воды при скорости Vo Ro = 350 кН, начальная скорость Vн = 7,2 м/с.

Решение.

1. Масса судна с учетом присоединенных масс воды

m1 = 1,1 m = 1,1 10000 = 11000 т

2. Инерционная характеристика судна

Sо =

3. Продолжительность первого периода (до остановки винта)

t1 = 2,25

4. Скорость в конце первого периода V1 = 0,6Vo , когда останавливается винт

V1 = 0,6 Vo = 0,6 7,5 = 4,5 м/с

5. Расстояние, пройденное в первом периоде, принимая =0,2


S1 = 0,5 So ℓn = 0,5·1768·ℓn

6. Во время второго периода (от скорости V1 = 4,5 м/с до скорости

V = 0,2 Vо = 0,2 · 7,5 = 1,5 м/с)

где =0,5 - коэффициент сопротивления для ВФШ

7. Расстояние, пройденное во втором периоде

8. Время свободного торможения

tв = t1 + t2 = 115 + 524 = 639 ≈ 640 с

9. Выбег судна

Sв = S1 + S2 = 614 + 1295 = 1909 ≈ 1910 м.

- в радианах

Пример 2

Определить время падения скорости до V = 0,2 Vо судна с ВФШ и ДВС после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна), если свободное торможение осуществляется на скорости Vн ≤ 0,6 Vo

m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 4,0 м/с

Решение

1. m1 = 1,1 m = 1,1 10000 = 11000 т

2. Sо =

3. Определим скорость в конце первого периода, когда останавливается винт

V1 = 0,6 Vo = 0,6 7,5 = 4,5 м/с

4. Т.к. Vн < V1 , то винт останавливается мгновенно.

5. V = 0,2 · Vo = 0,2 · 7,5 = 1,5 м/с

6. Время падения скорости от Vн = 4,0 м/с до V = 1,5 м/с

где εвт = 0,5 – коэффициент сопротивления для ВФШ

Vн = V1

7.Расстояние, пройденное при падении скорости от Vн = 4,0 м/с до V = 1,5 м/с

Пример 3

Определить время падения скорости до V = 0,2 · Vо для судна с ВРШ и ГТЗА после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна).

m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 7,2 м/с

Решение.

1. m1 = 1,1 m = 1,1 10000 = 11000 т

2. Sо =

3. V = 0,2 Vo = 0,2 7,5 = 1,5 м/с

4. Время падения скорости до V = 1,5 м/с

где V1 = Vн = 7,2 м/с ,

εвт ≈ 0,7 – коэффициент сопротивления для ВРШ

5.

Пример 4

Определить время активного торможения и тормозной путь (нормальное реверсирование) судна с ВФШ и ДВС, если максимальный упор заднего хода Рз.х. = 320 кН.

m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 7,2 м/с

Решение

1. Масса судна с учетом присоединенных масс

m1 = 1,1 m = 1,1 10000 = 11000 т

2. Инерционная характеристика судна

Sо =

3. Продолжительность первого периода (до остановки винта)

t1 = 2,25

4. Скорость в конце первого периода V1 = 0,6 Vo , когда останавливается винт

V1 = 0,6 Vo = 0,6 7,5 = 4,5 м/с

5. Расстояние, пройденное в первом периоде

S1 = 0,5 So ℓn ,

где Ре – тормозящая сила винта, работающего в режиме гидротурбины и составляющая примерно 0,2 Ro , т.е. = 0,2

S1 = 0,5 1768 ℓn

6. Продолжительность второго периода

t2 = , где V1 = 4,5 м/с

Ре = 0,8 Рз.х. = 0,8 320 = 256 кН

t2 =

7. Расстояние, пройденное во втором периоде

S2 = 0,5 So ℓn т.к. к концу второго периода V = 0, то

S2 = 0,5 So ℓn = 0,5 1768 ℓn

8. Время активного торможения

tι = t1 – t2 = 115 + 168 = 283 с

9. Тормозной путь

Sι = S1 + S2 = 614 + 354 = 968 ≈ 970 м.

Пример 5

Определить время активного торможения и тормозной путь (нормальное реверсирование) судна с ВФШ и ДВС после команды ЗПХ, если упор заднего хода Рз.х. = 320 кН и торможение осуществляется со скорости Vн ≤ 0,6 Vo .

Масса судна m=10000т, скорость полного хода Vo =7,5 м/с, сопротивление воды на скорости Vo Ro =350 кН, начальная скорость Vн =4,0 м/с.

