Главная              Рефераты - Коммуникация и связь

Расчет, анализ и оптимизация режимов и потерь электроэнергии в предприятии "КАТЭКэлектросеть" - дипломная работа

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра "Электрические системы и сети"

УТВЕРЖДАЮ

Заведующий кафедрой

_________

"___" _______ 2005 г.

ДИПЛОМНЫЙ ПРОЕКТ

РАСЧЕТ, АНАЛИЗ И ОПТИМИЗАЦИЯ РЕЖИМОВ И ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ В ПРЕДПРИЯТИИ "КАТЭКЭЛЕКТРОСЕТЬ"

Пояснительная записка


ЗАДАНИЕ

по дипломному проектированию студенту

1 Тема проекта

Расчет, анализ и оптимизация режимов и потерь электроэнергии в предприятии "КАТЭКэлектросеть".

2 Утверждена приказом по университету № 108 от 24.01.05 г.

3 Срок сдачи студентом законченного проекта ________

4 Исходные данные к проекту

Принципиальная схема соединений КАТЭКэлектросети; схема КАТЭКэлектросети с контрольными замерами нагрузок во время летнего и зимнего дня (июнь, декабрь 2004 г.); годовой отчет предприятия КАТЭКэлектросеть.

5 Содержание расчетно-пояснительной записки (перечень подлежащих разработке вопросов)

Разработка расчетной схемы с определением параметров схемы замещения и подготовкой информации для расчета на ПЭВМ; расчет, анализ и оптимизация режимов.

6 Перечень графического материала (с точным указанием обязательных чертежей)

Чертеж 1, 2 – Принципиальная схема электрических соединений КАТЭКэлектросети.

Чертеж 3, 4 – Машинная схема замещения с результатами расчета нормального установившегося режима.

Чертеж 5 – Анализ результатов расчета режима при изменении нагрузок в сети 35 кВ.

Чертеж 6 – Укрупненная блок-схема программы расчета установившегося режима.

Чертеж 7 – Математическая модель РУР.


КАЛЕНДАРНЫЙ ГРАФИК

работы над проектом на весь период проектирования (с указанием сроков выполнения и трудоемкости отдельных этапов)

1 Сбор информации для выполнения работы 03.04.2005
2 Составление расчетной схемы замещения 20.04.2005
3 Определение параметров схемы замещения 25.05.2005
4 Изучение программы "RASTR" 01.05.2005
5 Подготовка файлов исходной информации 05.05.2005
6 Расчет заданных режимов работы электрических сетей 10.05.2005
7 Описание математических моделей элементов электрических сетей 15.05.2005
8 Описание метода расчета установившегося режима 18.05.2005
9 Выполнение экономической части 26.05.2005
10 Рассмотрение вопросов охраны труда и окружающей среды 31.06.2005
11. Оформление расчетно-пояснительной записки 01.06.2005
12. Выполнение графической части дипломного проекта 07.06.2005

Содержание

Введение

1. Характеристика предприятия электрических сетей как объекта исследования

1.1 Экономико – географическая характеристика района

1.2 Конструктивно параметрическая характеристика объекта

1.3 Описание основного оборудования и характеристика элементов схемы замещения

2. Характеристика задачи расчета, анализа и оптимизации режимов РЭС 110-35 кВ по напряжению, реактивной мощности и коэффициентам трансформации

2.1 Математическая постановка задачи расчета установившихся режимов

2.2 Методы решения УУР

2.3 Общая характеристика и математическая постановка задачи оптимизации электрических режимов

2.4 Описание метода оптимизации

3. Расчет и анализ характерных установившихся режимов ШРЭС

3.1 Характеристика ПВК расчета установившегося режима и его оптимизации

3.1.1 Характеристика ПВК "RASTR"

3.2 Анализ характерных электрических режимов

3.2.1 Анализ зимнего периода

4. Учет качества электрической энергии при расчетах с потребителями

5. Безопасность и экологичность проекта

5.1 Организация управления безопасности жизни деятельности и охраны окружающей среды на предприятии

5.2 Анализ опасностей и условий поражений при эксплуатации и ремонте ЛЭП 110 кВ

5.3 Защитные меры и средства, обеспечивающие недоступность токоведущих частей

5.4 Средства и меры безопасности при случайном появлении напряжения на металлической опоре и шагового напряжения

5.5 Организационные и технические мероприятия при ремонтно-наладочных работах на ВЛ 110 кВ

5.6 Пожарная безопасность

5.7 Экологичность проекта

Список использованных источников


Введение

Оптимизация режимов работы Шарыповских электрических сетей по напряжению и коэффициентам трансформации с минимизацией потерь мощности и электроэнергии. В электрических сетях при передаче электроэнергии (ЭЭ) от источников к потребителям часть ее неизбежно расходуется на нагрев проводников, создание электромагнитных полей и прочие эффекты. Потери электроэнергии (их техническая величина и коммерческие потери) зависят от параметров режима и схемы электрической сети, определяются несовершенством системы учета, неравномерностью оплаты, хищениями и т.д. Решению задачи снижения потерь ЭЭ посвящено значительное количество работ, рассматривающих различные аспекты данной проблемы. Снижение технической величины потерь ЭЭ (оптимизация режимов работы по активной и реактивной мощности) является сложной инженерно-технической задачей, решение которой требует наличия прикладного математического обеспечения. Сложность применяемых алгоритмов, значительный объем исходных данных приводят к необходимости раздельного рассмотрения задачи оптимального распределения активных и реактивных мощностей. Кроме указанных причин, разделению задачи оптимизации способствует то, что влияние активных мощностей электростанций на распределение реактивных весьма значительно, а обратное относительно невелико. Этим оправдывается практическое решение задачи оптимизации режимов по напряжению, реактивной мощности и коэффициентам трансформации как задачи "дооптимизации" режима при заданном распределении активных мощностей.

В соответствии со структурой и принципами оперативного управления энергосистемой соответствующие подразделения занимаются оптимизацией режимов работы системы на своих уровнях, причем выработанные задания передаются на более низкий уровень как обязательные для него требования к режиму или наложенные на режим ограничения. Оптимизация режима в целом достигается при строгом соблюдении "принципа оптимальности", в соответствии с которым задания, полученные от более высокого уровня системы, реализуются при обеспечении оптимального режима на данном уровне. Преимущество разделения задачи можно видеть с позиций информационной и аппаратной. Вследствие высокой сложности сетей подробный расчет оптимального режима, рассматривающий каждый источник и каждое средство регулирования, значительно трудоемок и трудно реализуем. Кроме того, сбор информации о энергосистеме и ее концентрация в одном месте сопряжены с немалыми затратами.

Отмеченная сложность задач как оптимизации по "всем переменным" так и оптимизация режимов по напряжению, реактивной мощности и коэффициентам трансформации приводит к невозможности оптимального управления режимами, без использования прикладного математического обеспечения, даже опытным диспетчерским персоналом. Этому также способствует невозможность получения в режиме реального времени достоверных сведений о потерях мощности.

Рассматриваемой задаче оптимизации режимов по напряжению, реактивной мощности и коэффициентам трансформации посвящена значительная часть работ, ряд из которых были реализованы в программно-вычислительных комплексах. Для решения поставленной задачи применен программно-вычислительных комплекс "Rastr".

Целью данной работы является снижение потерь электроэнергии. Ожидается, что после реализации предложенных мероприятий оно составит 10-15%, а это приведет к значительному экономическому эффекту и в конечном счете снижению цены единицы продукции, отпущенной потребителю. Реализация комплекса мероприятий, полученных при решении задачи оптимизации, не потребует от предприятия электрических сетей (ПЭС) дополнительных капитальных вложений. Учитывая это, необходимо отметить, высокую экономическую эффективность применения результатов данной работы на практике.

Сложность решаемой задачи приводит к тому, что при непосредственном применении используемых комплексов невозможно в полной мере решить задачу оптимизации по напряжению, реактивной мощности и коэффициентам трансформации. Поэтому в данной работе применяется метод раздельной оптимизации режима. Решение задачи проходит в три этапа: снижение влияния неоднородностей замкнутых частей сети (определение оптимальных точек размыкания в сети 35 кВ), оптимальное распределение реактивной мощности между источниками внутри сети, регулирование уровня напряжения в сети. Такой подход к решению задачи оптимизации режимов по напряжению, реактивной мощности и коэффициентам трансформации приводит к значительному повышению эффекта оптимизации. Отметим, что полученные предварительные результаты расчетного анализа являются несколько идеализированными, так как практически трудно реализовать полный объем рекомендуемых оптимизационных мероприятий, вследствие чего ожидаемый эффект будет несколько меньше теоретического. Однако даже частичное выполнение предложенных мероприятий приведет к значительной экономии электроэнергии. Для более полного согласования теоретических результатов и практической реализации полученных рекомендаций необходима информация о графиках изменениях напряжения на шинах питающих подстанций. Основные потери мощности в рассматриваемых сетях сосредоточены в линиях 110 кВ, поэтому наибольший эффект оптимизации ожидается при регулировании уровня напряжения. В связи с этим результаты оптимизации в большей мере зависят от взаимодействия и согласованной работы ШРЭС со смежными предприятиями электрических сетей.

Важными практическими результатами данной работы является выработка рекомендаций и мероприятий по оптимизации режимов сетевого предприятия с целью снижения потерь мощности и электроэнергии и улучшения ее качества.


1 Характеристика предприятия электрических сетей как объекта исследования

1.1 Экономико – географическая характеристика района

Шарыповкий район находится в южной части Красноярского края и граничит с Ужурским районом, Балахтинским районом, Новоселовским районом, Кемеровской областью и республикой Хакассия. Город Шарыпово находится на западе Красноярского края, в 320 км от краевого центра. Город расположен в Назаровской котловине, окруженной с востока плавными невысокими отрогами Восточного Саяна, с запада – крутыми хребтами Кузнецкого Алатау. Он находится на высоте 320 – 350 м над уровнем моря и лежит на одной широте с Москвой. Шарыпово является административным центром КАТЭКа – Канско-Ачинского топливно-энергетического комплекса. Это город строителей, угольщиков, энергетиков. Статус города, преобразованного из старинного села Шарыпово, он получил 31 июля 1981 года. Главное природное богатство, благодаря которому горд получил рождение – бурый уголь Березовского месторождения, являющимся одним из крупнейших Канско-Ачинского буроугольного бассейна. Город Шарыпово и окружающий его Шарыповский район как две самостоятельные административно-территориальные единицы занимают пространство в четыре тысячи квадратных километров. Шарыповский район лежит на стыке Западно-Сибирской равнины, Среднесибирского плоскогорья и гор Южной Сибири, поэтому имеет сложное геологическое строение и рельеф. Здесь соседствуют предгорные равнины, отроги Кузнецкого Алатау и Восточного Саяна, межгорные впадины (Назаровская, Чебаково-Балахтинская котловина), низкогорные кряжи Южно-Енсейский, Арга, Солгон. Район находится в центре евроазиатского материка, вдали от морей и океанов. Территория относится к бассейнам крупнейших рек страны – Енисея и Оби, другие крупные реки – Чулым, Кия, Кан, Бирюса. Регион обладает уникальной природой, несчетным количеством озер и речек, полезными ископаемыми, многочисленными памятниками культур прошлого.

Район характеризуется резко континентальным климатом с жарким летом и холодной зимой. Среднегодовая температура воздуха составляет -0,3°С со среднемесячными значениями наиболее холодного месяца (январь) -16,6°С. Наиболее теплого месяца (июль) +17,8°С. Минимальная температура в январе составляет -43°С, в июле +7°С. Максимальная температура в июле составляет +38°С, в январе +10°С. Продолжительность безморозного периода 100 – 120 дней. Данный район имеет невысокое среднегодовое количество осадков, которое составляет 512 мм.

Территория находится на стыке двух промышленно развитых районов: Красноярского и Кузбасса. С севера на юг район пересекает железнодорожная линия Ачинск - Красная Сопка – Ужур - Абакан, дающая выход к Транссибирской и Южно-Сибирской магистрали. Указанная железнодорожная линия и ее тупиковые ответвления Красная Сопка – Шушь – Базыр и Шушь – Кия-Шалтырь однопутные, оборудованы полуавтоматической блокировкой и обслуживаются тепловозной тягой. Ближайшими к объектам КАТЭКа железнодорожными станциями являются промежуточные станции Шарыпово и Дубинино Красноярской железной дороги.

