Главная              Рефераты - Химия

Понятие аммиака - реферат

АММИАК – бесцветный газ с резким запахом, температура плавления –80° С, температура кипения – 36° С, хорошо растворяется в воде, спирте и ряде других органических растворителей. Синтезируют из азота и водорода. В природе образуется при разложении азотсодержащих органических соединений.

Резкий запах аммиака известен человеку с доисторических времен, так как этот газ образуется в значительных количествах при гниении, разложении и сухой перегонке содержащих азот органических соединений, например мочевины или белков. Не исключено, что на ранних стадиях эволюции Земли в ее атмосфере было довольно много аммиака. Однако и сейчас ничтожные количества этого газа всегда можно обнаружить в воздухе и в дождевой воде, поскольку он непрерывно образуется при разложении животных и растительных белков. На некоторых планетах Солнечной системы ситуация иная: астрономы считают, что значительная часть масс Юпитера и Сатурна приходится на твердый аммиак.

Впервые аммиак был получен в чистом виде в 1774 английским химиком Джозефом Пристли. Он нагревал нашатырь (хлорид аммония) с гашеной известью (гидроксид кальция). Реакцию 2NH4 Cl + Ca(OH)2 ® NH3 + CaCl2 до сих пор используют в лабораториях, если требуется получить небольшие количества этого газа; другой удобный способ получения аммиака – гидролиз нитрида магния: Mg3 N2 + 6H2 O ® 2NH3 + 3Mg(OH)2 .

Выделявшийся аммиак Пристли собирал над ртутью. Он назвал его «щелочным воздухом», поскольку водный раствор аммиака имел все признаки щелочи. В 1784 французский химик Клод Луи Бертолле с помощью электрического разряда разложил аммиак на элементы и установил таким образом состав этого газа, который в 1787 получил официальное название «аммониак» – от латинского названия нашатыря – sal ammoniac; эту соль получали близ храма бога Амона в Египте. Это название сохраняется и ныне в большинстве западноевропейских языков (нем. Ammoniak, англ. ammonia, фр. ammoniaque); сокращенное название «аммиак» которым мы пользуемся, ввел в обиход в 1801 русский химик Яков Дмитриевич Захаров, который впервые разработал систему русской химической номенклатуры.

Впрочем, у этой истории, несомненно, есть и предыстория. Так, за сто лет до Пристли его соотечественник Роберт Бойль наблюдал, как дымится палочка, смоченная соляной кислотой и подставленная под струю пахучего газа, образующегося при сжигании навоза. В реакции NH3 + HCl ® NH4 Cl «дым» создают мельчайшие частички хлорида аммония, что дало повод для разработки занимательного опыта, «опровергающего» поговорку «нет дыма без огня». Но и Бойль вряд ли был первым исследователем еще не открытого аммиака. Ведь получали-то его и раньше, а водный раствор аммиака – нашатырный спирт чуть ли не с древних времен использовали как особую щелочь при обработке и окраске шерсти.

К началу 19 в. аммиачную воду получали из угля уже в значительных количествах в качестве побочного продукта при производстве осветительного газа. Но откуда в угле взяться аммиаку? Его там и нет, но уголь содержит заметные количества сложных органических соединений, в состав которых входят помимо других элементов азот и водород. Эти элементы и образуют аммиак при сильном нагреве (пиролизе) угля. В 19 в. на газовых заводах при нагревании без доступа воздуха из одной тонны хорошего каменного угля получали до 700 кг кокса и свыше 200 кг (300 м3 ) газообразных продуктов пиролиза. Горячие газы охлаждали, а затем пропускали через воду, при этом получали примерно 50 кг каменноугольной смолы и 40 кг аммиачной воды.

Однако получаемого таким способом аммиака явно не хватало, поэтому были разработаны химические методы его синтеза, например из цианамида кальция: CaCN2 + 3H2 O ® 2NH3 + CaCO3 или из цианида натрия: NaCN + 2H2 O ® HCOONa + NH3 . Эти методы долгое время считались перспективными, поскольку исходные вещества получали из доступного сырья.

В 1901 французский химик Анри Ле Шателье взял патент на способ получения аммиака из азота и водорода в присутствии катализатора. Однако до промышленного использования этого процесса было еще далеко: лишь в 1913 заработала первая промышленная установка синтеза аммиака (см . ГАБЕР, ФРИЦ). В настоящее время аммиак синтезируют из элементов на железном катализаторе с добавками при температуре 420–500°С и давлении около 300 атм (на некоторых заводах давление может достигать 1000 атм).