Решение

1. Масса судна с учетом присоединенных масс

m1 = 1,1 m = 1,1 10000 = 11000 т

2. Инерционная характеристика судна

Sо =

3. Скорость в конце первого периода, когда останавливается винт

V1 = 0,6 Vo = 0,6 7,5 = 4,5 м/с

4. В случае, если Vн ≤ V1 = 0,6 Vo (Vн = 4,0 м/с, V1 = 4,5 м/с), винт останавливается мгновенно и t1 = 0; S1 = 0.

5. Тормозящая сила винта

Ре = 0,8 Рз.х. = 0,8 320 = 256 кН

6. Время активного торможения

t = ,

где V1 = Vн = 4,0 м/с

t = = 154 с

7. Тормозной путь

S = 0,5 So ℓn ,

где V1 = Vн = 4 м/с

S = 0,5 1768 ℓn

Пример 6

Определить время активного торможения и тормозной путь судна с ВРШ и ГТЗА, если максимальный упор заднего хода Рз.х. = 320 кН.

m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 7,2 м/с

Решение

1. Масса судна с учетом присоединенных масс

m1 = 1,1 m = 1,1 10000 = 11000 т

2. Инерционная характеристика судна

Sо =

3. Продолжительность активного торможения

,

т.к. к концу периода торможения V = 0, то

, где для ВРШ Ре = Рз.х. = 320 кН

4. Т.к. к концу периода торможения V = 0, то тормозной путь судна

S = 0,5 So ℓn , где V1 = Vн = 7,2 м/с

S = 0,5 1768 ℓn

5.

Задачи

Определить время падения скорости до V = 0,2 Vо после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна)

задачи

m , м

Vo , м/с

Ro , кН

Двигатель

Vн , м/с

1

8545

8,8

490

ДВС, ВРШ

8,8

2

10210

8,7

420

ДВС, ВРШ

8,7

3

11130

7,5

330

ДВС, ВФШ

7,5

4

182000

7,7

1990

ГТЗА, ВРШ

7,7

5

2725

6,1

140

ДВС, ВФШ

6,1

6

29170

9,5

1050

ДВС, ВФШ

7,0

7

11130

7,5

330

ДВС, ВФШ

3,4

8

20165

7,2

460

ДВС, ВФШ

3,0

9

61600

8,2

1080

ГТЗА, ВРШ

3,3

10

2725

6,1

140

ДВС, ВФШ

3,0

Определить время активного торможения и тормозной путь после команды ЗПХ

задачи

m , м

Vo , м/с

Ro , кН

Rз.х. ,

кН

Двигатель

Vн , м/с

11

11130

7,5

330

340

ДВС, ВФШ

7,5

12

29170

9,5

1050

1200

ДВС, ВФШ

9,5

13

182000

7,7

1990

1900

ГТЗА, ВРШ

7,7

14

10210

8,7

420

450

ДВС, ВФШ

6,5

15

20165

7,2

460

500

ДВС, ВРШ

5,0

16

87965

7,5

1120

1030

ГТЗА, ВРШ

5,8

17

20165

7,2

460

480

ДВС, ВРШ

3,0

18

61600

8,2

1080

350

ГТЗА, ВРШ

3,3

19

2725

6,1

140

120

ДВС, ВФШ

3,0

20

8545

8,8

490

470

ДВС, ВРШ

4,0

Рекомендованная литература:

1. Сборник задач по управлению судами; Учебное пособие для морских высших учебных заведений / Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 37 - 43.

2. Управление судном и его техническая эксплуатация; Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 191 – 196.

3. Управление судном и его техническая эксплуатация. Под редакцией А.И. Щетининой 2-е издание. – М. Транспорт, 1975, стр. 305 – 311.

4. С.И. Демин. Торможение судна. – М. Транспорт, 1975, стр. 5 – 18.

5. Управление судном. Под общей редакцией В.И. Снопкова. – М. Транспорт, 1975, стр. 5 – 12, 25-37.