Район характеризуется сравнительно слаборазвитой сетью существующих автодорог, из которых ближайшими автодорогами областного значения являются автодороги Ачинск – Назарово – Ужур, Красная Сопка – Березовская.

КАТЭК – это 600 млн тонн бурого угля, размещенных на 60 тысячах кв.км. Угольные пласты залегают на незначительной глубине, порой в 15-20 метрах от поверхности. Все месторождения Канско-Ачинского бассейна находятся в центре Красноярского края, их насчитывается 24. Мощность угольных пластов от 20 до 100 метров. На КАТЭКе имеются все возможности для создания самых эффективных ГРЭС. Строительство Березовской ГРЭС развернулось на месте, где стояла деревня Кадат, которая входила в Шарыповский район. Для грэс создано Берешское водохранилище (пруд – охладитель), с площадью водного зеркала 30 кв. км и объемом воды – 200 млн. кубометров. С его помощью водоснабжение на ГРЭС осуществляется по оборотной схеме.

1.2 Конструктивно параметрическая характеристика объекта

Филиал "КАТЭКэлектросеть" - один из самых молодых в составе ОАО "Красноярскэнерго". Его создание в составе Красноярскэнерго было определено приказом Минэнерго СССР №296 от 22.08.80г. Предприятие было организовано для энергоснабжения Южного промышленного узла КАТЭКа и выделено из состава Западных электрических сетей приказом РЭУ Красноярскэнерго №158 от 03.10.80г. От этой даты и ведется начало истории КАТЭКэлектросеть.

Организация КАТЭКэлектросетей обусловлена необходимостью повышения надежности электроснабжения потребителей Канско-Ачинского энергетического комплекса. Зона обслуживания КАТЭКэлектросетей включает Шарыповский, Ужурский, Балахтинский и Новоселовский административные районы. Центр предприятия находится в городе Шарыпово.

В 1981 году был организован Шарыповский РЭС для решения проблем, которые встали перед строителями КАТЭКа: это строительство и эксплуатация объектов промышленных площадок Березовской ГРЭС-1, разреза "Березовский" и города Шарыпово. В этом же году от БГРЭС-1 переданы функции заказчика по строительству ПС "Итатская"-1150/500/220 кВ и в сентябре была введена первая очередь подстанции 110/10 кВ. В 1997 году ПС "Итатская" была передана в состав Красноярского предприятия межсистемных электрических сетей.

В 1986 году создается Новоселовский РЭС, который и завершил создание производственной структурной схемы предприятия.

В Ужурские РЭС (УРЭС) входят: количество подстанций 35-220 кВ – 9 шт.; ТП 10/0,4 кВ – 314 шт.; общая протяженность линий электропередач – 1701 км (по трассе), в т.ч. протяженность ВЛ 0,4-10 кВ – 1258 км, ВЛ 35-220 кВ – 443 км.

В Балахтинские РЭС (БРЭС) входят: количество подстанций 35-110 кВ – 12 шт.; ТП 10/0,4 кВ – 353 шт.; общая протяженность линий электропередач – 1916 км (по трассе), в т.ч. протяженность ВЛ 0,4-10 кВ – 1372 км, ВЛ 35-220 кВ – 544 км.

В Новоселовские РЭС (НРЭС). В настоящее время в зону обслуживания НРЭС входят: количество подстанций 35-110 кВ – 8 шт.; ТП 10/0,4 кВ – 194 шт.; общая протяженность линий электропередач – 1141 км (по трассе), в т.ч. протяженность ВЛ 0,4-10 кВ – 690 км.

В Шарыповские РЭС (ШРЭС): В настоящее время в зону обслуживания ШРЭС входят: количество подстанций 35-220 кВ – 12 шт.; общая протяженность линий электропередач – 1141 км (по трассе), в т.ч. протяженность ВЛ 0,4-10 кВ – 832 км.

Обеспечение электроэнергией потребителей Красноярского края, входящих в зону действия предприятия "КАТЭКэлектросети" осуществляется от подстанции 220/110 кВ Шарыповская с двумя АТ по 125 мВА, БУР-1 (Березовский угольный разрез №1) с двумя АТ по 125 мВА, Ужур с двумя АТ по 63 мВА.

Подстанция Шарыповская и БУР-1 по ВЛ-220 (Итатская – Шарыповская - БУР-1) присоединены к линиям 220 кВ подстанции 1150/500/220 кВ Итатская Красноярской энергосистемы. Подстанция 220/110 кВ Ужур присоединена к ВЛ-220 кВ Назаровская ГРЭС – Абакан районная.

По состоянию на 01.01.91г. электроснабжение сельскохозяйственных потребителей в зоне КАТЭКсеть осуществлялось от 33 подстанций 35-110 кВ, из которых 21 ПС 110-220 кВ и 12 ПС 35/10 кВ. Из общего количества подстанций 35_110 кВ 27 ПС общей мощностью 278 тыс. кВ·А сельскохозяйственного назначения.

Из общего количества подстанций 32 ПС (97%) имеют два трансформатора и 28 ПС имеют двухстороннее питание. На 26 подстанциях установлены трансформаторы с автоматическим регулированием напряжения под нагрузкой (АРПН). На пяти подстанциях установлены по одному трансформатору, а на семи подстанциях установлены трансформаторы без регулирования напряжения под нагрузкой. Сети сельскохозяйственного назначения имеют недостаточную надежность, т.к. 20% подстанций имеют одностороннее питание. Кроме того, пропускная способность сетей недостаточна для пропуска мощности, обусловленной внедрением электроснабжения в сельскохозяйственном производстве и в быту сельского населения.

1.3 Описание основного оборудования и характеристика элементов схемы замещения

Расчету установившихся режимов электрической сети предшествует составление ее схемы замещения. Она получается в результате объединения схем замещения отдельных элементов в соответствии с принципиальной схемой электрических соединений. Необходимо выбрать схему замещения каждого элемента и рассчитать ее параметры.

В качестве схемы замещения линий используем П-образную схему замещения с сосредоточенными сопротивлениями и разнесенными по концам линии проводимостями.

Параметры схемы замещения ЛЭП можно также определить используя справочные данные /1/ или аналитические выражения.

Удельное активное сопротивление ЛЭП, Ом/км, определим из выражения


,

где ρ – удельное активное сопротивление алюминия, мм2 /км;

F – сечение провода, мм.

Удельное индуктивное сопротивление ЛЭП, Ом/км, определяется по формуле вида

,

где Dср – среднегеометрическое расстояние между фазами, м;

rпр – радиус провода, мм;

μ=1 – магнитная проницаемость алюминия.

Среднегеометрическое расстояние между фазами, м,

,

где – расстояния между проводами отдельных фаз, м.

Удельная емкостная проводимость, См/км,

.

Параметры схемы замещения ЛЭП определяются из выражений вида

,

,


где ZЛЭП – комплексное сопротивление ЛЭП, Ом;

RЛЭП – активное сопротивление ЛЭП, Ом

XЛЭП – индуктивное сопротивление ЛЭП, Ом

Bс – емкостное сопротивление ЛЭП, См

lЛЭП – длинна ЛЭП, км.

Параметры ЛЭП Восточных сетей сведены в таблицу 1.1.