Аммиак – бесцветный газ, который легко сжижается при охлаждении до –33,3°С или при комнатной температуре при повышении давления примерно до 10 атм. Замерзает аммиак при охлаждении до –77,7°С. Молекула NH3 имеет форму трехгранной пирамиды с атомом азота в вершине. Однако, в отличие от пирамиды, склеенной, к примеру, из бумаги, молекула NH3 с легкостью «вывертывается наизнанку», наподобие зонтика, и при комнатной температуре она проделывает такое превращение с огромной частотой – почти 24 млрд. раз в секунду! Такой процесс называется инверсией; его существование доказывается тем, что при замещении двух атомов водорода, например, на метильную и этильную группы получается только один изомер метилэтиламина. Если бы не было инверсии, существовали бы два пространственных изомера этого вещества, которые отличались бы друг от друга как предмет и его зеркальное изображение. С увеличением размера заместителей инверсия замедляется, а в случае «жестких» объемистых заместителей она становится невозможной, и тогда могут существовать оптические изомеры; роль четвертого заместителя играет неподеленная пара электронов у атома азота. Впервые такое производное аммиака синтезировал в 1944 швейцарский химик Владимир Прелог.

Между молекулами аммиака существуют водородные связи. Хотя они и не такие прочные, как между молекулами воды, эти связи способствуют сильному притяжению между молекулами. Поэтому физические свойства аммиака во многом аномальны по сравнению со свойствами других гидридов элементов той же подгруппы (PH3 , SbH3 , AsH3 ). Так, у ближайшего аналога аммиака – фосфина РН3 температура кипения равна – 87,4°С, а температура плавления – 133,8°С, несмотря на то, что молекула PH3 вдвое тяжелее молекулы NH3 . В твердом аммиаке каждый атом азота связан с шестью атомами водорода тремя ковалентными и тремя водородными связями. При плавлении аммиака рвутся только 26% всех водородных связей, еще 7% разрываются при нагреве жидкости до температуры кипения. И лишь выше этой температуры исчезают почти все оставшиеся между молекулами связи.

Среди прочих газов аммиак выделяется своей огромной растворимостью в воде: при нормальных условиях 1 мл воды способен поглотить больше литра газообразного аммиака (точнее, 1170 мл) с образованием 42,8%-ного раствора. Если рассчитать соотношение NH3 и H2 O в насыщенном при нормальных условиях растворе, то получится, что одна молекула аммиака приходится на одну молекулу воды. При сильном охлаждении такого раствора (примерно до –80°C) образуютсмя кристаллы гидрата аммиака NH3 ·H2 O Известен также гидрат состава 2NH3 ·H2 O.

Водные растворы аммиака обладают уникальным среди всех щелочей свойством: их плотность снижается с увеличением концентрации раствора (от 0,99 г/см3 для 1%-ного раствора до 0,73 г/см3 для 70%-ного). В то же время аммиак довольно легко «выгнать» назад из водного раствора: при комнатной температуре давление пара над 25%-ным раствором составляет две трети атмосферного, над 4%-ным раствором – 26 мм рт.ст. (3500 Па) и даже над очень разбавленным 0,4%-ным раствором оно все еще равно 3 мм рт.ст. (400 Па). Неудивительно, что даже слабые водные растворы аммиака имеют отчетливый запах «нашатырного спирта», а при хранении в неплотно закупоренной посуде они довольно быстро «выдыхаются». Непродолжительным кипячением можно полностью удалить аммиак из воды.

На высокой растворимости аммиака в воде основан красивый демонстрационный опыт. Если в перевернутую колбу с аммиаком через узкую трубочку, соединяющую колбу с сосудом с водой, впустить несколько капель воды, газ быстро растворится в ней, давление понизится, и под действием атмосферного давления вода из сосуда с растворенным в ней индикатором (фенолфталеином) с силой устремится в колбу. Там она тут же окрасится в малиновый цвет – из-за образования щелочного раствора.

Аммиакпламенем, превращаясь, в основном, в азот и воду. Смеси аммиака с воздухом при его содержании от 15 до 28% взрывоопасны. В присутствии катализаторов реакция с кислородом приводит к химически довольно активен и вступает во взаимодействие со многими веществами. В чистом кислороде он сгорает бледно-желтым оксидам азота. При растворении аммиака в воде образуется щелочной раствор, который иногда называют гидроксидом аммония. Однако это название не вполне точное, поскольку в растворе сначала образуется гидрат NH3 ·H2 O, который затем частично распадается на ионы NH4 + и OH . Условно NH4 OH считают слабым основанием, при расчете его степени диссоциации предполагается, что весь аммиак в растворе находится в виде NH4 OH, а не в виде гидрата.