Тема: “Расчет безопасной якорной стоянки”

Пример

Танкер водоизмещением ∆ = 84500 тонн, длина L = 228 м, средняя осадка dср = 13,6 м, высота борта Нб = 17,4 м, масса якоря G = 11000 кг, калибр якорной цепи dц = 82 мм, глубина места постановки на якорь Нгл = 30 м, грунт – ил, наибольшая скорость течения Vт = 4 уз., угол между направлением течения и ДП θт = 20º, усиление ветра по прогнозу до u = 10-12м/с, угол между ДП и направлением ветра qu = 30º. По судовым документам площадь проекции надводной части корпуса судна на мидель

Аu = 570 м2 , то же на ДП Вu = 1568 м2 .

Определить:

- длину якорной цепи необходимую для удержания судна на якоре;

- радиус окружности, которую будет описывать корма судна;

- силу наибольшего натяжения якорной цепи у клюза.

Решение

1.Вес погонного метра якорной цепи в воздухе

qо = 0,021 dц 2 = 0,021 822 = 141,2 кг/м

2.Вес погонного метра якорной цепи в воде

qw = 0,87 qо = 0,87 141,2 = 122,84 кг/м

3. Высота якорного клюза над грунтом

Нкл = Нгл + (Нб - dср ) = 30 + (17,4 – 13,6) = 33,8 м

4. Удельная держащая сила якоря дана в условии задачи: К =1,3

5. Необходимая длина якорной цепи из расчета полного использования держащей силы якоря и отрезка цепи, лежащего на грунте

, где:

а – длина части якорной цепи, лежащей на грунте; принимаем, а = 50 м;

ƒ - коэффициент трения цепи о грунт дан в условии задачи: ƒ=0,15

6. Определим силу ветра, действующую на надводную часть судна

RA = 0, 61 Сха u² (Аu cos qu + Bu sin qu ), где

Сха – аэродинамический коэффициент задачи дан в условии Сха= 1,46

qu º

Сха

сухогр. судно

пассаж. судно

танкер, балкер

0

0,75

0,78

0,69

30

1,65

1,66

1,46

60

1,35

1,54

1,19

90

1,20

1,33

1,21

RA = 0,61 1,46 122 (570 cos 30º + 1568 sin 30º) =163,850 кН = 16,7 m

7.Определим силу действия течения на подводную часть судна

Rт = 58, 8 Вт Vт 2 sin θт , где:

Вт – проекция подводной части корпуса на ДП судна,

Вт ≈ 0,9 L dcp = 0,9 · 228 · 13,6 = 2790,7 ≈ 2791 м2

Vт – скорость течения в м/с

Vт = 4 уз. ≈ 2 м/с

Rт = 58,8 2791 22 sin 20º = 224,517 кН = 22,9 m

8.Определим силу рыскания судна при усилении ветра

Rин = 0,87 G = 0,87 11000 = 9,57 m = 93,882 кН

9.Сумма действующих на судно внешних сил

∑ R = RА + Rт + Rин = 163,850 + 224,517 + 93,882 = 482,249 кН = 49,2 m


10.Определим минимальную длину якорной цепи, необходимую для удержания судна на якоре, при условии Fг = Fх = ∑ R (н) = 10 · G · К и коэффициенте динамичности Кд = 1,4

, где:

К = 1,3 – удельная держащая сила грунта,

qw = 122,84 кг/м – вес погонного метра якорной цепи в воде

С целью обеспечения безопасности якорной стоянки надлежит вытравить

9 смычек = 225 м якорной цепи.

11. Определим горизонтальное расстояние от клюза до точки начала подъема якорной цепи с грунта

x=

= 214,21 м ≈ 214 м.

Следовательно, длина цепи, лежащая на грунте составляет

а = 225 – 214=11м

12. Радиус окружности, которую будет описывать корма танкера

Rя = а + х + L = 11 + 214 + 228 = 453 м

13. Определим силу наибольшего натяжения якорной цепи у клюза

F2 = 9,81 qw

Задачи

Определить:

- длину якорной цепи, необходимую для удержания судна на якоре;

- радиус окружности, которую будет описывать корма судна;

- силу наибольшего натяжения якорной цепи у клюза.

Исходные данные

Номера задач

21

22

23

24

25

26

27

28

29

30

Тип судна

Сухо-груз

Пассаж

Танкер

Сухогруз

Танкер

Балкер

Пассаж.