Таблица 1.1 – Параметры ЛЭП эксплуатируемых ШРЭС

Наименование ЛЭП Обозначение U, кВ Марка провода Длинна, км R, Ом X, Ом BС , мСм
Итатская – Шарыповская №25 Д-123 220 2АС-400 14,89 0,543 3,029 80,393
Итатская – Шарыповская №25 Д-124 220 2АС-400 14,89 0,543 3,029 80,393
Шарыповская №25 – БГРЭС-1 Д-127 220 АС-240 5,70 0,684 2,415 14,833
Шарыповская №25 – БГРЭС-1 Д-128 220 АС-240 5,70 0,684 2,415 14,833
Шарыповская №25 – БУР Д-125 220 АС-500 17,75 1,047 7,099 48,722
Шарыповская №25 – БУР Д-126 220 АС-500 17,75 1,047 7,099 48,722
БУР – Оп.14 С-765 110 АС-185 2,80 0,437 1,127 7,727
БУР – Оп.14 С-766 110 АС-185 2,80 0,437 1,127 7,727
Оп.14 - Жилпоселок С-765 110 АС-185 5,00 0,780 2,000 13,799
Оп.14 - Жилпоселок С-766 110 АС-185 5,00 0,780 2,000 13,799
Оп.14 – Конвейерного транспорта С-765 110 АС-150 5,326 1,039 2,175 14,388
Оп.14 – Конвейерного транспорта С-766 110 АС-150 5,326 1,039 2,175 14,388
БУР – Оп.129 С-763 110 АС-70 22,53 9,463 9,724 57,270
БУР – Оп.129 С-764 110 АС-70 22,53 9,463 9,724 57,270
Оп.129 - Березовская С-763 110 АС-70 26,38 11,080 11,383 67,057
Оп.129 - Березовская С-764 110 АС-70 26,38 11,080 11,383 67,057
Оп.129 - Новоалтатка С-763 110 АС-95 0,54 0,170 0,243 1,407
Оп.129 - Новоалтатка С-764 110 АС-95 0,54 0,170 0,243 1,407
БУР – Оп.10 С-771 110 АС-95 2,00 0,628 0,856 5,212
БУР – Оп.10 С-772 110 АС-95 2,00 0,628 0,856 5,212
Оп.10 – Центральный выезд С-771 110 АС-95 1,00 0,314 0,436 2,606
Оп.10 – Центральный выезд С-772 110 АС-95 1,00 0,314 0,436 2,606
Оп.10 – Совмещенная тяговая С-771 110 АС-95 0,01 0,003 0,020 0,026
Оп.10 – Совмещенная тяговая С-772 110 АС-95 0,01 0,003 0,020 0,026
БУР – Оп.33 С-769 110 АС-70 6,46 2,713 2,799 16,421
БУР – Оп.33 С-770 110 АС-70 6,46 2,713 2,799 16,421
Оп.33 – Дренажная шахта С-769 110 АС-70 2,54 1,067 1,110 6,457
Оп.33 – Дренажная шахта С-770 110 АС-70 2,54 1,067 1,110 6,457
Оп.33 – Западный борт С-769 110 АС-70 0,01 0,004 0,020 0,025
Оп.33 – Западный борт С-770 110 АС-70 0,01 0,004 0,020 0,025
БУР – Опорная база С-767 110 АС-70 5,98 2,512 2,592 15,201
БУР – Опорная база С-768 110 АС-70 5,98 2,512 2,592 15,201
Шарыповская №25 – Оп.10 С-758 110 АС-150 2,00 0,390 0,827 5,403
Шарыповская №25 – Оп.10 С-759 110 АС-150 2,00 0,390 0,827 5,403
Оп.10 – Строит. БГРЭС-1 С-758 110 АС-150 3,60 0,702 1,475 9,725
Оп.10 – Строит. БГРЭС-1 С-759 110 АС-150 3,60 0,702 1,475 9,725
Оп.10 – Инголь С-758 110 АЖ-120 18,08 4,502 7,458 48,111
Оп.10 – Инголь С-759 110 АЖ-120 18,08 4,502 7,458 48,111
Шарыповская №25 – РПКБ С-754 110 АС-150 5,26 1,026 2,148 14,210
Шарыповская №25 – РПКБ С-755 110 АС-150 5,26 1,026 2,148 14,210
Шарыповская №25 – Оп.13 С-756 110 АС-185 2,75 0,429 1,107 7,589
Шарыповская №25 – Оп.13 С-757 110 АС-185 2,75 0,429 1,107 7,589
Оп.13 – Береш С-756 110 АС-185 6,55 1,022 2,615 18,077
Оп.13 – Береш С-757 110 АС-185 6,55 1,022 2,615 18,077
Оп.13 – Западная С-756 110 АС-150 0,56 0,109 0,243 1,513
Оп.13 – Западная С-757 110 АС-150 0,56 0,109 0,243 1,513
Шарыповская №25 – Оп.102 С-761 110 АС-150 16,68 3,253 6,779 45,061
Шарыповская №25 – Оп.102 С-762 110 АС-150 16,68 3,253 6,779 45,061
Оп.102 – Парная С-761 110 АС-150 22,99 4,483 9,337 62,107
Оп.102 – Парная С-762 110 АС-150 22,99 4,483 9,337 62,107
Оп.102 – Шарыповская №27 С-761 110 АС-150 2,88 0,562 1,183 7,780
Оп.102 – Шарыповская №27 С-762 110 АС-150 2,88 0,562 1,183 7,780
Оп.102 – Городская С-761 110 АС-150 0,05 0,010 0,036 0,135
Оп.102 – Городская С-762 110 АС-150 0,05 0,010 0,036 0,135
Парная – Оп.79а С-79 110 АС-150 20,40 3,978 8,287 55,110
Парная – Оп.79а С-80 110 АС-150 20,40 3,978 8,287 55,110
Оп.79а – Итатская №19 С-79 110 АС-70 2,50 1,050 1,093 6,355
Оп.79а – Итатская №19 С-80 110 АС-70 2,50 1,050 1,093 6,355
Оп.79а – Оп.119 С-79 110 АС-150 10,33 2,014 4,204 27,906
Оп.79а – Оп.119 С-80 110 АС-150 10,33 2,014 4,204 27,906
Оп.119 – Горячегорская С-79 110 АС-150 2,40 0,468 0,989 6,484
Оп.119 – Горячегорская С-80 110 АС-150 2,40 0,468 0,989 6,484
Оп.119 – Кия-Шалтырь С-79 110 АС-150 53,70 10,472 21,788 145,07
Оп.119 – Кия-Шалтырь С-80 110 АС-150 53,70 10,472 21,788 145,07
Парная – Оп.91 С-70 110 АС-150 20,32 3,962 8,254 54,894
Парная – Оп.91 С-71 110 АС-150 20,32 3,962 8,254 54,894
Оп.91 – Ораки С-70 110 АС-95 0,93 0,292 0,407 2,424
Оп.91 – Ораки С-71 110 АС-95 1,10 0,345 0,478 2,867
Оп.91 – Ужур С-70 110 АС-150 23,11 4,506 9,386 62,431
Оп.91 – Ужур С-71 110 АС-150 23,11 4,506 9,386 62,431
Ужур – Чулым С-74 110 АС-95 20,79 6,528 8,753 54,181
Ужур – Чулым С-75 110 АС-95 20,79 6,528 8,753 54,181
Ужур – Малый Имыш С-72 110 АС-150 39,91 8,546 18,158 121,34
АС-185 4,90
Ужур – Малый Имыш С-73 110 АС-150 44,81 8,738 18,184 121,05
Малый Имыш – Оп.115 С-776 110 АС-70 28,30 11,886 12,210 71,937
Малый Имыш – Оп.115 С-777 110 АС-95 28,30 8,886 11,910 73,754
Оп.115 – Светлолобовская С-776 110 АС-70 2,20 0,924 0,964 5,592
Оп.115 – Светлолобовская С-777 110 АС-95 2,20 0,691 0,940 5,733
Оп.115 – Новоселовская С-776 110 АС-70 12,50 5,250 5,402 31,774
Оп.115 – Новоселовская С-777 110 АС-95 12,50 3,925 5,269 32,577
Новоселовская – Орошение С-773 110 АС-120 7,37 1,835 3,051 19,602
Орошение – Толстый Мыс С-773 110 АС-120 13,56 3,376 5,600 36,065
Новоселовская – Оп.129 С-78 110 АС-70 31,50 13,230 13,595 80,033
Оп.129 – Курганы С-78 110 АС-70 0,57 0,239 0,261 1,448
Оп.129 – Оп.148 С-78 110 АС-70 4,60 1,932 1,999 11,687
Оп.148 – Чулымская С-78 110 АС-95 6,30 1,978 2,665 16,411
Оп.148 – Оп.247 С-78 110 АС-70 30,42 12,776 13,130 77,289
Оп.247 – Балахтинская С-78 110 АС-120 13,4 3,337 5,531 35,658
Оп.247 – Оп.265 С-78 110 АС-70 4,38 1,840 1,904 11,128
Оп.265 – Приморская С-78 110 АС-70 13,75 5,775 5,943 34,935
Оп.265 – Новый Огур С-78 110 АС-70 6,60 2,772 2,861 16,769
Новоселовская – Оп.124 С-775 110 АС-120 31,58 7,863 13,021 83,993
Оп.124 – Курганы С-775 110 АС-120 0,56 0,139 0,246 1,489
Оп.124 – Оп.141 С-775 110 АС-120 4,60 1,145 1,910 12,235
Оп.141 – Чулымская С-775 110 АС-95 6,30 1,978 2,665 16,411
Оп.141 – Оп.238 С-775 110 АС-120 26,0 6,474 10,723 69,152
Оп.238 – Балахтинская С-775 110 АС-120 13,3 3,312 5,493 35,374
Оп.238 – Оп.256 С-775 110 АС-120 4,27 1,063 1,774 11,357
Оп.256 – Приморская С-775 110 АС-120 14,2 3,536 5,864 37,768
Оп.256 – Новый Огур С-775 110 АС-120 6,69 1,666 2,771 17,793
Малый Имыш – Оп.206 С-781 110 АС-70 38,40 16,128 15,849 97,611
Малый Имыш – Оп.206 С-782 110 АС-70 38,40 16,128 15,849 97,611
Оп.206 – Кожаны С-781 110 АС-70 1,212 0,509 0,515 3,081
Оп.206 – Кожаны С-782 110 АС-70 1,212 0,509 0,515 3,081
Оп.206 – Тюльковская С-781 110 АС-70 12,30 5,166 5,087 31,266
Оп.206 – Тюльковская С-782 110 АС-70 12,30 5,166 5,087 31,266
Шарыповская №27 – Шушь Т-41 35 АС-95 17,20 5,401 6,925 46,897
Шарыповская №27 – Шушь Т-42 35 АС-95 17,20 5,401 6,925 46,897
Шушь – Локшино Т-43 35 АС-95 23,48 7,373 9,572 63,189
Локшино – Михайловка Т-49 35 АС-95 17,58 5,520 7,171 47,311
Михайловка – Крутоярская Т-44 35 АС-95 9,07 2,848 3,707 24,409
Михайловка – Яга Т-45 35 АС-95 25,43 7,985 10,366 68,437
Крутоярская – Красная сопка Т-24 35 АС-95 16,15 5,071 6,589 43,463
Крутоярская – Солгон Т-26 35 АС-70 23,82 10,004 9,963 62,475
Солгон – Степное (ЗЭС) Т-26 35 АС-70 28,55 11,991 11,938 74,881
Яга – Петропавловка Т-46 35 АС-95 33,50 10,519 13,650 90,154
Малый Имыш – Петропавловка Т-37 35 АС-95 23,20 7,285 9,336 63,256
Малый Имыш – Петропавловка Т-38 35 АС-95 23,20 7,285 9,336 63,256
Петропавловка – Грузенка Т-6 35 АС-70 20,70 8,694 8,660 54,292
Грузенка – Курбатовская Т-7 35 АС-70 11,41 4,792 4,781 29,926
Курбатовская – Тюльковская Т-34 35 АС-70 19,28 8,098 8,067 50,568
Тюльковская – Белоярская Т-35 35 АС-70 16,43 6,901 6,877 43,093
Тюльковская – Белоярская Т-36 35 АС-70 1,9 7,861 5,863 35,930
АС-50 11,93
Тюльковская – Еловка Т-11 35 АС-70 24,14 10,139 10,097 63,314
Малый Имыш – Ужурсовхоз Т-39 35 АС-95 17,7 5,558 7,126 48,260
Малый Имыш – Ужурсовхоз Т-40 35 АС-95 17,7 5,558 7,126 48,260

Двухобмоточные трансформаторы представляются в виде однолучевых Г-образных схем замещения. Типы трансформаторов установленных на подстанциях предприятия "КАТЭКэлектросеть" и их паспортные данные приведены в таблице 1.2. Параметры схемы замещения можно определить используя справочные данные /2/, или используя аналитические выражения.

Активное сопротивление трансформатора, Ом, определим по формуле

,

где ΔPк – потери короткого замыкания в трансформаторе, кВт;

Uном – номинальное напряжение обмотки трансформатора, к которой приводится сопротивление, кВ;

Sном – номинальная мощность трансформатора, МВ·А.

Индуктивное сопротивление трансформатора, Ом, определим из выражения


,

где uк – напряжение короткого замыкания, %.

Активная проводимость трансформатора, См, вычислим воспользовавшись выражением

(1.9)
,

где ΔPх.х. – активные потери холостого хода в трансформаторе, кВт.

Индуктивная проводимость трансформатора, См, вычисляем из выражения

(1.10)
,

где Iх.х. – ток холостого хода трансформатора, % .