Аммиак благодаря неподеленной паре электронов образует огромное количество комплексных соединений с ионами металлов – так называемых амминокомплексов или аммиакатов. В отличие от органических аминов, в этих комплексах с атомом азота всегда связаны три атома водорода.

Как и в случае воды, комплексообразование с аммиаком часто сопровождается изменением окраски вещества. Так, белый порошок сульфата меди при растворении в воде дает голубой раствор медного купороса в результате образования аквакомплекса [Cu(H2 O)6 ]2+ . А при добавлении аммиака этот раствор окрашивается в интенсивный сине-фиолетовый цвет, принадлежащий амминокомплексу [Cu(NH3 )4 (H2 O)2 ]2+ . Аналогично безводный хлорид никеля(II) имеет золотисто-желтый цвет, кристаллогидрат [Ni(H2 O)6 ]Cl2 – зеленый, а аммиакат [Ni(NH3 )6 ]Cl2 – светло-голубой. Многие амминокомплексы достаточно устойчивы и могут быть получены в твердом состоянии. Твердый комплекс аммиака с хлоридом серебра был использован Майклом Фарадеем для сжижения аммиака. Фарадей нагревал комплексную соль в одном колене запаянной стеклянной трубки, а в другом колене, помещенном в охлаждающую смесь, собирался под давлением жидкий аммиак. Необычными свойствами обладает аммиачный комплекс тиоцианата (роданида) аммония. Если сухую соль NH4 NCS, охлажденную до 0°C, поместить в атмосферу аммиака, то соль «растает» и превратится в жидкость, содержащую 45% аммиака по массе. Эту жидкость можно хранить в склянке с притертой пробкой и использовать в качестве своеобразного «склада» аммиака.

Сильные водородные связи приводят к сравнительно высокой (по сравнению с другими газами) теплоте испарения аммиака – 23,3 кДж/моль. Это в 4 раза больше теплоты испарения жидкого азота и в 280 раз больше, чем у жидкого гелия. Поэтому жидкий гелий вообще невозможно налить в обычный стакан – он немедленно испарится. С жидким азотом такой опыт провести можно, но значительная его часть испарится, охлаждая сосуд, а оставшаяся жидкость тоже выкипит довольно быстро. Поэтому обычно сжиженные газы в лабораториях хранят в специальных сосудах Дьюара с двойными стенками, между которыми – вакуум. Жидкий аммиак, в отличие от других сжиженных газов, можно держать в обычной химической посуде – стаканах, колбах, он при этом испаряется не слишком быстро. Если же налить его в сосуд Дьюара, то в нем он будет храниться очень долго. И еще одно удобное свойство жидкого аммиака: при комнатной температуре давление пара над ним сравнительно невелико, поэтому при длительных экспериментах с ним можно работать в запаянных стеклянных ампулах, которые такое давление легко выдерживают (попытка проделать подобный эксперимент с жидким азотом или кислородом неминуемо привела бы к взрыву). Большая теплота испарения жидкого аммиака позволяет использовать это вещество в качестве хладагента в различных холодильных установках; испаряясь, жидкий аммиак очень сильно охлаждается. В домашних холодильниках раньше тоже был аммиак (теперь в основном – фреоны). Хранят жидкий аммиак в герметичных баллонах.

Внешне жидкий аммиак похож на воду. Сходство этим не ограничивается. Как и вода, жидкий аммиак – прекрасный растворитель как для ионных, так и для неполярных неорганических и органических соединений. В нем легко растворяются многие соли, которые, как и в водных растворах, диссоциируют на ионы. Однако химические реакции в жидком аммиаке часто протекают совсем не так, как в воде. Прежде всего это связано с тем, что растворимость одних и тех же веществ в воде и в жидком аммиаке может различаться очень сильно, что видно из следующей таблицы, в которой приведена растворимость (в граммах на 100 г растворителя) некоторых солей в воде и в жидком аммиаке при 20°С:

Вещество AgI Ba(NO3 )2 KI NaCl KCl BaCl2 ZnCl2
Растворимость в воде 0 9 144 36 34 36 367
Растворимость в аммиаке 207 97 182 3 0,04 0 0