Балкер

Сухо

груз

Танкер

Водоизмещение ∆, m

21000

10565

35930

20286

30000

33090

18300

55600

26200

18900

Длина L, м

150

134

179

155

186

183

195

218

171

152

Ср. осадка dср , м

9,5

6,2

10,4

9,2

9,8

7,6

8,3

12,4

10,1

8,2

Высота борта Нб , м

11,7

16,3

13,6

13,4

12,6

12,1

18,9

17,0

13,1

10,4

Площади

проекций Аu , м2

надв. части

корпуса Вu , м2

195

410

382

341

360

390

532

405

320

240

790

2480

1320

1280

1210

1290

3530

1470

840

960

Грунт

песок

галька

ил

галька

песок

ил

песок

галька

ил

песок

Масса якоря G, кг

5100

3650

7000

5000

5850

6800

6500

8600

5800

4800

Уд. держ. сила

якоря К

2,6

3,5

2,1

3,3

2,6

2,1

2,5

3,2

2,2

2,6

Калибр цепи dц ,мм

57

53

72

57

68

72

72

78

68

57

Коэф. трения

цепи ƒ

0,35

0,38

0,12

0,38

0,35

0,12

0,35

0,38

0,12

0,35

Глубина Нгл , м

25

30

35

45

40

40

35

30

25

20

Ветер qu , град

u, м/с

30

10

60

10

45

14

60

8

30

12

30

14

45

10

60

10

30

8

45

10

Течение θт , град

Vт , уз.

60

1

30

2

45

2

30

2

20

3

40

2

45

1

50

1

45

1

30

2

Аэродинамический

коэффициент Сха

1,65

1,54

1,32

1,35

1,46

1,46

1,60

1,19

1,65

1,32

Рекомендованная литература:

1. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных, морских училищ. Под редакцией А.И. Щетининой. 3-е издание.- Транспорт, 1983, стр.241-249.

2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных, морских училищ. Под редакцией А.И. Щетининой. 2-е издание.- М.Транспорт, 1975, стр.336-349.

3. Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений. Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В, П. Махин. – М. Транспорт, 1984, стр.17-20.

4. Управление судном. Под общей редакцией В.И. Снопкова.-

М. Транспорт, 1991, стр. 206-221.


Тема: “Учет инерции судна при швартовных операциях и определение положения мгновенного центра вращения неподвижного судна”

Примеры решения

Пример 1

Определить инерционную характеристику судна tv 1 на скорости VH 1 = 7,2 м/с (14 уз.), если Vo = 7,5 м/с (14,6 уз.), а So = 2500 м.

Примечание: характеристика tv численно равна времени падения скорости от VH до 0,5 VH при свободном торможении.

Решение

tv 1 = с = 4 м 42 с

Задачи

Определить инерционную характеристику tv на скорости VH .

Номер задачи

31

32

33

34

35

36

37

38

39

40

Vo , м/с

So , м/с

Vн , м/с

6,1

780

3,0

8,8

1490

4,0

8,7

2020

3,4

7,5

2120

4,0

7,2

2520

3,0

7,7

2760

3,5

9,5

2840

4,0

8,2

4220

3,3

7,5

4930

3,4

7,7

5940

2,6

Пример 2

Судно, следуя против течения, подходит к причалу со скоростью VH ' = 3 уз. Относительно грунта. Скорость течения Vт = 2 уз.

Определить на каком расстоянии от причала дать СТОП, чтобы:

а) остановиться у причала без реверса двигателя на задний ход;

б) иметь скорость относительно причала не более V= 0,5 уз.

Инерционная характеристика tv = 7 мин.

Решение

а) VH = VH ' + Vт = 3 + 2 = 5 уз.

Скорость относительно воды у причала:

V = Vт = 2 уз. ; ∆V = VH – V = 5 – 2 = 3 уз.

S = кб

б) VH = 5 уз.

Скорость относительно воды у причала

V = Vт + 0,5 = 2 + 0,5 = 2,5 уз.; ∆V = VH – V = 5 – 2,5 = 2,5 уз.

S = кб

Задачи

Судно следует против течения к причалу со скоростью Vн относительно грунта. Определить на каком расстоянии от причала дать СТОП чтобы:

а) остановиться у причала без реверса двигателя на задний ход;

б) иметь скорость относительно причала не более Vуз.

Номер задачи

41

42

43

44

45

46

47

48

49

50

Vн , уз.

Vт , уз.

V, уз.

tv , мин.