Таблица 1.2 – Паспортные данные трансформаторов ШРЭС

Название подстанции Тип трансформатора Пределы регулирования Кол. ТР, шт Uном , кВ uк , % ΔPк , кВт ΔPх.х. , кВт Iх.х. , %
ВН СН НН ВН-СН ВН-НН СН-НН
Итатская 10В АОДЦТН-167000 ±6×2,1% 2 500/√3 230/√3 11,0 11,0 35,0 21,5 325 125 0,4
Шарыповская №25 АТДЦТН-125000 ±6×2,0% 2 230 121 11,0 11,0 31,0 16,0 290 85 0,5
БУР АТДЦТН-125000 ±6×2,0% 2 230 121 11,0 11,0 31,0 16,0 290 85 0,5
Жилпоселок ТДН-16000/110 ±9×1,78% 2 115 11,0 10,5 85,0 19,0 0,7
Конвейерного транспорта ТРДН-40000/110 ±9×1,78% 1 115 10,5/10,5 10,5 172 36,0 0,65
ТРДЦН-40000/110 ±9×1,78% 1 115 10,5/10,5 10,5 172 36,0 0,65
Березовка ТДТН-10000/110 ±9×1,78% 2 115 38,5 11,0 10,5 17,0 6,0 76,0 17,0 1,1
Новоалтатка ТДН-10000/110 ±9×1,78% 2 115 11,0 10,5 60,0 14,0 0,7
Центральный выезд ТДН-16000/110 ±9×1,78% 2 115 11,0 10,5 85,0 19,0 0,7
Совмещ. тяговая ТДТНЖ-25000/110 ±9×1,78% 2 115 27,5 6,6 10,5 17,0 6,0 140 42,0 0,9
Дренажная шахта ТМН-6300/110 ±9×1,78% 2 115 6,6 10,5 44,0 11,5 0,8
Дренажная шахта ТДН-10000/110 ±9×1,78% 1 115 11,0 10,5 60,0 14,0 0,7
Опорная база ТМН-6300/110 ±9×1,78% 2 115 6,6 10,5 44,0 11,5 0,8
Западный Борт ТДН-10000/110 ±9×1,78% 1 115 11,0 10,5 60,0 14,0 0,7
ТДН-16000/110 ±9×1,78% 1 115 6,6 10,5 85,0 19,0 0,7
Строит. БГРЭС-1 ТДН-16000/110 ±9×1,78% 2 115 11,0 10,5 85,0 19,0 0,7
Инголь ТМН-6300/110 ±9×1,78% 2 115 11,0 10,5 44,0 11,5 0,8
РПКБ ТРДН-40000/110 ±9×1,78% 2 115 10,5/10,5 10,5 172 36,0 0,65
Береш ТДН-10000/110 ±9×1,78% 2 115 11,0 10,5 60,0 14,0 0,7
Западная ТДН-16000/110 ±9×1,78% 2 115 11,0 10,5 85,0 19,0 0,7
Парная ТМН-6300/110 ±9×1,78% 2 115 11,0 10,5 44,0 11,5 0,8
Шарыповская №27 ТДТН-10000/110 ±9×1,78% 2 115 38,5 11,0 10,5 17,0 6,0 76,0 17,0 1,1
Городская ТРДН-25000/110 ±9×1,78% 2 115 10,5/10,5 10,5 120 27,0 0,7
Итатская 19В ТМН-6300/110 ±9×1,78% 2 115 11,0 10,5 44,0 11,5 0,8
Горячегорск ТМТГ-7500/110 ±9×1,78% 1 115 6,6 10,5 44,0 11,5 0,8
ТМТГ-5000/110 ±9×1,78% 1 115 6,6 10,5 44,0 11,5 0,8
Кия-Шалтырь ТДТНГ-10000/110 ±9×1,78% 1 115 38,5 6,6 10,5 17,0 6,0 76,0 17,0 1,1
ТДТН-10000/110 ±9×1,78% 1 115 38,5 6,6 10,5 17,0 6,0 76,0 17,0 1,1
Ораки ТАМН-2500/110 +10(-8)×1,5% 1 110 11,0 10,5 22,0 5,5 1,5
ТАМН-2500/110 +10(-8)×1,5% 1 110 11,0 10,5 22,0 5,5 1,5
Ужур АТДЦТН-63000 ±6×2,0% 2 230 121 11,0 11,0 35,7 21,9 215 45 0,5
Учум ТДТН-10000/110 ±9×1,78% 2 115 38,5 11,0 10,5 17,0 6,0 76,0 17,0 1,1
Малый Имышь ТДТН-10000/110 ±9×1,78% 2 115 38,5 11,0 10,5 17,0 6,0 76,0 17,0 1,1
Светлолобовская ТМН-6300/110 ±9×1,78% 2 115 11,0 10,5 44,0 11,5 0,8
Новоселовская ТМН-6300/110 ±9×1,78% 2 115 11,0 10,5 44,0 11,5 0,8
Орошение ТДН-10000/110 ±9×1,78% 1 115 6,6 10,5 60,0 14,0 0,7
Толстый Мыс ТМН-6300/110 ±9×1,78% 2 115 11,0 10,5 44,0 11,5 0,8
Курганы ТМН-2500/110 +10(-8)×1,5% 2 110 11,0 10,5 22,0 5,5 1,5
Чулымская ТМН-6300/110 ±9×1,78% 2 115 11,0 10,5 44,0 11,5 0,8
Балахтанская ТДН-10000/110 ±9×1,78% 2 115 11,0 10,5 60,0 14,0 0,7
Приморская ТМН-6300/110 ±9×1,78% 1 115 11,0 10,5 44,0 11,5 0,8
ТМН-2500/110 +10(-8)×1,5% 1 110 11,0 10,5 22,0 5,5 1,5
Новый Огур ТМН-2500/110 +10(-8)×1,5% 1 110 11,0 10,5 22,0 5,5 1,5
ТАМ(Н)-2500/110 +10(-8)×1,5% 1 110 11,0 10,5 22,0 5,5 1,5
Кожаны ТМН-6300/110 ±9×1,78% 2 115 11,0 10,5 44,0 11,5 0,8
Тюльковская ТДТН-10000/110 ±9×1,78% 2 115 38,5 11,0 10,5 17,0 6,0 76,0 17,0 1,1
Шушь ТМН-4000/35 ±6×1,5% 2 35,0 11,0 7,5 33,5 6,7 1,0
Локшино ТМН-4000/35 ±6×1,5% 2 35,0 11,0 7,5 33,5 6,7 1,0
Михайловка ТМН-4000/35 ±6×1,5% 2 35,0 11,0 7,5 33,5 6,7 1,0
Крутоярская ТМН-6300/35 ±6×1,5% 2 35,0 11,0 7,5 46,5 9,2 0,9
Яга ТМН-2500/35 ±6×1,5% 2 35,0 11,0 6,5 23,5 5,1 1,1
Солгон ТМ-2500/35 ±2×2,5% 2 35,0 11,0 6,5 23,5 5,1 1,1
Петропавловка ТМН-2500/35 ±6×1,5% 2 35,0 11,0 6,5 23,5 5,1 1,1
Грузенка ТМН-6300/35 ±6×1,5% 2 35,0 11,0 7,5 46,5 9,2 0,9
Курбатовская ТМН-4000/35 ±6×1,5% 1 35,0 11,0 7,5 33,5 6,7 1,0
ТМН-6300/35 ±6×1,5% 1 35,0 11,0 7,5 46,5 9,2 0,9
Белоярская ТМН-2500/35 ±6×1,5% 1 35,0 11,0 6,5 23,5 5,1 1,1
ТМ-2500/35 ±2×2,5% 1 35,0 11,0 6,5 23,5 5,1 1,1
Еловка ТМН-2500/35 ±6×1,5% 2 35,0 11,0 6,5 23,5 5,1 1,1
Ужурсовхоз ТМН-4000/35 ±6×1,5% 2 35,0 11,0 7,5 33,5 6,7 1,0

Параметры двухобмоточных трансформаторов в схеме замещения приведены в таблице 1.3.

Таблица 1.3 – Параметры двухобмоточных трансформаторов ШРЭС

Тип трансформатора R, Ом X, Ом G, мСм B, мСм
ТДН-16000/110 4,391 86,79 1,437 8,469
ТРДН-40000/110 1,422 34,72 2,722 19,660
ТРДЦН-40000/110 1,422 34,72 2,722 19,660
ТДН-10000/110 7,935 138,86 1,059 5,293
ТМН-6300/110 14,661 220,42 0,870 3,811
ТРДН-25000/110 2,539 55,55 2,042 13,233
ТМТГ-7500/110 10,345 185,15 0,870 4,537
ТМТГ-5000/110 23,276 277,73 0,870 3,025
ТМН(ТАМН)-2500/110 42,592 508,20 0,455 3,099
ТМН-4000/35 2,565 22,97 5,469 32,653
ТМН-6300/35 1,435 14,58 7,510 46,286
ТМН(ТМ)-2500/35 4,606 31,85 4,163 22,449

Трехобмоточные трансформаторы представляются в виде трехлучевой Г-образной схемы замещения.

Параметры трехобмоточного трансформатора также можно определить, используя справочные данные /2/ или следующие выражения.

Активные сопротивления обмоток высшего, среднего и низшего напряжений, Ом, определим по формулам

(1.11)
,

,

,


где ΔPк,в , ΔPк,с , ΔPк,с – потери активной мощности короткого замыкания

соответствующие лучам схемы замещения, кВт.

Потери активной мощности короткого замыкания соответствующие лучам схемы замещения, кВт, определяются из выражений

ΔPк,в =0,5(ΔPк,в-н + ΔPк,в-с - ΔPк,с-н ),

(1.12)
ΔPк,с =0,5(ΔPк,в-с + ΔPк,с-н - ΔPк,в-н ),

ΔPк,н =0,5(ΔPк,в-н + ΔPк,с-н - ΔPк,в-с ),

где ΔPк,в-н , ΔPк,в-с , ΔPк,с-н – потери активной мощности короткого замыкания между обмотками ВН и НН, ВН и СН, СН и НН, соответственно, кВт.

Так как отечественные трехобмоточные трансформаторы в целях унификации в основном изготавливаются с обмотками одинаковой мощности, то в таблице 1.3 заданы потери на одну пару обмоток (ΔPк,в-н ). В этом случае активные сопротивления всех трех обмоток равны между собой.

Индуктивные сопротивления обмоток высшего, среднего и низшего напряжений, Ом, определяются из выражений

,

(1.13)
,

,

где uк,в , uк,с , uк,н – напряжения короткого замыкания обмоток соответствующих лучам схемы, %.

Напряжения короткого замыкания соответствующие лучам схемы замещения определяются из выражений вида:

uк,в =0,5(uк,в-н + uк,в-с - uк,с-н ),

uк,с =0,5(uк,в-с + uк,с-н - uк,в-н ),

uк,н =0,5(uк,в-н + uк,с-н - uк,в-с ),

где uк,в-н , uк,в-с , uк,с-н – потери активной мощности короткого замыкания между обмотками ВН и НН, ВН и СН, СН и НН соответственно, кВт.

Проводимости трехобмоточных трансформаторов вычисляются по выражениям (1.3) и (1.4). Параметры трехобмоточных трансформаторов для схемы замещения приведены в таблице 1.4.

Таблица 1.4 – Параметры трехобмоточных трансформаторов ВЭС.

Тип трансформатора RВ , Ом RС , Ом RН , Ом XВ , Ом XС , Ом XН , Ом G·10-6 , См B·10-6 , См
АОДЦТН-167000 0,486 0,486 0,486 61,128 0 113,523 1,500 8,016
АТДЦТН-125000 0,491 0,491 0,736 55,016 0 76,176 1,607 11,815
ТДТН-10000/110 5,026 5,026 5,026 142,169 0 82,656 1,285 8,318
ТДТНЖ-25000/110 1,481 1,481 1,481 56,868 0 33,063 3,176 17,013
ТДТНГ-10000/110 5,026 5,026 5,026 142,169 0 82,656 1,285 8,318
АТДЦТН-63000 1,433 1,433 2,149 104,121 0 195,646 0,851 5,955

Для расчета установившегося режима на схеме замещения также необходимо указать коэффициенты трансформации трансформаторов. Значения коэффициентов трансформации и соответствующие им анцапфы сведены в таблицу 1.6. База данных анцапф приведена в приложении А.

Объектом моделирования являются четыре режима характерных зимних и летних суток Шарыповских районных электрических сетей 2004 года. Замеры производились в 4, 9, 19 и в 22 часа, обозначим эти режимы номерами по порядку: первый, второй, третий и четвертый, соответственно.


Таблица 1.2 – Паспортные данные трансформаторов ШРЭС

Название подстанции Тип трансформатора Пределы регулирования Обозначение Сторона Режим
4.00 10.00 19.00 22.00
kт № анц. kт № анц. kт № анц. kт № анц.
Итатская 10В АОДЦТН-167000 ±6×2,1% ВН
АОДЦТН-167000 ±6×2,1% ВН
Шарыповская №25 АТДЦТН-125000 ±6×2,0% ВН
АТДЦТН-125000 ±6×2,0% ВН
БУР АТДЦТН-125000 ±6×2,0% ВН
АТДЦТН-125000 ±6×2,0% ВН
Жилпоселок ТДН-16000/110 ±9×1,78%
ТДН-16000/110 ±9×1,78%
Конвейерного транспорта ТРДН-40000/110 ±9×1,78%
ТРДЦН-40000/110 ±9×1,78%
Березовка ТДТН-10000/110 ±9×1,78%
ТДТН-10000/110 ±9×1,78%
Новоалтатка ТДН-10000/110 ±9×1,78%
ТДН-10000/110 ±9×1,78%
Центральный выезд ТДН-16000/110 ±9×1,78%
ТДН-16000/110 ±9×1,78%
Совмещ. тяговая ТДТНЖ-25000/110 ±9×1,78%
ТДТНЖ-25000/110 ±9×1,78%
Дренажная шахта ТМН-6300/110 ±9×1,78%
ТДН-10000/110 ±9×1,78%
Опорная база ТМН-6300/110 ±9×1,78%
ТМН-6300/110 ±9×1,78%
Западный Борт ТДН-10000/110 ±9×1,78%
ТДН-16000/110 ±9×1,78%
Строит. БГРЭС-1 ТДН-16000/110 ±9×1,78%
ТДН-16000/110 ±9×1,78%
Инголь ТМН-6300/110 ±9×1,78%
РПКБ ТРДН-40000/110 ±9×1,78%
Береш ТДН-10000/110 ±9×1,78%
Западная ТДН-16000/110 ±9×1,78%
Парная ТМН-6300/110 ±9×1,78%
Шарыповская №27 ТДТН-10000/110 ±9×1,78%
Городская ТРДН-25000/110 ±9×1,78%
Итатская 19В ТМН-6300/110 ±9×1,78%
Горячегорск ТМТГ-7500/110 ±9×1,78%
ТМТГ-5000/110 ±9×1,78%
Кия-Шалтырь ТДТНГ-10000/110 ±9×1,78%
ТДТН-10000/110 ±9×1,78%
Ораки ТАМН-2500/110 +10(-8)×1,5%
ТАМН-2500/110 +10(-8)×1,5%
Ужур АТДЦТН-63000 ±6×2,0%
Учум ТДТН-10000/110 ±9×1,78%
Малый Имышь ТДТН-10000/110 ±9×1,78%
Светлолобовская ТМН-6300/110 ±9×1,78%
Новоселовская ТМН-6300/110 ±9×1,78%
Орошение ТДН-10000/110 ±9×1,78%
Толстый Мыс ТМН-6300/110 ±9×1,78%
Курганы ТМН-2500/110 +10(-8)×1,5%
Чулымская ТМН-6300/110 ±9×1,78%
Балахтанская ТДН-10000/110 ±9×1,78%
Приморская ТМН-6300/110 ±9×1,78%
ТМН-2500/110 +10(-8)×1,5%
Новый Огур ТМН-2500/110 +10(-8)×1,5%
ТАМ(Н)-2500/110 +10(-8)×1,5%
Кожаны ТМН-6300/110 ±9×1,78%
Тюльковская ТДТН-10000/110 ±9×1,78%
Шушь ТМН-4000/35 ±6×1,5%
Локшино ТМН-4000/35 ±6×1,5%
Михайловка ТМН-4000/35 ±6×1,5%
Крутоярская ТМН-6300/35 ±6×1,5%
Яга ТМН-2500/35 ±6×1,5%
Солгон ТМ-2500/35 ±2×2,5%
Петропавловка ТМН-2500/35 ±6×1,5%
Грузенка ТМН-6300/35 ±6×1,5%
Курбатовская ТМН-4000/35 ±6×1,5%
ТМН-6300/35 ±6×1,5%
Белоярская ТМН-2500/35 ±6×1,5%
ТМ-2500/35 ±2×2,5%
Еловка ТМН-2500/35 ±6×1,5%
Ужурсовхоз ТМН-4000/35 ±6×1,5%