Поэтому в жидком аммиаке легко протекают такие обменные реакции, которые немыслимы для водных растворов, например, Ba(NO3 )2 + 2AgCl ® BaCl2 + 2AgNO3 . Молекула NH3 – сильный акцептор ионов водорода, поэтому если в жидком аммиаке растворить слабую (в случае водных растворов) уксусную кислоту, то она будет диссоциировать полностью, то есть станет очень сильной кислотой: CH3 COOH + NH3 ® NH4 + + CH3 COO . В среде жидкого аммиака значительно усиливаются (по сравнению с водными растворами) и кислотные свойства солей аммония. Ион аммония в жидком аммиаке обладает многими свойствами, характерными для иона водорода в водных растворах. Поэтому в жидком аммиаке нитрат аммония легко реагирует, например, с магнием с выделением водорода или с пероксидом натрия: 2NH4 NO3 + Mg ® Mg(NO3 )2 + 2NH3 + H2 ; Na2 O2 + 2NH4 NO3 ® 2NaNO3 + H2 O2 + 2NH3 . С помощью реакций в жидком аммиаке впервые были выделены пероксиды магния, кадмия и цинка: Zn(NO3 )2 + 2KO2 ® ZnO2 + 2KNO3 + O2 , получен в чистом виде кристаллический нитрит аммония: NaNO2 + NH4 Cl ® NH4 NO2 + NaCl, проведены многие другие необычные превращения, например, 2K + 2CO ® K2 C2 O2 . Последнее соединение содержит тройную ацетиленовую связь и имеет строение K+– OСºCO K+ .

Большое сродство жидкого аммиака к ионам Н+ позволяет провести эффектный опыт по «пластификации» дерева. Дерево в основном состоит из целлюлозы: длинные полимерные цепи молекул целлюлозы соединяются между собой с помощью водородных связей между гидроксильными группами –OH (иногда их называют водородными мостиками). Одна водородная связь довольно слабая, но так как молекулярная масса целлюлозы достигает 2 миллионов, а мономерных звеньев (глюкозных остатков) в молекуле свыше 10 тысяч, длинные молекулы целлюлозы сцеплены друг с другом очень прочно. Жидкий аммиак с легкостью разрушает водородные мостики, связывая атомы водорода в ионы NH4 + , и в результате молекулы целлюлозы приобретают способность скользить относительно друг друга. Если деревянную палочку опустить на некоторое время в жидкий аммиак, то ее можно гнуть как угодно, как будто она сделана не из дерева, а из алюминия. На воздухе аммиак через несколько минут испарится, и водородные связи снова восстановятся, но уже в другом месте, а деревянная палочка вновь станет жесткой и при этом сохранит ту форму, которую ей придали.

Из растворов различных веществ в жидком аммиаке, без сомнения, самые интересные – это растворы щелочных металлов. Такие растворы вызывают живейший интерес ученых уже более ста лет. Впервые растворы натрия и калия в жидком аммиаке были получены в 1864. Спустя несколько лет было обнаружено, что если дать аммиаку спокойно испариться, то в осадке останется чистый металл, как это бывает с раствором соли в воде. Такая аналогия, однако, не совсем точна: щелочные металлы, хотя и медленно, с аммиаком все же реагируют с выделением водорода и образованием амидов: 2K + 2NH3 ® 2KNH2 + H2 . Амиды – стабильные кристаллические вещества, энергично взаимодействующие с водой с выделением аммиака: KNH2 + H2 O ® NH3 + KOH.

При растворении металла в жидком аммиаке объем раствора всегда больше суммарного объема компонентов. В результате такого разбухания раствора его плотность непрерывно падает с увеличением концентрации (чего не бывает у водных растворов солей и других твердых соединений). Концентрированный раствор лития в жидком аммиаке – самая легкая при обычных условиях жидкость, ее плотность при 20°C – всего лишь 0,48 г/см3 (легче этого раствора только сжиженные при низких температурах водород, гелий и метан).