2,5

1,5

0,5

3,0

3,0

2,0

1,0

4,2

4,0

1,0

0,5

5,5

3,4

2,0

1,0

6,0

2,5

2,5

1,0

8,0

3,0

2,0

0,5

9,0

4,0

1,0

0,5

7,4

4,8

1,5

0,5

11,0

3,4

1,0

0,5

16,5

2,6

2,0

1,0

18,8

Пример 3

Определить расстояние, на котором будет остановлено судно работой винта на задний ход ωз.х. = 60 об/мин., если скорость судна перед дачей заднего хода VH = 2 уз. Скорость полного хода Vо = 16 уз. Частота вращения винта при работе на полный задний ход ωз.хо. = 105 об/мин. Инерционная характеристика Sо = 2500 м, тормозная характеристика = 0,9.

Решение

Sт = 1,3 α (1 + α) Sо

где α =

Sт = 1,3 0,025 (1 + 0,025) 2500 = 83 м

Задачи

Определить расстояние, на котором будет остановлено судно работой винта на задний ход с частотой вращения ωз.х. , если скорость перед дачей заднего хода Vн . Известна тормозная характеристика судна Рз.х. /Rо , соответствующая частота вращения винта на полный задний ход ωз.хо., инерционная характеристика Sо , скорость полного хода Vо.

Номер задачи

51

52

53

54

55

56

57

58

59

60

Vн , уз.

ωз.х. , об/мин.

Vо , уз.

Sо , м

ωз.хо. , об/мин.

Рз.х. /Rо

1,5

45

12,0

780

105

1,0

2,8

60

17,2

1490

115

1,1

2,1

50

17,0

2020

120

1,2

1,0

50

14,6

2120

100

1,1

1,2

40

14,0

2520

110

1,3

0,9

60

15,0

2760

75

0,7

1,8

70

18,5

2840

130

1,4

2,0

50

16,0

4220

60

0,4

1,4

65

14,6

4930

100

1,1

1,1

70

15,0

5940

90

0,7

Пример 4

Определить кинетическую энергию навала судна Д = 250000 тонн на докфиндер причала при скорости подхода V = 0,1 м/с, коэффициент энергии навала Кн = 0,9, коэффициент присоединенной массы μ = 0,35, g = 9,81 м/с2 .

Решение.

W = κн тонн

Задачи

Определить кинетическую энергию навала судна

Номер задачи

61

62

63

64

65

66

67

68

69

70

Д, тыс.т

V, м/с

Кн

μ

380

0,05

0,5

0,22

370

0,1

0,5

0,23

360

0,15

0,6

0,24

350

0,2

0,7

0,25

340

0,1

0,6

0,26

330

0,05

0,7

0,27

320

0,2

0,6

0,28

310

0,1

0,7

0,29

300

0,15

0,7

0,30

290

0,05

0,8

0,31

Пример 5

Под углом 90º к ДП судна подан буксир на расстоянии d = от центра тяжести судна (G) в корму. Длина судна L = 300 м. Определить расстояние (К) мгновенного центра вращения (О) от центра тяжести судна (G) и радиус, которым оконечность кормы судна опишет дугу вокруг мгновенного центра вращения.

Решение:

d = = = 100 м ; м ;

а = - d = - 100 = 50 м ; R = К + d + а = 56,25+100+50 = 206,25 м

Задачи

Определить положение центра вращения неподвижного судна и радиус, которым оконечность кормы опишет дугу вокруг мгновенного центра вращения

Номер задачи

71

72

73

74

75

76

77

78

79

80

L, м

d,

320

L/2

320

L/3

320

L/4

320

L/5

320

L/6

320

L/8

320

L/10

320

L/12

320

L/16

320

L/32

Рекомендованная литература:

1. Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений / Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 57-62.

2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 284-286.

3. С.Г. Погосов. Швартовка крупнотоннажных судов. – М. Транспорт, 1975, стр. 67-72.

Тема: “Расчет увеличения осадки судна от крена, изменения плотности воды, проседания на мелководье и расчет безопасной ширины фарватера”

Примеры решения

Пример 1

І. Танкер длиной L = 174 м, шириной В = 23,5 м со статической осадкой Тсm = 9,8 м на ровном киле следует со скоростью V = 14 уз (7,2 м/с) на мелководье, Hгл = 14,8 м.

Определить суммарное увеличение осадки от крена судна θ = 3º, при изменении плотности воды от ρ1 = 1,025 m/м3 до ρ2 = 1,008 m/м3 при поправке на пресную воду ∆Т = 213 мм и от проседания на мелководье.