2. Характеристика задачи расчета, анализа и оптимизации режимов РЭС 110-35 кВ по напряжению, реактивной мощности и коэффициентам трансформации

Питающие электрические сети напряжением 110 кВ, распределительные сети высшего (6-35 кВ) и низшего (до 1 кВ) напряжений формируют состав и структуру большинства предприятий электрических сетей (ПЭС). Сети напряжением 220 кВ входят преимущественно в состав формирующихся предприятий магистральных электрических сетей (МЭС). Основная задача ПЭС в современных условиях состоит в выполнении своих договорных обязательств перед электропотребителями по обеспечению их качественной электрической энергией при минимальных собственных затратах /3/. Одним из направлений решения данной задачи является оптимальное управление режимами сетей.

При планировании режимов, как краткосрочном (от суток до недели), так и долгосрочном (месяц, квартал, год) и при оперативном управлении режимы, конечно, являются допустимыми, но редко оптимальными. Допустимый режим – это режим удовлетворяющий условиям надежности электроснабжения и качества электроэнергии, в то время как оптимальный режим – это такой из допустимых режимов, который обеспечивает минимум издержек при заданной на каждый момент времени нагрузке потребителей. Под издержками в данном случае понимаются потери активной мощности и энергии

При планировании и ведении режимов необходимо обеспечение ряда режимно – технических ограничений и условий для обеспечения допустимости режима. Последние практически сводятся к ограничениям по отклонениям напряжения, по загрузке элементов сети, по реактивной мощности источников. Ограничения по отклонениям напряжения определяются допусками для оборудования сетей 6-110 кВ /3,4/, требованиями стандарта (ГОСТ 13109 – 97) на качество электроэнергии в низковольтных сетях /5/. Кроме того необходимо обеспечить приемлемые условия регулирования напряжения на приемных подстанциях 35 – 110 кВ, вследствие ограниченного располагаемого регулируемого диапазона устройств регулирования этих подстанций. Большинство трансформаторов подстанций 110 кВ и в меньшей мере трансформаторы 35 кВ оборудованы устройствами РПН. За их отсутствием регулирование напряжения может выполняться генераторами местных ТЭЦ, регулируемыми конденсаторными батареями, синхронными двигателями и другими управляемыми источниками реактивной мощности. При расчете режима допускается изменение регулируемых параметров в достаточно широких пределах, до тех пор пока параметры режима и схемы не выходят за рамки режимно – технических ограничений и условий (режим является допустимым). При этом их значения оказывают существенное влияние на экономичность режима. Выбор таких параметров вручную без оптимизации чрезвычайно сложен, и даже у опытных и квалифицированных сотрудников почти всегда приводит к ухудшению экономичности. Поэтому целесообразно на основании расчета и анализа имеющихся или планируемых установившихся режимов электрических сетей выполнять их оптимизацию, которая приводит к уменьшению потерь активной мощности в результате оптимального выбора приведенных выше параметров режима.

2.1 Математическая постановка задачи расчета установившихся режимов

В схеме замещения электрической сети содержащей узлов и ветвей известны сопротивления и проводимости элементов, заданы значения нагрузки в узлах нагрузки и значения генерации в узлах источников, а также напряжение одного узла – базисного по напряжению. Требуется определить напряжения в узлах и токи в ветвях. Следует заметить, что параметры схемы замещения электрической сети считаются независящими от тока или напряжения (линейными), задание же нагрузки и генерации постоянными значениями мощностей или нагрузки ее статическими характеристиками соответствует нелинейному элементу. Таким образом установившиеся режимы описываемые линейными параметрами схемы и нелинейными параметрами источников и нагрузки описываются нелинейными алгебраическими уравнениями – нелинейными уравнениями установившегося режима (УУР).

В качестве неизвестных принимаются узловых напряжений, то режим описывается узловыми уравнениями вытекающими из первого закона Кирхгофа и закона Ома. Напряжение одного из узлов (базисного) задается перед расчетом. В общем случае базисный по напряжению и балансирующий по и узлы могут не совпадать. Однако для простоты изложения будем считать базисный по напряжению и балансирующий по и один и тот же узел, который будем называть балансирующим.

В сети переменного тока уравнения узловых напряжений (УУН) приводятся к системе действительных уравнений порядка . Для этого представляют матрицы и вектор-столбцы с комплексными элементами в виде сумм матриц и вектор-столбцов с действительными элементами.

При расчете потокораспределения электрической сети со схемой, насчитывающей узел, заданными величинами являются независимых параметров режима. Остальные (зависимые) параметры определяются путем решения УУР, а также расчетов по простым формулам. Выбор независимых параметров, названных выше, определяется следующими соображениями. Активные и реактивные нагрузки потребителей определяются по прогнозу или по значениям имеющим место при эксплуатационных замерах, активные мощности станций (кроме балансирующей) так же задаются из эксплуатационных соображений. В качестве второго независимого параметра для генераторных узлов могут быть заданы напряжения или реактивные мощности.

Уравнения узловых напряжений в матричной форме имеет вид

,

где – матрица собственных и взаимных проводимостей;

– вектор столбец задающих токов, элементы которого определяются выражением

;

– заданное напряжение балансирующего узла.

Эти уравнения можно записать в виде действительных уравнений,

.

Эти уравнения справедливы при =0, то есть при равенстве нулю фазы напряжения балансирующего узла.

Матрица собственных и взаимных проводимостей играет важную роль в расчетах установившихся режимов. Эта матрица проводимостей состоит из взаимных проводимостей и собственных проводимостей, значения которых вычисляются в начале расчета на ЭВМ. Важнейшим свойством матрицы собственных и взаимных проводимостей является большое количество нулевых элементов – слабая заполненность, так как в электрической системе каждый узел связан лишь с небольшим количеством соседних узлов. Возможность использования слабой заполненности матрицы является важным свойством, которое надо учитывать при рассматривании методов решения УУН.

Как указывалось выше, найденные в результате решения УУР зависимые параметры режима могут не удовлетворять условиям допустимости режима. Например, могут выходить за допустимые пределы напряжения в неопорных и нагрузочных узлах, реактивные мощности в опорных узлах, токи ветвей. При расчете установившегося режима обычно предусматривается только учет ограничений в форме неравенств наложенных на реактивные мощности в узлах с заданными и (генерирующие узлы). Эти ограничения имеют вид

.

В случае нарушения ограничения, реактивная мощность закрепляется на нарушенном пределе и узел переходит в разряд неопорных с заданными и предельным значением . Однако при этом могут быть нарушены ограничения по напряжениям в данном или соседних узлах.

Данные ограничения при расчете установившегося режима не обеспечивают ввода режима в допустимую область, хотя возможность этого как правило имеется, для этого необходимо изменить заданные значения и в других узлах или коэффициенты трансформации трансформаторов. Однако эти более строгие методы введения режима в допустимую область применяются в алгоритмах оптимизации режимов. При расчете же установившихся режимов используется только закрепление реактивной мощности в случае нарушения ее пределов.

2.2 Методы решения УУР

В применяемом при расчетах установившихся режимов ШРЭС программно-вычислительном комплексе "RASTR" для решения УУР используется комбинация двух методов: метода Зейделя и метода Ньютона. При этом метод Зейделя используется в качестве стартового алгоритма (для оценки начальных приближений), а основным методом является классический метод Ньютона.

Метод Зейделя представляет собой незначительную модификацию метода простой итерации. Итерационное выражение метода простой итерации в матричном виде:

.

Элементы матрицы В – безразмерные величины вида , k≠j , а элементы вектора b имеют размерность напряжений, , k, j=1, 2, 3.

Основная идея метода Зейделя в отличие от простой итерации заключается в том, что найденное (i+1)-е приближение (k-1)-го напряжения U( i+1) ( k-1) сразу же используется для вычисления следующего, k-го напряжения U( i+1) k . Иными словами, полученное (i+1)-е значение напряжения сразу же используется для вычисления (i+1)-го значения напряжений U2 , U3 и т. д.

По методу простой итерации (i+1)-е приближение k-го напряжения U( i+1) k для системы n-го порядка вычисляется по следующему выражению:

.

По методу Зейделя (i+1)-е приближение k-го напряжения U( i+1) k вычисляется так:

.


Как правило, метод Зейделя надежнее и быстрее сходится, чем метод простой итерации. Кроме того, метод Зейделя требует несколько меньшей памяти, чем простая итерация, так как необходимо помнить только один вектор переменных. При решении по Зейделю, уравнений узловых напряжений сразу после вычисления (i+1)-е приближение (k)-го напряжения U( i+1) ( k) записывается в ту же ячейку памяти, где ранее хранилось (i)-е приближение U( i) ( k) . При использовании простой итерации необходимо помнить два вектора узловых напряжений, с ответствующих (i)-му и (i+1)-му шагам /6/.

Алгоритмическая реализация метода Зейделя столь же проста, как и простой итерации. Единственное изменение в алгоритме расчета состоит в засылке вычисленного U( i+1) ( k) , в то же место памяти, где ранее хранилось U( i) ( k) . Поскольку метод простой итерации не имеет никаких преимуществ перед методом Зейделя, при практических расчетах установившихся режимов электрических систем на ЭВМ всегда используется метод Зейделя, а не простая итерация.

Если метод Зейделя сходится быстро и для решения системы n-го порядка требуется менее n шагов, то при расчете на ЭВМ получим выигрыш во времени в сравнении с точными методами, например с методом Гаусса. Это вытекает из того, что число арифметических операций, необходимых для одного шага метода Зейделя, пропорционально n2 , а общее число арифметических операций, например в методе Гаусса, пропорционально n3 . Приведенное соотношение числа операций справедливо для расчетов установившегося режима, если не учитывается слабая заполненность матриц узловых проводимостей. В то же время и в случае учета слабой заполненности этих матриц метод Зейделя, если он сходится быстро, требует меньше времени ЭВМ, чем точные методы. Отдельное достоинство этого метода заключается в быстром приближении к области решения в течении нескольких начальных итераций, поэтому он и используется в качестве стартового в ПВК "Rastr". В дальнейшем сходимость метода замедляется, поэтому он и не получил широкого применения в качестве основного метода расчета.