Свойства растворов щелочных металлов в жидком аммиаке сильно зависят от концентрации. В разбавленных растворах находятся катионы металла, а вместо анионов – электроны, которые, однако, не могут свободно передвигаться, так как связаны с молекулами аммиака. Именно такие связанные (сольватированные) электроны придают разбавленным растворам щелочных металлов в жидком аммиаке красивый синий цвет. Электрический ток такие растворы проводят плохо. Но с повышением концентрации растворенного металла, когда электроны приобретают способность перемещаться в растворе, электропроводность увеличивается исключительно сильно – иногда в триллионы раз, приближаясь к электропроводности чистых металлов! Разбавленные и концентрированные растворы щелочных металлов в жидком аммиаке сильно различаются и по другим физическим свойствам. Так, растворы с концентрацией более 3 моль/л называют иногда жидкими металлами: они имеют отчетливый металлический блеск с золотисто-бронзовым отливом. Иногда даже трудно поверить, что это растворы одного и того же вещества в одном и том же растворителе. И здесь литию принадлежит своеобразный рекорд: его концентрированный раствор в жидком аммиаке – самый легкоплавкий «металл», который замерзает лишь при –183°C, то есть при температуре сжижения кислорода.

Много ли металла может растворить жидкий аммиак? Это в основном зависит от температуры. При температуре кипения насыщенный раствор содержит примерно 15% (мольных) щелочного металла. С повышением температуры растворимость быстро увеличивается и становится бесконечно большой при температуре плавления металла. Это значит, что расплавленный щелочной металл (цезий, например, уже при 28,3°C) смешивается с жидким аммиаком в любых соотношениях. Аммиак из концентрированных растворов испаряется медленно, так как давление его насыщенных паров стремится к нулю при увеличении концентрации металла.

Еще один очень интересный факт: разбавленные и концентрированные растворы щелочных металлов в жидком аммиаке не смешиваются друг с другом. Для водных растворов это редкое явление. Если же, допустим, в 100 г жидкого аммиака внести 4 г натрия при температуре –43° C, то образующийся раствор сам собой расслоится на две жидкие фазы. Одна из них, более концентрированная, но менее плотная, окажется сверху, а разбавленный раствор с большей плотностью – внизу. Заметить границу между растворами легко: верхняя жидкость обладает металлическим бронзовым блеском, а нижняя имеет чернильно-синий цвет.

По объемам производства аммиак занимает одно из первых мест; ежегодно во всем мире получают около 100 миллионов тонн этого соединения. Аммиак выпускается в жидком виде или в виде водного раствора – аммиачной воды, которая обычно содержит 25% NH3 . Огромные количества аммиака далее используются для получения азотной кислоты, которая идет на производство удобрений и множества других продуктов. Аммиачную воду применяют также непосредственно в виде удобрения, а иногда поля поливают из цистерн непосредственно жидким аммиаком. Из аммиака получают различные соли аммония, мочевину, уротропин. Его применяют также в качестве дешевого хладагента в промышленных холодильных установках.

Аммиак используется также для получения синтетических волокон, например, найлона и капрона. В легкой промышленности он используется при очистке и крашении хлопка, шерсти и шелка. В нефтехимической промышленности аммиак используют для нейтрализации кислотных отходов, а в производстве природного каучука аммиак помогает сохранить латекс в процессе его перевозки от плантации до завода. Аммиак используется также при производстве соды по методу Сольве. В сталелитейной промышленности аммиак используют для азотирования – насыщения поверхностных слоев стали азотом, что значительно увеличивает ее твердость.

Медики используют водные растворы аммиака (нашатырный спирт) в повседневной практике: ватка, смоченная в нашатырном спирте, выводит человека из обморочного состояния. Для человека аммиак в такой дозе не опасен. Тем не менее этот газ токсичен. К счастью, человек способен почувствовать запах аммиака в воздухе уже в ничтожной концентрации – 0,0005 мг/л, когда еще нет большой опасности для здоровья. При повышении концентрации в 100 раз (до 0,05 мг/л) проявляется раздражающее действие аммиака на слизистую оболочку глаз и верхних дыхательных путей, возможна даже рефлекторная остановка дыхания. Концентрацию 0,25 мг/л с трудом выдерживает в течение часа даже очень здоровый человек. Еще более высокие концентрации вызывают химические ожоги глаз и дыхательных путей и становятся опасными для жизни. Внешние признаки отравления аммиаком могут быть весьма необычными. У пострадавших, например, резко снижается слуховой порог: даже не слишком громкие звуки становятся невыносимы и могут вызвать судороги. Отравление аммиаком вызывает также сильное возбуждение, вплоть до буйного бреда, а последствия могут быть весьма тяжелыми – до снижения интеллекта и изменения личности. Очевидно, аммиак способен поражать жизненно важные центры, так что при работе с ним надо тщательно соблюдать меры предосторожности.