Решение

1. Увеличение осадки от крена

∆Ткр tg θ = tg 3º = 0,61 м

Формула используется при θ ≤ 8

2. Увеличение осадки от изменения плотности воды

∆Тпл = ·∆Т = 213 = 0,15 м

3. Увеличение осадки от проседания на мелководье

∆Тv ´ = · при 1,5 < < 4

или ∆Тv = при ≤ 1,4

где Кv – коэффициент, зависящий от см. таблицу

L/B Кv L/B Кv

4 1,32 8 1,17

5 1,27 9 1,15

6 1,23 12 1,1

7 1,19

= = 7,4 К = 1,18; ∆Тv ´ = · = 0,84 м

4. Увеличение дифферента на корму при коэффициенте общей полноты корпуса ≤ 0,65

∆Тк = Кк ∆Тv ´, где Кк – коэффициент, зависящий от см. таблицу

L/B Кк

3,5 – 5,0 1,5 – 1,25

5 – 7 1,25 – 1,1

7 – 9 1,1

= = 7,4 Кк = 1,1

∆Тv = Кк ∆Тv ´ = 1,1·0,84 = 0,92 м

5. Суммарное увеличение осадки

а) на миделе

∆Т= ∆Ткр + ∆Тпл + ∆Тv′ = 0,61 + 0,15 + 0,84 = 1,60 м

б) кормой при острых отводах кормы

∆Тк = ∆Тпл + ∆Тvк = 0,15 + 0,92 =1,07 м

т.е. максимальное увеличение осадки ∆Т = 1,60 м

2. Максимальная динамическая осадка

Тдин = Тсm + ∆Т = 9,80 + 1,60 = 11,40 м

Задачи

Определить суммарное увеличение осадки:

1) от крена судна θ ;

2) при переходе судна из воды с плотностью ρ1 в воду с плотностью ρ2 при поправке на пресную воду ∆Т ;

3) от проседания при плавании на мелководье по формулам Института гидрологии и гидротехники АН СССР для судов с острыми отводами;

4) при увеличении дифферента на корму и максимальную осадку

Номер задачи

L, м

В, м

Тсm, м

Θ, град.

∆Т, мм

ρ1 m /м 3

ρ2 m /м 3

Нгл, м

* V, уз.

81

100

13,3

6,30

3

85

1,030

1,000

7,80

9,5

82

102,3

14,1

6,35

4

87

1,029

1,002

8,90

10,0

83

104,2

15,2

6,40

5

90

1,028

1,005

10,60

11,5

84

105,6

14,4

6,55

6

92

1,027

1,007

8,80

10,5

85

108,1

15,3

6,70

7

97

1,026

1,008

10,70

10,8

86

110,6

15,4

6,85

8

100

1,025

1,013

8,80

12,5

87

112,5

16,0

7,05

7

116

1,024

1,008

9,40

11,8

88

114,4

16,3

7,10

6

123

1,023

1,010

11,40

13,2

89

116,7

16,6

7,25

5

131

1,022

1,015

9,60

12,4

90

138,0

19,9

8,50

4

175

1,021

1,004

11,90

13,0

V, уз. перевести в V м/с

Пример 2

Определить приращение осадки судна при плавании на мелководье и в узком канале по Формулам Барраса, когда отношение глубины к осадке , а отношение площади подводной части миделя судна к площади поперечного сечения канала . Длина судна L=160 м, ширина В=26,7 м, осадка Тср =10,80 м , объемное водоизмещение судна

Vоб =34635 м3 , глубина Н=12, 40 м, скорость судна V=8 уз.

Решение

1. Коэффициент общей полноты судна

2. Увеличение осадки на мелководье

3. Увеличение осадки в канале

Задачи

Номер задачи

L, м

В, м

Т , м

Vоб , м3

V, уз

Нгл , м

91

167,4

27,4

10,65

33217

9,5

12,5

92

174,6

28,5

9,80

34136

10,0

11,3

93

188,9

29,3

10,85

43238

11,5

12,8

94

202,4

31,6

11,25

53245

12,5

13,1

95

210,0

35,2

12,80

71909

10,8

14,4

96

212,4

34,8

12,95

74662

9,7

15,0

97

217,3

34,5

13,05

78267

13,4

15,1

98

221,6

33,7

13,10

80220

12,2

15,3

99

227,8

34,2

13,15

82983

12,0

15,8

100

231,5

35,7

13,25

85414

11,0

15,0

Пример 3

По методу NPL определить изменение осадки танкера: L = 300 м

на скорости 14 уз. при Тcm = 13,5 м;