Другое важное достоинство метода Зейделя состоит в простоте алгоритма и в удобстве его реализации на ЭВМ. Он особенно эффективен при учете слабой заполненности матрицы узловых проводимостей, поскольку алгоритм такого учета в методике Зейделя весьма прост. В результате экономия памяти при использовании метода Зейделя становится тем существенней, чем больше узлов содержит электрическая система. Применение специальных методов учета слабой заполненности при применении точных методов несколько уменьшает преимущество метода Зейделя с точки зрения необходимого объема памяти ЭВМ. Однако в точных методах такой учет алгоритмически сложен и даже при его применении метод Зейделя все равно требует меньше памяти ЭВМ.

Существенный недостаток метода Зейделя - его медленная сходимость или даже расходимость при расчете электрических систем с устройствами продольной компенсации, с трехобмоточньтми трансформаторами, когда сопротивление обмотки среднего напряжения очень мало, а так же при расчетах предельных и неустойчивых режимов.

Метод Ньютона пригоден для решения обширного класса нелинейных уравнений. Идея метода Ньютона состоит в последовательной замене на каждой итерации системы нелинейных уравнений некоторой линейной системой, решение которой дает значения неизвестных, более близких к решению нелинейной системы, чем исходное приближение. Решая линейное уравнение определяем поправку Δx(1) к начальному приближению:

Δx(1) = x(1) - x(0) .

За новое приближение неизвестного принимаем:


x(1) = x(0) + Δx(1) .

Аналогично определяем следующие приближения:

x( i+1) = x( i) + Δx( i+1) .

Итерационный процесс сходится если функция невязок будет близка к нулю. Сходимость считается достигнутой, если абсолютная величина невязки меньше заданной, т. е. при

.

Уравнение узловых напряжений в форме баланса мощностей для k-го узла записывается в виде:

.

В этом выражении для удобства записи слагаемое внесено в сумму, причем балансирующему узлу присвоен номер n+1. Для того, чтобы оперировать с вещественными величинами, выделяют действительные и мнимые части в этом уравнении. В качестве неизвестных при решении уравнений установившегося режима используются модули и фазы напряжений в узлах. Уравнения баланса мощностей при таких переменных можно получить в следующем виде:

;

;

где δkjk - δj ; k = 1,…,n.

В этом случае

,

элементы матрицы Якоби – это частные производные небалансов активной и реактивной мощностей по модулям и фазам напряжений узлов. Если активные и реактивные мощности заданы во всех узлах, то число уравнений узловых напряжений баланса мощности и число переменных равно 2n.

Метод Ньютона широко применяется для расчетов установившихся режимов на ЭВМ. Он не мог претендовать на практические применения в задачах расчета сетей до использования ЭВМ из-за трудоемкости вычисления матрицы производных. Широкое применение для расчетов установившихся режимов на ЭВМ метод Ньютона получил с 60-х годов /6/.

Матрица Якоби системы уравнений установившегося режима слабо заполнена, как и матрица Y у . Поэтому в расчетах режимов на ЭВМ на каждом шаге метода Ньютона можно использовать способы учета слабой заполненности. Важнейшие преимущества метода Ньютона в расчетах установившихся режимов на ЭВМ – быстрая квадратичная сходимость и возможность учета слабой заполненности матрицы производных. Метод Ньютона можно успешно применять для расчетов установившихся режимов при их комплексной оптимизации.

Метод Ньютона требует столько же памяти ЭВМ, сколько при решении на каждом шаге линейных уравнений узловых напряжений по Гауссу, т. е. больше, чем по методу Зейделя но значительно меньше, чем при использований матрицы Z у . Для увеличения скорости и надежности расчета установившегося режима применяются различные модификации метода Ньютона.

По окончании расчета установившегося режима можно приступать к его оптимизации.

2.3 Общая характеристика и математическая постановка задачи оптимизации электрических режимов

При передаче электрической энергии от шин электростанций до потребителей часть электроэнергии неизбежно расходуется на нагрев проводников, создание электромагнитных полей и прочие эффекты. При анализе потерь электроэнергии принято различать следующие виды потерь:

- отчетная величина потерь электроэнергии в энергосистеме – определяемая как разность между количеством электроэнергии, отпущенной в сеть собственными электростанциями, электростанциями других ведомств и соседними энергопредприятиями, и реализованной электроэнергией, вычисленной по сумме оплаченных счетов от потребителей;

- расчетная или техническая величина потерь, определяемая по известным параметрам режимов работы и параметрам элементов сети, она обусловлена расходом электроэнергии на нагрев проводников и создание электромагнитных полей;

- коммерческие потери – определяемые как разность между отчетными и техническими потерями, они обусловлены несовершенством системы учета, неодновременностью и неточностью снятия показаний счетчиков, погрешностью используемых приборов учета, неравномерностью оплаты электропотребления, наличием безучетных потребителей, хищениями и т. д.

Оптимизация режимов работы ВЭС в данной работе будет нацелена на снижение именно технической величины потерь электроэнергии.

Оптимизация режима по напряжению, реактивной мощности и коэффициентам трансформации является частью комплексной задачи оптимизации режима "по всем переменным", т. е. задачи экономического распределения активных и реактивных мощностей с учетом ограничений по надежности и качеству энергии. Однако влияние основных переменных – активных мощностей электростанций – на распределение реактивных мощностей весьма значительно, а обратное влияние относительно невелико. Этим оправдывается практическое решение задачи оптимизации режима по напряжению, реактивной мощности и коэффициентам трансформации как задачи "дооптимизации" режима при заданном распределении активных мощностей.

Практически решение задачи оптимизации режима энергосистем по напряжению и реактивной мощности сводится к следующему. Для центров питания с возможностью независимого регулирования напряжения (в пределах, ограниченных располагаемыми техническими средствами) устанавливаются графики желательных и предельно допустимых уровней напряжения (таблица 1.2), и эти центры служат контрольными точками по режиму напряжения. Кроме того, выбираются контрольные точки по напряжению в узлах основной сети, поддержанием заданного графика в которых обеспечиваются требуемые уровни напряжения в центрах питания, не имеющих собственных (местных) средств регулирования напряжения.

Отметим, что полученное значение потерь электроэнергии после реализации всех рекомендаций в общем случае будет отличаться на величину коммерческих потерь и некоторого значения (не обязательно положительного), обусловленного не учетом влияния погодных условий.


Таблица 2.1 – Графики желательных и предельно допустимых напряжений в киловольтах

Режим Класс напряжения, кВ
1 6
10
35
110
220
500
2, 3, 4 6
10
35
110
220
500

Поясним на примере обозначенную выше взаимосвязь между потерями мощности и значениями напряжения в узлах, реактивной мощности источников и коэффициентов трансформации. Рассмотрим фрагмент сети, схема замещения которого в общем случае содержит следующие комплексные параметры (рис. 2): продольное сопротивление (проводимость ) с нагрузочными потерями при протекании тока нагрузки по линиям и трансформаторам и поперечную проводимость (шунт проводимости) , отражающую преимущественно потери холостого хода трансформаторов, компенсирующих устройств и линий. В схеме замещения учтен идеальный трансформатор с действительным оэффициентом трансформации ( ), поскольку в данных сетях производится только продольное регулирование напряжения и перераспределение реактивной мощности. Комплексные значения напряжения в начале участка и в его конце , различается падением напряжения и объединенные трансформацией в виде

,

определяются из расчетов исходного и оптимального режимов. В электрических сетях 35-110 кВ потери напряжения в основном определяются продольной составляющей падения напряжения

,

величина которой, а следовательно и значения напряжений в узлах в силу соотношения преимущественно определяется потоками реактивной мощности.

Рисунок 2 – Общий фрагмент схемы замещения электрической сети


Взаимосвязь параметров данной оптимизационной задачи можно представить с помощью известных формул. Потери активной мощности

, ,

зависят от величины тока в продольной части схемы замещения (рис. 2)

,

и в ее поперечной части

.

Анализируемые потери мощности выразим через модули напряжений и потери напряжения: в продольной части схемы замещения в виде

,

или иначе ,

а также в виде

;


в поперечной части

, .

Отметим также зависимость потоков активной и реактивной мощностей

,

,

и зарядной (емкостной) мощности шунтов

, ,

от оптимизируемых значений напряжений и трансформаций.

В итоге для электрической сети с n узлами суммарные потери мощности предстают в виде

,

Точное суммирование (интегрирование) потерь мощности в сети с m – ветвями и n – узлами при неизменном в период времени составе и схеме позволяет определить суммарные потери электроэнергии в виде

.


Из выражений (2.22) следует, что для снижения нагрузочных потерь необходимо увеличить напряжение в узлах сети и в целом уровень (среднее значение) напряжения в ней. В то же время для снижения потерь холостого хода (2.23) уровень напряжения необходимо снижать. Воздействовать на напряжения и нагрузочные потери согласно выражениям (2.15), (2.16), (2.17) можно также путем снижения реактивных нагрузок продольных элементов сети, что достигается компенсацией реактивных нагрузок потребителей либо более благоприятным перераспределением перетоков реактивной мощности в ветвях замкнутой сети /4, 7, 8/. Оба указанных мероприятия могут быть реализованы в ПЭС с помощью местных источников реактивной мощности, регулируемых трансформаторов в замкнутых контурах и оптимальным размыканием контуров. Поскольку потери мощности зависят от режима напряжений (2.20) - (2.23), а последний тесно связан с распределением реактивной мощности и трансформациями в сетях (2.15), (2.26), (2.27), понятие регулирования напряжения, реактивной мощности и коэффициентов трансформации объединяют, а соответствующую задачу решают совместно /9, 10/.

Таким образом анализ составляющих потерь (2.20), (2.21), (2.22) в составе выражения их суммарных значений (2.26), (2.27), показывает, что экономичность режимов работы сетей в значительной мере зависит от сочетания коэффициентов трансформации и реактивных мощностей источников, влияющих на напряжения узлов, правильный выбор которых позволяет улучшить режим напряжений узлов и снизить потери мощности и энергии.

В итоге возникает оптимизационная задача определения таких взаимосвязанных напряжений, коэффициентов трансформации и реактивных мощностей источников, при реализации которых суммарные потери активной мощности или электроэнергии сети (2.26) будут минимальны.

При этом задача оптимизации режимов ЭС, относится к классической задаче нелинейного математического программирования, в общем случае имеет следующую формулировку /11, 12/: для (n+1) узлов ЭЭС найти минимум целевой функции

,

соответствующей функции суммарных потерь активной мощности (2.26) или ЭЭ (2.27) при условии баланса мощностей в узлах

, , ;

, , , ;

и при выполнении эксплуатационных и технических ограничений в виде неравенств

, ;

, ;

, .

Предусмотрено разделение переменных на зависимые (базисные) и независимые (регулируемые) переменные.

Ограничения в виде равенств (2.29), (2.30) накладываются на активные и реактивные мощности в узлах потребления (нагрузки) и активные мощности в узлах генерации . Простые режимные ограничения (2.31) - (2.33), удерживающие оптимизируемые переменные в допустимых пределах, накладываются на реактивные мощности источников , напряжения во всех пунктах сети и коэффициенты трансформации в регулируемых трансформаторах.

В общем случае балансовые ограничения (2.29), (2.30) контролируются на каждом шаге оптимизации с помощью уравнений установившихся режимов, нарушение простых ограничений (2.31) - (2.33) – добавкой к целевой функции (2.28) штрафной составляющей или (и) фиксацией переменных на нарушенных граничных значениях, сопровождаемых сменой состава зависимых и независимых переменных (смена базиса). Так при нарушении ограничений (2.31), реактивная мощность источников закрепляется на нарушенных пределах с увеличением на величину количества ограничений (2.30). Выход за пределы напряжения в м генераторном узле учитывается заменой (добавкой) соответствующего уравнения в системе (2.30) уравнением вида

, .

При этом на каждом шаге оптимизации производится анализ возможности снятия переменных с предела, соответственно корректируя количество балансовых уравнений (2.29).

Постановка и решение оптимизационной задачи возможны только при ненулевой степени ее свободы

,

наибольшая величина которой проявляется при отсутствии закрепленных на предельных значениях реактивной мощности или напряжений источников ( ) и коэффициентов трансформации регулируемых трансформаторов ( ) и равна количеству независимых переменных ( +).

Фиксация независимых оптимизируемых переменных во всех узлах генерации ( или , ) на соответствующих пределах сводит задачу оптимизации (2.28) - (2.33) к решению 2 -мерной системы нелинейных УУР (2.29), (2.30).

Методика решения предусматривает на каждом шаге оптимизации:

а) расчет установившегося режима при заданных значениях регулируемых параметров и определение значения целевой функции;

б) выполнение шага оптимизации, на котором происходит изменение регулируемых (независимых) параметров;

в) сопоставление целевой функции с предыдущим значением.

Решение данной оптимизационной задачи выполняется, как правило, на основе градиентных методов в детерминированной или стохастической постановках /11, 12/.

2.4 Описание метода оптимизации

Целевую функцию оптимизации (2.28) можно записать подробно в виде

,

где - нарушение ограничения (2.32), определяемое из выражения

= , если ;

=0, если ;

= , если ;

где - штрафной коэффициент, подбирается эмпирически.

Для определения наилучших напряжений источников, генераций реактивной мощности из источников и коэффициентов трансформации организуется итерационный процесс на каждой стадии которого определяется:

Допустимое направление максимального уменьшения целевой функции (2.36)

,

где - весовой коэффициент, учитывающий различные физические единицы и ;

2 Направление изменения зависимых переменных ( ), необходимое для соблюдения баланса мощностей при изменении независимых переменных в направлении ;

3 Из условий ненарушения (2.31) - (2.33) и (2.37) - (2.39) находится максимальный допустимый шаг в направлении ;

4 Вычисляются значения функции в трех точках , , . Определяется , соответствующий минимальному значению функции на интервале . Если =0, то производится деление шага пополам = и на новом интервале вновь определяется . Процедура деления шага повторяется не более оговоренного в параметрах оптимизации числа раз и, если останется =0, то оптимизация прекращается;

5 Если ограничением шага послужило одно из ограничений (то есть = ) – производится смена набора независимых переменных;

6. Новые значения переменных,

;

7 Рассчитываются небалансы мощности и, в зависимости от их величины, досчитывается новый установившийся режим.

Помимо этого, через определенное число итераций проводится полная проверка набора независимых переменных для генераторных узлов типа , и , . Им присваивается тип , и находится знак . Eсли приращение направлено вне допустимой области, определяемой (2.37) - (2.39), то тип , или , восстанавливается или в противном случае тип , сохраняется.

Окончание оптимизации определяется по величине межитерационного снижения потерь

;

;

где , - заданные точности;

- номер итерации и штрафной составляющей.

В связи с тем, что длина шага на отдельной итерации может быть очень малой из-за ограничений, что приведет к неоправданно малому снижению потерь и штрафной составляющей на итерации, соблюдение условий (2.42) - (2.43) требуется на некотором числе смежных итераций, задаваемых дополнительным параметром.


3. Расчет и анализ характерных установившихся режимов ШРЭС

3.1 Характеристика ПВК расчета установившегося режима и его оптимизации

Расчеты установившихся режимов и их оптимизация выполнялись при помощи ПВК "RASTR".

3.1.1 Характеристика ПВК "R ASTR"

Комплекс "RASTR" предназначен для расчета и анализа установившихся режимов электрических систем. "RASTR" позволяет производить расчет, эквивалентирование и утяжеление режима, обеспечивает возможности экранного ввода и коррекции исходных данных, быстрого отключения узлов и ветвей схемы, имеет возможности районирования сети, также предусмотрено графическое представление схемы или отдельных ее фрагментов вместе с практически любыми расчетными и исходными параметрами. В комплекс включена функция оптимизации режима по напряжению, реактивной мощности коэффициентам трансформации.

"RASTR" не имеет программных ограничений на объем рассчитываемых задач. Захват оперативной памяти определяется размером рассчитываемой схемы, для расчета схем свыше 1000 узлов может оказаться необходимым нарастить оперативную память свыше 4 Мб.

В процессе работы программой могут создаваться три типа файлов:

*.rge – содержат информацию об исходных данных и режиме схемы и требуют 1 Кбайт дисковой памяти на 10 узлов схемы;

*.uk – содержат информацию о траектории утяжеления;

*.cxe – содержат информацию о графическом образе схемы.

Необходимые для расчетов данные вводятся при помощи встроенного в комплекс редактора.

Данные о узлах представляются в следующем формате:

Район – номер района, к которому относится узел (до 255);

Номер – номер узла;

N – номер статической характеристики (0 – не задана, 1 – стандартная, для 6-10 кВ, 2 – стандартная для 110-220 кВ (обе "зашиты" в программу), 3-32000 - задаются пользователем в таблице "Полиномы";

Название – название узла (от нуля до двенадцати символов;

Uном – номинальное напряжение или модуль напряжения, кВ;

Pнаг ,Qнаг – мощность нагрузки;

Pген , Qген – мощность генерации;

Qmin , Qmax – пределы генерации реактивной мощности;

Gшунт , Bшунт – проводимость шунта на землю, мСм;

V, Delta – модуль и угол напряжения;

Xг – сопротивление генератора (зарезервировано для дальнейшего использования);

Кст – крутизна статической характеристики активной мощности по частоте, если Кст >0 регулирование осуществляется изменением мощности генерации (поле Рген ), если Кст <0 – изменением нагрузки, если Кст =0 – узел в регулировании частоты не участвует;

Umin , Umax – диапазоны изменения напряжения, кВ;

Pном – номинальная мощность нагрузки или генерации (в зависимости от знака Кст ), используемая для вычисления частотного эффекта;

Рmin , Pmax – диапазоны изменения мощности генерации в узлах регулирующих частоту;

Район 2 – номер второго района, к которому относится узел.

Активные (реактивные) мощности могут вводиться в кило- или мегаваттах (квар, Мвар).

Данные о ветвях представляются в формате:

Nнач , Nкон – номера узлов, ограничивающих линию;

Nп – номер параллельной ветви;

R, X – активное и индуктивное сопротивления ветви, (Ом);

G, B – проводимости ветвей, мкСм, для шунтов П – образной схемы (B<0), для трансформатора проводимость шунта Г – образной схемы (B>0);

Kт\в , Кт\м – вещественная и мнимая составляющие коэффициента трансформации;

Iдоп – допустимый ток ветви;

Кr,min Kr,max – диапазоны изменения вещественной части коэффициента трансформации

Ki,min Ki,max – то же для мнимой части;

БД – номер транформатора в базе данных;

Nanc – номер анцапфы;

Kдел – коэффициент деления потерь на межситемных линиях, потери разносятся по следущим формулам: (1-Кдел )·ΔPЛЭП – к району, которому принадлежит узел начала линии (Nнач ); Кдел ·ΔPлин – к району, которому принадлежит узел конца линии (Nкон ).

Сопротивление ветви должно быть приведено к напряжению Uнач , а коэффициент трансформации определяется как отношение Uкон /Uнач . При задании ветви с нулевыми сопротивлениями она воспринимается как выключатель.

Кроме этого в комплексе так же имеются таблицы, куда заносятся данные характеризующие районы, полиномы статических характеристик нагрузки и анцапфы трансформаторов.

В таблицу "Районы" вводят следующие данные:

Номер – номер района;

Номер2 – номер дополнительного (второго) района, каждый узел может находится в двух независимых районах;

Название – название района;

dPн , dQн , dPг – коэффициенты, на которые умножаются соответствующие мощности района (исходные данные не меняются, расчет выполняется с учетом этих коэффициентов).

Таблица "Полиномы" содержит данные о статических характеристиках нагрузки:

СХН – номер статической характеристики нагрузки;

Р0 , Р1 , Р2 , Р3 – коэффициенты полинома активной мощности нагрузки;

Q0 , Q1 , Q2 , Q3 – коэффициенты полинома реактивной мощности нагрузки;

Полиномы могут быть заданы коэффициентами вплоть до четвертой степени.

Данные о трансформаторах вносятся в таблицу "Анцапфы":

Nбд – номер трансформатора в базе данных;

Название – его название (необязательно);

EИ – единицы измерения отпаек (% или кВ); если это поле не заполнено, предполагаются проценты, если в это поле занести любой символ, отличный от % или пробела, будет предполагаться киловольт;

"+, "-" – порядок нумерации анцапф, "+" – анцапфы нумеруются, начиная от максимальной положительной добавки, "-" – от максимальной отрицательной (по умолчанию "+");

Тип –тип регулирования; 0 – вольтодобавка (dV) добавляется к напряжению V(рег) , коэффициент трансформации будет рассчитываться по формуле Кт =(Vрег + dV)/Vнр (обычно это РПН с регулированием на средней строне); 1 – вольтодобавка добавляется к обоим напряжениям, коэффициент трансформации будет рассчитываться по формуле Кт =(Vрег +dV)/(Vнр + dV) (например вольтодобавочный трансформатор при регулировании в нейтрали); 2 или 3 – вольтодобавка от следующей или предыдущей фазы добавляется к обоим напряжениям, коэффициент трансформации – комплексный;

Кнейтр – число анцапф в нейтральном положении (с нулевой добавкой), по умолчанию – единица;

V(нр) – напряжение нерегулируемой ступени;

V(рег) – наряжение регулируемой ступени;

Nanc – число анцапф с шагом, заданным в следующей колонке;

Шаг – величина шага (% или кВ, в зависимости от поля ЕИ).

Данные по анцапфам задаются в отдельном файле, его имя можно установить с помощью специальной команды в главном меню.

В комплексе имеется возможность прочитать и(или) записать файл в макете ЦДУ используя специальные команды. Эти же команды могут быть также использованы для проведения сложных операций с исходными данными (слияние, деление и эквивалентирование).

Расчетный блок комплекса представляет собой дальнейшее развитие программы Уран-1000, включенной в состав КУРС-1000 и RGM. При расчете установившегося режима позволяется изменять точность расчета, предельное число итераций, запретить использование стартового алгоритма (плохо работает при наличие УПК) или начать расчет с плоского старта (номинальные напряжения и нулевые углы – самое надежное исходное приближение). Так же можно изменить необходимую точность для контроля ограничений по реактивной мощности, допустимые границы изменения рассчитываемых параметров, при нарушении которых фиксируется аварийное окончание расчета.

В комплекс включена программа оптимизация режима по реактивной мощности методом приведенного градиента (описание приведено в подразделе 2.4). В процессе оптимизации режима узлы делятся на две группы:

1) источники реактивной мощности (ИРМ) – узлы в которых заданы диапазоны изменения напряжения и реактивной мощности генерации. В этих узлах осуществляется изменение заданного модуля напряжения для достижения минимальных потерь и ввода всех напряжений в допустимую область. В ходе оптимизации строго выдерживаются ограничения по реактивной мощности и, в большинстве случаев, ограничения по напряжению. Ограничения по напряжению могут быть нарушены в следующих случаях: в узле генерируется минимальная мощность, но его напряжение достигло максимального, и наоборот.

2) контролируемые узлы, в которых заданы ограничения по напряжению; программа пытается удержать напряжения внутри ограничений, но это не всегда возможно. Степенью возможных нарушений этих ограничений можно, как говорилось выше, управлять с помощью параметров оптимизации (штрафной коэффициент).

Для трансформаторов, имеющих регулирование задаются диапазоны изменения коэффициента трансформации (могут быть рассчитаны автоматически по базе данных анцапф). Диапазоны изменения коэффициентов всегда строго выдерживаются. Оптимизация трансформаторов с учетом продольно – поперечного регулирования выполняется только при подготовленной в базе данных анцапф информации (тип регулирования 3 или 4). После оптимизации, в зависимости от задания параметров, может происходить автоматический выбор анцапф с округлением коэффициента трансформации до ближайшей анцапфы.

Также в комплекс "RASTR" входит программа для проведения утяжеления режима по заданной траектории; с возможностью ввода, коррекции, сохранения и загрузки траектории утяжеления, а также для установки параметров утяжеления.

Кроме этого имеется очень полезная функция – "Однородная". При выполнении этой команды реактивное сопротивление линий, входящих в замкнутые контуры, пересчитывается пропорционально активному с заданным коэффициентом. При задании этого параметра отрицательным, коэффициент выбирается по отношению реактивных и активных потерь. После пересчета выполняется расчет режима полученной однородной сети. Этот режим соответствует так называемому "естественному" потокораспределению, имеющему наименьшие потери активной мощности. После выполнения расчета отмечаются точки потокораздела в контурах, т.е. те узлы в которых целесообразно производить размыкание контура.