дифферент ψ = 0, на глубине Нгл=20 м; (см. Приложение 1)

Для использования номограммы NPL необходимо выполнение следующих условий:

- коэффициент полноты объема корпуса судна должен быть 0,80≤ δ≤90

- отношение длины судна к его ширине ;

- отношение глубины моря к осадке 1,1≤ ≤1,5 ;

- число Фруда по глубине Frh = 0,1 0,6;

Решение

1. По номограмме NPL (см. лист. Приложение 1) из точки А, соответствующей значению V = 14 уз., провести вертикаль до пересечения с линией глубины моря Н = 20 м (точка В);

2. Из точки В провести горизонталь на правую часть номограммы до пересечения с линиями заданного дифферента ψ = 0 (точка С – нос, точка С' – корма);

3. Из точек С и С' опустить вертикальные линии до пересечения с линией длины судна L = 300 м (точки D и D');

4. Из точек D и D' провести горизонтали до пересечения осадок и снять результат: приращение осадки носом ∆Тн=+1,98м, приращение осадки кормой ∆Тк=+1,48м

Задачи

Номер задачи

L , м

Тсm, м

Нгл, м

Дифферент

ψ

V, уз.

101

190

9,85

13,0

0

12

102

200

11,15

15,0

1/100 на корму

12

103

210

12,85

16,0

1/100 на корму

13

104

230

13,10

17,0

0

14

105

240

13,55

18,0

1/500 на нос

14

106

250

14,00

17,0

1/500 на нос

15

107

280

15,65

19,0

0

12

108

300

18,40

22,0

1/100 на корму

11

109

330

21,70

26,0

1/100 на корму

10

110

350

23,90

28,0

0

12

Пример 4

а) Определить ширину свободного пространства прохождения судна в узкости на прямолинейном участке

L = 174м – длина судна;

В = 23,5м – ширина судна;

* V = 18 уз – скорость судна;

= 200м – наибольшая ошибка;

tu = 10мин = 600с – промежуток времени между обсервациями;

t3 = 3,5 мин=150с – время на определение и прокладку линий положения;

Со = 5 о – учитываемый угол сноса;

Со = - ошибка в угле сноса;

ω = 0.1 град/c – средняя угловая скорость поворота;

Z = 30м – необходимый навигационный запас.

* V, уз. перевести в V м/с

Решение

в = 2 δm + 2V (tu + tз ) =

= 2 · 200 + 2 · 7,2 (600 + 150) + 23,5 + 2 · 30 ≈ 887м.

в) Определить будет ли достаточной ширина фарватера 400 м при проводке судна по створу (непрерывное наблюдение за смещением судна, tu =0, tз = 0) при тех же условиях.

Решение

в = 2 δm + = 2 · 200 + + 23,5 + 2 · 30= =510 м.

Ширина фарватера не достаточна.

Задачи

а) Определить ширину полосы свободного пространства для прохождения судном узости:

Номер задачи

L, м

В, м

V, м /с

δm , м

tu , с

tз , с

С, град.

∆С, град.

Z, м

ω град./с

111

126,0

17,0

6,0

200

600

150

5,0

2,0

30

0,1

112

180,0

27,2

8,0

300

600

150

4,0

2,0

40

0,1

113

214,0

31,0

7,0

200

600

150

5,0

3,0

50

0,1

114

245,0

38,0

6,0

300

600

150

4,0

2,0

50

0,2

115

277,0

45,0

8,0

200

600

150

5,0

3,0

50

0,2

в) Определить будет ли достаточной ширина фарватера 150 м при проводке судна по створу.

Номер задачи

в , м

L, м

В, м

V, м /с

δm , м

С, град.

∆С, град.

Z, м

ω град./с

116

150

165,0

25,3

3,0

25,0

12,0

5,0

10,0

0,1

117

200

236,0

39,0

3,0

25,0

3,0

1,0

10,0

0,1

118

200

190,6

31,4

4,0

25,0

8,0

3,0

10,0

0,1

119

150

172,0

22,8

3,0

25,0

3,0

1,0

10,0

0,1

120

150

109,0

16,6

4,0

25,0

5,0

2,0

10,0

0,1

Рекомендованная литература:

1. Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений / Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 48 - 57.

2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 383 – 392.