Отличительной особенностью комплекса является своеобразная графическая подпрограмма с автоматизированным конфигурированием графического файла, и с автоматизированной расстановкой параметров в узлах и линиях и с упрошенной их модификацией /13/.

3.2 Анализ характерных электрических режимов

3.2.1 Анализ зимнего периода

При регулировании напряжения и реактивной мощности центральным технико-экономическом показателем сети являются суммарные (общие) потери активной мощности и электроэнергии, при соблюдении всех технических требований. Возможность их снижения устанавливается на основе анализа величины и структуры потерь, режима напряжения по отдельным районам и в целом по сети, загрузки линий и трансформаторов, удаленности параметров текущего (характерного) состояния в элементах сети, регулирующих и компенсирующих устройств от допустимых (предельных) значений.

Таблица 3.2 – Результаты структурного анализа потерь мощности (исходные режимы)

Потери в ЛЭП, МВт
Режим 1 (4 ч,) 2 (10 ч,) 3 (19 ч) 4 (22 ч,)
U, кВ МВт % МВт % МВт % МВт %
500 0,000 0,00 0,000 0,00 0,000 0,00 0,000 0,00
220 0,012 0,34 0,014 0,37 0,023 0,56 0,020 0,54
110 0,664 19,26 0,916 24,06 1,034 25,53 0,893 23,64
35 0,269 7,80 0,325 8,55 0,396 9,76 0,301 7,96
Общие 0,945 27,40 1,265 32,98 1,452 35,86 1,214 32,14
Потери в трансформаторах, МВт
переменные (продольные)
500 0,003 0,10 0,004 0,10 0,006 0,15 0,006 0,15
220 0,041 1,18 0,067 1,75 0,081 2,00 0,070 1,84
110 0,080 2,33 0,121 3,18 0,162 4,00 0,132 3,48
35 0,036 1,03 0,042 1,12 0,050 1,24 0,039 1,04
Общие 0,160 4,64 0,234 6,15 0,299 7,39 0,247 6,51
постоянные (поперечные)
500 0,796 23,07 0,796 20,90 0,796 19,64 0,796 21,06
220 0,427 12,37 0,424 11,14 0,422 10,42 0,424 11,22
110 0,950 27,56 0,932 24,47 0,921 22,73 0,932 24,65
35 0,171 4,95 0,166 4,36 0,160 3,95 0,167 4,42
Общие 2,344 67,95 2,318 60,87 2,299 56,74 2,319 61,35
Общие тр-ах 2,503 72,60 2,552 67,02 2,598 64,14 2,564 67,86
Общие в сети 3,448 100,0 3,808 100,0 4,051 100,0 3,779 100,0

Учитывая, что сети 500, 220, 110 и 35 кВ различаются по назначению, объему располагаемой режимной информации, общую величину потерь активной мощности и электроэнергии целесообразно разделить на составляющие (нагрузочные потерь в линиях и трансформаторах и потери холостого хода в трансформаторах) соответствующих классов напряжения.

В основном ШРЭС представлена питающей сетью (110 кВ) и распределительной (35 кВ), поэтому характиристику будем вести именно для этих сетей.

Результаты расчета потерь мощности четырех характерных режимов представлены в таблице 3.2, из которой видно, что от 49,2 до 52,3% общей величины составляют потери в сети 110 кВ, из них от 19,3 до 25,5% приходится на потери в линиях.

Из этого следует, что данные сети являются малозагруженными и основными потерями являются потери в трансформаторах.

Наиболее загруженная линия 220 кВ с диспетчерскими номерами Д-123, Д-124. Ее плотность тока в период максимальной загрузки (режим 3 и 2) 0,1 А/мм2 . Относительные нагрузки линий 35 кВ превышают нагрузки линий 110 кВ: средняя плотность тока линий 110 кВ в периоды наибольших нагрузок равна 0,13 – 0,10 А/мм2 в сети 110 кВ и около 0,25 А/мм2 в линиях 35 кВ, в том числе для наиболее загруженных ВЛ – 110 кВ (С-72 – С-73) составляет 0,51-0,50 А/мм2 , что соответствует нагрузкам в пять-шесть раза удаленным от предельных по нагреву и для 35 кВ (Т-24) – 1,17 А/мм2 .

В трансформаторах во всех режимах преобладают суммарные потери холостого хода в соотношении в сотни раз в сети 500 кВ, 5,2 до 10,4 в сети 220 кВ, 5,7 до 12,0 в сети 110 кВ и от 3,2 до 4,8 в сети 35 кВ. В меньшей мере загружены трансформаторы сети 110 кВ (загрузка не превышает 38%, а в сети 35 кВ – 55%).

КПД сети по мощности, определенный из выражения

,

составляет 96,2-96,7%.

Учет многорежимности сети представлен ее интегральными параметрами: потерями электроэнергии (таблица 3.3), уровнем напряжения и диапазоном его изменения. Потери электроэнергии

,

определенные методом непосредственного суммирования суммарных потерь мощности в линиях и (или) в обмотках трансформаторов и суммарных потерь в стали трансформаторов на характерных интервалов времени неодинаковой продолжительности (6, 9, 3, и 6 часов соответственно).

Структурный состав потерь электроэнергии дан в таблице 3.3. Суммарное значение потерь электроэнергии равно 89,8 МВт·ч, что составляет 3,74% от потребленной электроэнергии.


Таблица 3.3 – Результаты структурного анализа технических потерь электроэнергии (исходный режим)

Расчетная величина потерь ЭЭ Потери электроэнергии
в ЛЭП в трансформаторах общие
переменные постоянные
МВт·ч % МВт·ч % МВт·ч % МВт·ч %
500 0,000 0,00 0,108 0,12 19,104 21,28 19,212 21,40
220 0,387 0,43 1,512 1,68 10,188 11,35 12,087 13,46
110 20,688 23,04 2,847 3,17 22,443 24,99 45,978 51,21
35 7,533 8,39 0,978 1,09 4,002 4,46 12,513 13,94
Общие потери ЭЭ 28,608 31,86 5,445 6,06 55,737 62,07 89,79 100

КПД сети по энергии определенный из выражения

,

составляет 96,4%.

В первом режиме наибольшее напряжение в сети 220 кВ в узле 1003 ("Итатская, сторона СН первого трансформатора") – 227,4 кВ, наименьшее в узле 1202 ("БУР-1", сторона ВН второго трансформатора) – 227,2 кВ, среднее напряжение – 227,3 кВ. В сети 110 кВ наибольшее напряжение в узле 1303 ("Ужур", сторона СН первого трансформатора) – 116,5 кВ, наименьшее напряжение в узле 1602 ("Березовка") – 106,4 кВ, среднее напряжение – 113,4 кВ. В сети 35 кВ наибольшее напряжение в первом режиме в узле 3603 ("Малый Имыш", сторона СН первого трансформатора) – 37,8 кВ, наименьшее напряжение в узле 5401 ("Солгон") – 35,3 кВ, среднее напряжение – 36,6 кВ.

Во втором режиме наибольшее напряжение в сети 220 кВ в узле 1003 ("Итатская, сторона СН первого трансформатора") – 227,1 кВ, наименьшее в узле 1202 ("БУР-1", сторона ВН второго трансформатора) – 226,8 кВ, среднее напряжение – 227,0 кВ. В сети 110 кВ наибольшее напряжение в узле 1303 ("Ужур", сторона СН первого трансформатора) – 115,8 кВ, наименьшее напряжение в узле 1602 ("Березовка") – 105,9 кВ, среднее напряжение – 112,9 кВ. В сети 35 кВ наибольшее напряжение в узле 5301 ("Красная сопка") – 37,2 кВ, наименьшее напряжение в узле 5402 ("Солгон") – 35,3 кВ, среднее напряжение – 35,7 кВ.

В третьем режиме наибольшее напряжение в сети 220 кВ в узле 1003 ("Итатская, сторона СН первого трансформатора") – 226,9 кВ, наименьшее в узле 1202 ("БУР-1", сторона ВН второго трансформатора) – 226,5 кВ, среднее напряжение – 226,7 кВ. В сети 110 кВ наибольшее напряжение в узле 1303 ("Ужур", сторона СН первого трансформатора) – 115,0 кВ, наименьшее напряжение в узле 1602 ("Березовка") – 105,7 кВ, среднее напряжение – 112,1 кВ. В сети 35 кВ наибольшее напряжение в узле 4703 ("Тюльково", сторона СН второго трансформатора) – 36,8 кВ, наименьшее напряжение в узле 5401 ("Солгон") – 34,2 кВ, среднее напряжение – 35,8 кВ.

В четвертом режиме наибольшее напряжение в сети 220 кВ в узле 1003 ("Итатская, сторона СН обоих трансформаторов") – 227,0 кВ, наименьшее в узле 1202 ("БУР-1", сторона ВН второго трансформатора) – 226,8 кВ, среднее напряжение – 226,9 кВ. В сети 110 кВ наибольшее напряжение в узле 1303 ("Ужур", сторона СН первого трансформатора) – 115,4 кВ, наименьшее напряжение в узле 1602 ("Березовка") – 106,0 кВ, среднее напряжение – 112,7 кВ. В сети 35 кВ наибольшее напряжение в узле 4703 ("Тюльково", сторона СН второго трансформатора) – 37,1 кВ, наименьшее напряжение в узле 5201 ("Яга") – 35,3 кВ, среднее напряжение – 35,6 кВ.

Таким образом уровень напряжения превышает номинальный в сети 220 кВ (от 3,0 до 3,3%), 110 кВ (от 1,9 до 3,1%) и 35 кВ (от 1,7 до 4,6%) во всех характерных режимах. Наибольший размах напряжения от -3,7 до 5,6% в сети 110 кВ и от –0,6 до 14,3 % в сети 35 кВ, что позволяет обеспечить требуемый режим центров питания распределительной сети 6-10 кВ.

Анализ характерных условий работы сети свидетельствует о невысокой загрузке сети и значительных ее резервах, также можно сделать вывод о возможности снижения потерь мощности и энергии путем оптимизации.

3.2.2 Анализ летнего периода

Анализ летних характерных четырех режимов проводим аналогично зимним. Нагрузка в летние месяцы раза в два-три меньше. Результаты расчета потерь мощности представлены в таблице 3.2. 51,2 до 54,2% общей величины составляют потери в сети 110 кВ, из них от 16,5 до 19,6% приходится на потери в линиях. Оснавная часть потерь приходится на трансформаторы.

Таблица 3.2 – Результаты структурного анализа потерь мощности (исходные режимы)

Потери в ЛЭП, МВт
Режим 1 (4 ч,) 2 (10 ч,) 3 (19 ч) 4 (22 ч,)
U, кВ МВт % МВт % МВт % МВт %
500 0,000 0,00 0,000 0,00 0,000 0,00 0,000 0,00
220 0,005 0,18 0,007 0,25 0,006 0,19 0,007 0,23
110 0,489 16,51 0,569 19,16 0,582 19,56 0,510 17,56
35 0,031 1,06 0,037 1,26 0,034 1,15 0,040 1,36
Общие 0,525 17,75 0,614 20,67 0,622 20,90 0,557 19,16
Потери в трансформаторах, МВт
переменные (продольные)
500 0,002 0,07 0,002 0,08 0,002 0,07 0,002 0,08
220 0,011 0,36 0,017 0,57 0,016 0,52 0,014 0,50
110 0,023 0,78 0,040 1,35 0,030 1,01 0,028 0,96
35 0,004 0,13 0,005 0,18 0,005 0,17 0,005 0,17
Общие 0,040 1,34 0,064 2,18 0,053 1,77 0,049 1,71
постоянные (поперечные)
500 0,780 26,36 0,780 26,26 0,780 26,22 0,780 26,84
220 0,435 14,69 0,350 11,78 0,351 11,79 0,349 12,01
110 1,005 33,96 0,992 33,40 1,000 33,59 0,996 34,26
35 0,175 5,90 0,170 5,71 0,170 5,72 0,175 6,01
Общие