3. Управление судном и его техническая эксплуатация. Под редакцией А.И. Щетининой 2-е издание. – М. Транспорт, 1975, стр. 393 – 401.

Контрольная работа № 2

Тема : «Определение положения судна относительно резонансных зон, длины волны и построение резонансных зон»

Примеры решения

Пример 1

Определение положения судна относительно резонансных зон.

Судно следует в условиях регулярного волнения, когда определение длины волны не представляет затруднений. Сравниваем ее с длиной судна. Определить положение судна относительно резонансных зон.

Дано: Длина судна L = 101,9 м; ширина судна В = 16,7 м; осадка судна

Т = 7,0 м; скорость судна Vs = 10 уз.; поперечная метацентрическая высота h = 0,9 м; курсовой угол направления движения волны q = 45º; длина волны λ = 90 м.

Решение

1. Рассчитать кажущийся период волн:

2. Находим период бортовой качки судна

; принимаем К = 0,8

3. Определяем период килевой качки

4. Рассчитываем отношения:

Выводы:

а) по бортовой качке судно находится в дорезонансной зоне, т.е.

< 0,7;

б) по килевой качке судно находится в резонансной зоне

(0,7 < < 1,3) и испытывает килевую качку

Задачи

Исходные данные

Номер задачи

1

2

3

4

5

6

7

8

9

10

В, м

19,7

20,0

17,7

14,4

16,7

16,7

14,0

17,7

19,2

20,0

Т, м

9,2

8,6

7,8

6,5

7,1

6,8

5,8

7,6

6,6

8,2

h, м

0,97

0,92

0,95

0,85

0,90

0,88

0,94

0,90

1,20

0,95

Vs , уз.

14,0

12,0

8,0

9,0

13,0

6,0

4,0

10,0

12,0

12,0

130

110

35

80

140

25

15

160

45

120

λ, м

100

40

60

30

80

70

40

130

120

90

Пример 2

Определение длины волны с помощью универсальной диаграммы качки (Приложение 2).

Судно следует в условиях нерегулярного волнения. Для определения средней величины кажущегося периода волн измерили суммарное время прохождения серии волн и вычислили τ как среднее арифметическое.

Определить среднее значение длины волн.

Дано: Скорость судна Vs = 10 уз. ; курсовой угол направления движения волны q = 30º; кажущийся период волн τ ′= 7 с.

Решение

1. Находим в нижней части диаграммы точку, соответствующую значениям Vs = 10 уз. и q = 30º.

2. Проводим из этой точки вертикальную линию в верхнюю часть диаграммы до пересечения с кривой τ′ = 7 с.

3. Ордината полученной точки соответствует длине волны λ = 130 м.

Задачи

Исходные данные

Номер задачи

11

12

13

14

15

16

17

18

19

20

Vs , уз.

12

10

13

12

12

11

8,5

12

16

14

q, град.

35

120

15

95

170

40

105

50

35

120

τ, с

6

12

5

9

17

6,5

8,5

6

8

14

Пример 3

Построение резонансных зон на универсальной диаграмме Ремеза (Приложение 3) по измеренному кажущемуся периоду волн.

Построить резонансные зоны для бортовой и килевой качки.

Дано: Длина судна L = 139,4 м; скорость судна Vs = 12 уз., q = 120º; период собственных поперечных колебаний судна Тθ = 18 с; период собственных продольных колебаний судна Тψ = 8 с, кажущийся период волн τ′= 12 с.

Решение

1. Находим длину волны (см. Пример 2 этой темы): λ = 140 м.

2. Из точки пересечения горизонтали с ординатой, равной λ = 140 м и кривой τ′ = Тθ = 18 с, проводим в нижнюю часть диаграммы линию чистого резонанса по бортовой качке.

3. Рассчитаем и (можно воспользоваться шкалой в верхней части диаграммы)

4. Из точек пересечения кривых τ′ = 14 с и τ′ = 26 с с горизонталью λ = 140 м проводим вертикальные линии в нижнюю часть диаграммы. Эти вертикали ограничивают резонансную зону по бортовой качке.

5. Линию чистого резонанса по килевой качке проводим из точки пересечения кривой τ′=Тψ =8 с горизонталью λ=140м. Линии, ограничивающие резонансную зону по килевой качке, проводим из точек пересечения горизонтали λ=140 м с кривыми τ′ =Тψ / 1,3=8/1,3=6 с и τ′ =Тψ /0,7=8/0,7=11 с

Ответ: