Главная              Рефераты - Химия

Модифицированные эпоксидные композиции пониженной горючести - реферат

На правах рукописи

ПЛАКУНОВА ЕЛЕНА ВЕНИАМИНОВНА

МОДИФИЦИРОВАННЫЕ ЭПОКСИДНЫЕ КОМПОЗИЦИИ ПОНИЖЕННОЙ ГОРЮЧЕСТИ

Технология и переработка полимеров и композитов

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Саратов - 2005

ОБЩАЯ ХАРАТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Автомобильная, электротехническая и другие области промышленности предъявляют высокие требования к полимерным композиционным материалам.

Эпоксидные композиции, применяемые в качестве пропиточных и заливочных компаундов должны обладать невысокой вязкостью, эластичностью, а также заданным уровнем физико-механических, теплофизических и электрических свойств. Поэтому особую значимость и актуальность представляет выбор модификаторов полифункционального действия, а также наполнителей для направленного регулирования свойств эпоксидных материалов в том числе пониженной горючести.

Целью работы: разработка составов, технологии и свойств эпоксидных композиций пониженной горючести, в том числе с использованием техногенных отходов различных производств.

Для достижения поставленной цели решались следующие задачи:

· анализ свойств применяемых компонентов;

· изучение взаимодействия компонентов в составе композиции;

· исследование влияния компонентов на кинетику отверждения эпоксидного олигомера;

· определение влияния исследуемых компонентов на реологические свойства эпоксидного олигомера;

· изучение физико-механических свойств разработанных составов.

Научная новизна работы состоит в следующем:

· установлено наличие химического взаимодействия компонентов композиции, подтвержденное методами инфракрасной спектроскопии и термогравиметрического анализа;

· установлена взаимосвязь свойств применяемых замедлителей горения с процессами структурообразования эпоксидных полимеров;

· доказано влияние замедлителей горения на процессы пиролиза и горение эпоксидного олигомера и определен механизм огнезащиты;

· изучено влияние наполнителей на формирование структуры эпоксидного олигомера;

· определено влияние замедлителей горения и наполнителей на комплекс эксплуатационных свойств эпоксидных компаундов.

Практическая значимость работы заключается в разработке составов эпоксидных композиций пониженной горючести, с требуемыми диэлектрическими и физико-механическими свойствами.

На защиту выносятся следующие основные положения:

· комплексные исследования по оценке свойств замедлителей горения, взаимосвязь химического состава применяемых замедлителей горения с формированием структуры эпоксидного олигомера, процессами при пиролизе и горении и комплексом свойств эпоксидных композитов;

· особенности формирования структуры и свойств в наполненных эпоксидных материалах.

Достоверность и обоснованность результатов исследования подтверждается комплексом независимых и взаимодополняющих методов исследования: термогравиметрического анализа (ТГА), инфракрасной спектроскопии (ИКС), дифференциально-интегрально-сканирующей калориметрии (ДИСК) и стандартных методов испытаний технологических, физико-механических, теплофизических и электрических свойств.

Апробация результатов работы. Результаты работы доложены на 4 Международных и Всероссийских конференциях: III Международной конференции «Композит-2004» (Саратов, 2004), 2-ой Всероссийской научно-практической конференции «Экологические проблемы промышленных городов» (Саратов, 2004), 3-ей Всероссийской научно-практической конференции «Экологические проблемы промышленных городов» (Саратов, 2005), 2-ой Всероссийской конференции молодых научных «Актуальные проблемы электрохимических технологий» (Саратов, 2005)

Публикации. По теме диссертации опубликовано 6 печатных работ, в том числе 2 статьи в центральных изданиях.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, общих выводов и списка использованной литературы.


СОДЕРЖАНИЕ РАБОТЫ

Введение содержит обоснование актуальности темы, цели и задачи исследований, научную новизну и практическую значимость работы.

Глава 1. Литературный обзор

Проведен анализ литературы по современному состоянию проблемы создания эпоксидных полимеров пониженной горючести. Анализом и обобщением литературных данных установлено, что большинство используемых модификаторов не обеспечивает заданного комплекса свойств, предъявляемых к пропиточным и заливочным компаундам, применяемым во многих отраслях промышленности.

Глава 2. Объекты, методики и методы исследования

В работе использовали: эпоксидно-диановый олигомер марки ЭД-20 (ГОСТ 10587-84), отвержденный полиэтиленполиамином (ПЭПА) (ТУ6-02-594-85). В качестве модификаторов применялись: фосфорсодержащий диметилакрилат – ФОМ-2 (ТУ 6-02-3-338-88), фосполиол – ФП (ТУ 2226-115-00210045-2000), фостетрол – ФТ (ТУ 6-02—1022-80), фосдиол – ФД (ТУ 6-02-1329-86). В качестве наполнителей использовались: кубовый остаток – отход производства поликапроамида, гальваношлам – отход гальванических ванн производства свечей зажигания и тальк.

Глава 3. Эпоксидные компаунды пониженной горючести, модифицированные фосфорсодержащими замедлителями горения

В качестве замедлителей горения (ЗГ) для коксующихся полимеров, к которым относятся эпоксидные связующие, эффективнее использовать фосфорсодержащие ЗГ. В связи с этим, в исследованиях применялись фосфорсодержащие соединения: фосдиол А (ФД), фостетрол I (ФТ), фосполиол II (ФП) и фосфорсодержащий диметилакрилат (ФОМ).

В связи с тем, что данные соединения выпускаются на опытном заводе по ТУ, и для оценки их дальнейшего взаимодействия с эпоксидным олигомером проведено исследование их химического состава методом ИКС.

В спектрах ФП, ФТ, и ФД отмечено наличие полос поглощения ОН, СН3 групп, групп ≡Р=О, –Р-О-С, что полностью подтверждает химический состав.

ИК-спектр фосфорсодержащего диметилакрилата (ФОМ) показал наличие также полос поглощения групп: карбоксильной, С=О (1720 см-1 ), двойной связи –С=С- (1636 см-1 ). Кроме того, обнаружен пик поглощения (3484см-1 ) групп ОН, отсутствующих у ФОМа, что связано с содержанием в ФОМе гидрохинона, являющегося ингибитором полимеризации ФОМа, рис 2.

Для практического использования эпоксидных композиций большое значение имеют их реологические свойства, в частности, вязкость, которая определяет ряд технологических параметров: текучесть состава, возможность образования равномерного слоя при формировании покрытий и пропитки, например, витков катушек и т.д.

Диановые ЭС характеризуются невысокой начальной вязкостью, составляющей 28 Па×с.

Экспериментально (вискозиметрически) и расчетами доказано, что применение модификаторов снижает вязкость исходного олигомера с 28 до 6-19 Па·с за счет увеличения молекулярной подвижности системы, табл.1.


Таблица 1

Влияние состава композиции на вязкость и степень превращения эпоксидных композиций, отвержденных ПЭПА 15 (масс.ч.)

Состав материала, масс. ч., на 100 масс. ч. ЭД-20

Вязкость,

h, Па×с

Степень превращения, Х, %

Т=250 С,

t=24 ч.

Т=900 С,

t=1 ч.

Т=900 С,

t=3 ч.

ЭД-20 28* 88 94 99
Фосполиол 9* - - -
ЭД-20+40ФП 16,5 81 86 90
Фостетрол 3,9* - - -
ЭД-20+40ФТ 10,5/6,5* - 87 92
Фосдиол 0,8* - - -
ЭД-20+40ФД 5,9/2,8* 85 87 92
ФОМ 6,3* - - -
ЭД-20+20ФОМ 19,5/12* 99,5 99,7 -
ЭД-20+20ФД+20ФОМ 9,4 87 95,9 -

Примечание: * - определены вискозиметрически

Введение в эпоксидный олигомер ФОМа повышает температуру отверждения до 1400 С, а время гелеобразования сокращается до 16 мин. Аналогичное влияние ФОМа проявляется в эпоксидной композиции, модифицированной ФД, что связано с образованием химических связей между функциональными группами ФОМа и эпоксидного олигомера.

Исследование степени отверждения показало, что максимально возможная степень отверждения достигается при наличии ФОМа при «холодном» отверждении, в присутствии других соединений – только при термообработке, табл.1.

В эпоксидных композициях, содержащих ФД и ФТ отмечены пики валентных колебаний групп ОН, Р=О, Р-О-С-, имеющихся у ЗГ, а также обнаружено образование полосы поглощения при 1183 см-1 , соответствующей валентным колебаниям группы –СО- простой эфирной связи –СН2 -О-СН2 , отсутствующей у ЗГ и ЭД-20, рис.3. Образование этих групп, подтверждает химическое взаимодействие между эпоксидным олигомером и данными ЗГ. Наличие химического взаимодействия ФД и ФТ с эпоксидным олигомером подтверждается также высокими значениями энергии активации деструкции, табл.3.

В эпоксидной композиции, содержащей ФОМ, обнаружено отсутствие пика валентных колебаний –С=С- (1636 см-1 ), принадлежащего ФОМу. Появление новых пиков (1150-1070 см-1 ) группы С-О-С алифатического эфира свидетельствует о том, что ФОМ взаимодействует с эпоксидным олигомером по гидроксильным группам с раскрытием двойной связи.

Методом ДИСК определено наличие высокого значения интегрального теплового эффекта в композиции ФД+ПЭПА. Поэтому, вероятнее всего, в композиции ФД взаимодействует не только с эпоксидным олигомером, но и с ПЭПА, а ФОМ – только с эпоксидным олигомером, табл.2.

Таблица 2

Интегральный тепловой эффект образования эпоксидных композиций

Состав композиции, масс.ч., на 100 масс.ч. ЭД-20 Площадь теплового эффекта, S, град×с/г Интегральный тепловой эффект, Qр , Дж/г Объемное электрическое сопротивление, rv , Ом Поверхностное электрическое сопротивление, rs , Ом×м
ЭД-20+15ПЭПА 33456,0 906,7 2,16·1012 8,16·1011
ФД+ПЭПА 23609,0 639,8 - -
ФОМ+ПЭПА 6952,6 188,4 - -
ЭД-20+40ФД+15ПЭПА 5826,9 157,9 1,57·1011 1,48·1011
ЭД-20+20ФОМ+15ПЭПА 17261 368,5 1,49·109 1,5·1012
ЭД-20+20ФД+20ФОМ+15ПЭПА 22711,0 615,5 1,2·1012 9,6·1013

Влияние ЗГ на процессы пиролиза и горения эпоксидного полимера определяли методом ТГА. Применяемые ЗГ ФП, ФТ и ФД относятся к достаточно термостойким соединениям и разлагаются в температурном интервале, близком к температуре разложения эпоксидной смолы. Это может обеспечивать эффективное влияние данных ЗГ на процессы горения эпоксидной смолы, табл.3.

Влияние исследуемых ЗГ на поведение эпоксидной смолы при пиролизе проявляется в следующем:

· повышается термоустойчивость материала, что подтверждается возрастанием температуры начала деструкции;

· увеличивается выход карбонизованного остатка по окончании основной стадии деструкции, соответственно, снижается количество летучих продуктов, табл.;

· значительно увеличивается энергия активации процесса деструкции;

· снижаются скорости потерь массы.

Таблица 3

Данные ТГА и горючести эпоксидных компаундов

Состав композиции, масс.ч., на

100 масс.ч. ЭД-20

Тнач. ,о С КО, % Dm, % Еа , кДж/моль
ЭД-20+15ПЭПА 200 53(390о С) 78 95
Фосполиол 230 34(350о С) - 148
ЭД-20+40ФП+15ПЭПА 215 58(360о С) 0,9 69
Фостетрол 260 35(350о С) - 81
ЭД-20+40ФТ+15ПЭПА 220 57(355о С) 1,4 158
Фосдиол 260 26(350о С) - 102
ЭД-20+40ФД+15ПЭПА 275 54(345о С) 0,8 823
ФОМ 180 28(380о С) - 297
ЭД-20+20ФОМ+15ПЭПА 230 49(365о С) 4,0 85

Выявленное влияние ФП, ФТ и ФД на термолиз эпоксидной смолы проявляется и в поведении материала при горении.

Образцы испытаны при горении на воздухе с применением методов «огневой трубы» и «керамической трубы». Результаты испытаний, полученных обоими методами, коррелируют, табл.3, 4. Образцы, содержащие ЗГ, не поддерживают горение на воздухе, а большие потери массы (0,6-4%) связаны с некоторой деструкцией полимера. Следовательно, все разработанные составы относятся к классу трудногорючих, так как в соответствии с ГОСТ 12.1.044-89 к этому классу относятся материалы, для которых Dt<60о C и Dm<60%.

Таблица 4

Показатели горючести эпоксидных композиций

Состав материала, масс. ч., на 100 масс. ч. ЭД-20

Приращение температуры,

DТ, о С

Потери массы, Dm, %
ЭД-20+15ПЭПА +650 80
ЭД-20+40ФД+15ПЭПА -20 0,15
ЭД-20+40ФОМ+15ПЭПА -10 0,21
ЭД-20+20ФД+20ФОМ+15ПЭПА -30 0,31
ЭД-20+40ФД+20ФОМ+15ПЭПА -40 0,35

Так как модификаторы влияют на процессы структурообразования эпоксидных композиций, следовательно, возможно изменение их физико-механических свойств.

Введение 40 масс.ч. ФД приводит к увеличению разрушающего напряжения при изгибе в 3 раза, и к удару – в 2 раза, табл.5.

Композиции, содержащие как ФОМ, так и одновременно ФОМ и ФД, обладают более высокой устойчивостью к ударным нагрузкам. При испытаниях на изгиб образцы не разрушаются при прогибе на 1,5 толщины, и напряжение при изгибе составляет 92 и 62 МПа соответственно, табл.5.

Таблица 5

Физико-механические свойства эпоксидных композиций

Состав материала, масс. ч., на 100 масс. ч. ЭД-20 sи , МПа ауд , кДж/м2 ТВ , о С
ЭД-20+15 ПЭПА 17 5 115
ЭД-20+40 ФП+15 ПЭПА 58 3 >200
ЭД-20+40 ФТ+15 ПЭПА 16 2 >200
ЭД-20+40 ФД+15 ПЭПА 69,6 12,6 >200
ЭД-20+20 ФОМ+15 ПЭПА 91,8* 15,2 >200
ЭД-20+40 ФД+20 ФОМ+15 ПЭПА 71,1 14,3 >200
ЭД-20+20 ФД+20 ФОМ+15 ПЭПА 62,4* 12,95 >200

Примечание: * - прогиб на 1,5 толщины.

Анализ физико-химических, физико-механических свойств, а также поведение материалов при пиролизе и горении показал, сто разработанные составы могут применяться в качестве пропиточных и заливочных компаундов пониженной горючести.

Глава 4. Наполненные эпоксидные композиции с пониженной горючестью

В качестве дисперсных наполнителей в работе использовались: кубовый остаток, гальванический шлам и тальк. Использование отходов целесообразно экономически и решает экологические проблемы.

Для оценки возможности использования данных отходов в качестве наполнителя для полимерных композиционных материалов определен ряд их свойств: гранулометрический состав, насыпная и истинная плотности, поведение при воздействии повышенных температур.

Кубовый остаток и шлам полидисперсны. В качестве наполнителя для эпоксидных смол рекомендуется использовать фракцию с размером частиц £140 мкм, так как она характеризуются большей удельной поверхностью, табл.6, обеспечивающей лучшее взаимодействие наполнителя и связующего.

Таблица 6

Свойства наполнителей

Наполнитель Плотность, r, кг/м3

Насыпная плотность,

rнас. , кг/м3

Удельная поверх-

ность,

S, м2 /кг

Потери при сушке или термообработке, %
Шлам высушенный 5100 1111 679,4 85,2
Фракции с dч £140 мкм 5100 1000 712,3 -
Шлам с dч £140 мкм термообработанный при 200о С 120 мин 5100 870 882,6 25
КО с dч £140 мкм 1050 526 1150,2 3,6
Тальк 1800 800 - 0,8

Методом ИКС проведен анализ исследуемых соединений, рис.4.

Кубовый остаток многокомпонентен и состоит из олигомеров капролактама, значительную часть которых составляют линейные и циклически димеры и тримеры. В ИК-спектрах кубового остатка отмечены пики валентных колебаний групп СН2 , NH, NH-С=О, что полностью подтверждает его химический состав.

Данные ИКС талька также полностью подтверждают его состав.

В составе высушенного шлама имеются гидроксильные группы (3408, 73 см-1 ), что свидетельствует о присутствии в составе шлама гидроксидов металлов, а также группы NO3 -2 (1401 см-1 ), CO3 -2 (1488,49 см-1 ), Al-O-Al (Si-O-Si) (1042,53 см-1 ), Cu-O-Cu (1088 см-1 ), значительное количество небольших пиков при длинах волн 500-700 см-1 - неидентифицированно, рис.4.

Методом оптической микроскопии определено наличие в составе высушенного шлама частиц различного цвета: белого, желтого и красного. В связи с этим проведен спектральный анализ данных частичек. Установлено, идентичность пиков всех частиц при длинах волн 1500-3400 см-1 и существенные различия при длинах волн 400 - 1500 см-1 . Так, в спектрах частиц белого цвета длины волн 1042,48 см-1 могут соответствовать колебаниям Al-O-Al, Si-O-Si групп, а в спектрах частиц красного цвета пик при 1088 см-1 , может быть вызван колебаниями Cu-O-Cu, а желтого - Cr.

Эмиссионным спектральным анализом установлено наличие в составе шлама кроме указанных элементов также Fe, Zn, Cr, Ni, Al, Cu, Mg, Na,Ca, Si.

Элементным анализом определено количество основных элементов в шламе составе шлама, табл.7.


Таблица 7

Химический состав исходного шлама

Химический состав

шлама

Cr(OH)3 Ni(OH)2 Zn(OH)2 Fe(OH)3 Влажность Примеси
Содержание элементов, % масс 6,7 6,0 13,4 61,8 85,2 сульфаты, хлориды, аммоний

Поведение применяемых наполнителей при воздействии повышенных температур исследовалось методом ТГА, табл.8.

Таблица 8

Данные ТГА наполнителей

Вещество Основные стадии термолиза Потери массы массы, % при температурах ,о С

Тнк , о С

Тн

mн - mк , %

mн

100 200 300 400 500 600
Шлам исходный (сухой)

80-280

140

9-22

18

3 13 19 24 26 27
Шлам, обрабтанный при 200о С

80-280

120

7-19

16

3 11,5 16 20 21 21
Шлам, обработанный при 250о С

80-280

220

3-8

5

0 2,5 5 8,5 10 10,5
Кубовый остаток 4 16 42 64 - -

Для повышения термостойкости шламов проводили их термообработку при температурах 200о С в течение 120 минут и 250о С в течение 60 минут. Для высушенного шлама и шламов, обработанных при температуре 200 и 250о С характерны одинаковые температуры начала деструкции, и только температура термообработки 250о С обеспечивает значительное уменьшение ~ в 4 раза потерь массы, табл.7.

Кубовый остаток является термостойким наполнителем (Тн =260о С), видимо за счет наличия в его составе циклических структур, табл.7.

Введение кубового остатка и талька способствует повышению вязкости исходного эпоксидного олигомера. Влияние гальваношлама на вязкость композиций проявляется в меньшей степени, табл.9.

Применение модификаторов, хорошо совместимых с олигомером оказывает пластифицирующее действие на наполненные эпоксидные композиции, так как видимо наряду с пластификацией, уменьшается адгезионное взаимодействие на границе раздела фаз. Снижение вязкости улучшает условия контакта связующего с наполнителем и технологичность переработки состава.

Действие наполнителей на процессы структурообразования эпоксидных композиций весьма неоднозначно, что обусловлено в значительной степени различной активностью наполнителей.

Таблица 9

Влияние наполнителей на вязкость и степень отверждения эпоксидных композиций

Состав Вязкость, Па·с Степень превращения, %

Т=250 С,

t=24 ч.

Т=900 С,

t=1 ч.

Т=900 С,

t=3 ч.

ЭД-20 28 88 94 99
ЭД-20+20КО 62/53,2* 80 87 90
ЭД-20+20КО+40ФТ 5 - 79 83
ЭД-20+20КО+40ФД 5 80 89 91
ЭД-20+20 тальк 87 94 99 -
ЭД-20+20 тальк +20ФД 31 92 96 98
ЭД-20+20 тальк +20ФОМ 44 93 94 99
ЭД-20+20 тальк+20ФД+20ФОМ 20 87 98 -
ЭД-20+20Шл* 58 85 98 -
ЭД-20+20Шл*+20ФД 22 71 77 99
ЭД-20+20Шл*+40ФД 9 82 97
ЭД-20+20Шл*+20ФОМ 34 93 96 -
ЭД-20+20Шл*+20ФД+20ФОМ 16 92 99 -

Изучение кинетики отверждения показало, что введение кубового остатка в ЭД-20 ускоряет процесс отверждения, что проявляется в некотором уменьшении времени гелеобразования (с 60 до 50 мин), и снижении максимальной температуры реакции отверждения со 119о С до 92о С.

Тальк аналогично КО ускоряет процесс структурообразования, уменьшая время гелеобразования до 40 мин., при увеличении максимальной температуры отверждения до 150о С.

Исходный шлам существенно снижает (до 48-60 0 С) температуру отверждения эпоксидного олигомера, за счет более высокой теплопроводности частиц наполнителя. Однако совсем иное влияние на процесс отверждения оказывает термообработанный шлам. В этом случае максимальная температура отверждения увеличивается до 130о С. Это, видимо, связано с переходом гидроксидов металлов в оксиды при термообработке. Следует отметить, что тепловыделение при отверждении мало зависит от содержания термообработанного шлама, но его количество значительно влияет на жизнеспособность композиции. Время гелеобразования уменьшается с увеличением содержания шлама, что может быть связано с избирательной сорбцией. В данном случае наполнителем сорбируется эпоксидный олигомер. Молекулы олигомера, находящиеся в адсорбированном слое не участвуют в реакции отверждения, и смола в объеме обогащается избыточным количеством отвердителя (ПЭПА), что приводит к ускорению процесса отверждения.

Модификация составов, содержащих все исследуемые наполнители, введением ФП, ФТ, ФД и ФОМа, не влияет на кинетику отверждения и процесс формирования структуры протекает аналогично ненаполненной системе.

Исследованиями по определению устойчивости ненаполненных композиций к изгибающим нагрузкам, являющейся определяющей характеристикой для компаундов, установлено, что для наполнения наиболее подходят композиции, содержащие ФД и ФОМ одновременно, табл.10.

Таблица 10

Физико-механические свойства наполненных эпоксидных композиций

Состав материала, масс. ч., на 100 масс. ч. ЭД-20 sи , МПа ауд , кДж/м2
ЭД_20+15ПЭПА 17 5
ЭД-20+20ФД+20ФОМ+15ПЭПА 62* 13
ЭД-20+20КО+20ФД+20ФОМ+15ПЭПА 43 5
ЭД-20+20 тальк+20ФД+20ФОМ+15ПЭПА 60 7
ЭД-20+20 талька+40ФД+40ФОМ+15ПЭПА 47* 7
ЭД-20+20Шл*+20ФД+20ФОМ+15ПЭПА 54 6
ЭД-20+20Шл*+40ФД+40ФОМ+15ПЭПА 40 7

Анализ физико-механических свойств наполненных композиций показал, что при использовании в качестве наполнителя кубового остатка и гальваношлама комплекс свойств в значительной степени превосходит немодифицированный эпоксидный олигомер и находится на уровне свойств эпоксидных полимеров, содержащих тальк, широко применяемый для наполнения эпоксидных смол.

Кроме того, применение низкомолекулярных соединений (ФОМа и ФД) и наполнителей не ухудшает диэлектрические свойства материала, табл.11.

Таблица 11

Электрические свойства

Состав материала, масс. ч., на 100 масс. ч. ЭД-20 rv ,Ом rs , Ом·м
ЭД-20+20Тальк+15ПЭПА 6,92·1010 2,72·1010
ЭД-20+20Тальк+40ФД+20ФОМ+15ПЭПА 1,28·1012 3,27·1010

Определение горючести эпоксидных композиций методом «керамической трубы», показало, что разработанные материалы относятся к классу трудногорючих, табл.12.


Таблица 12

Показатели горючести наполненных эпоксидных композиций

Состав материала, масс. ч., на 100 масс. ч. ЭД-20 Приращение температуры, Dt, о С Потери массы, Dm, %
ЭД20+20КО+40ФД+20ФОМ+15ПЭПА -20 1,29
ЭД20+20Тальк+40ФД+20ФОМ+15ПЭПА -20 0
ЭД20+20шлам+40ФД+20ФОМ+15ПЭПА -20 0

На основании проведенных исследований выбраны композиции с оптимальным сочетанием свойств: эластичностью, хорошими диэлектрическими и пониженной горючестью.


ОСНОВНЫЕ ВЫВОДЫ

- Разработаны составы эпоксидных композиций пониженной горючести, с требуемыми диэлектрическими и физико-механическими свойствами;

- Доказана возможность направленного регулирования структуры и свойств эпоксидных компаундов с применением модифицирующих фосфорсодержащих замедлителей горения и наполнителей. При этом установлено: наличие химического взаимодействия между замедлителями горения и эпоксидным олигомером и влияние замедлителей горения на процессы структурообразования, обеспечивающие формирование структуры эпоксидного олигомера с повышенной эластичностью;

- Установлено влияние ЗГ влияние замедлителей горения на физико-химические процессы при пиролизе и горении эпоксидных композиций, проявляющиеся в повышении термоустойчивости материала, что подтверждается возрастанием температуры начала деструкции; увеличивается выход карбонизованного остатка по окончании основной стадии деструкции, соответственно, снижается количество летучих продуктов; значительно увеличивается энергия активации процесса деструкции; снижаются скорости потерь массы.

- Изучены свойства применяемых наполнителей, определяющие структурообразование эпоксидного олигомера (удельная поверхность, насыпная и истинная плотности и т.п.). Для наполнения рекомендуется использовать частицы с размером 140 мкм, так как они характеризуются большей удельной поверхностью, обеспечивающей лучшее взаимодействие наполнителя и связующего;

- Исследовано поведение наполнителей при воздействии повышенных температур и их влияние на процессы при пиролизе и горении эпоксидных композитов – разработанные материалы относятся к классу трудногорючих;

- Установлено, что введение наполнителя талька и шлама , и ЗГ приводит к повышению разрушающего напряжения при изгибе в 3 раза и устойчивости к удару в 2 раза.


Основыне положения и результаты диссертационной работы изложены в следующих публикациях:

1. Плакунова Е.В. Модифицированные эпоксидные композиции / Е.В. Плакунова, Е.А. Татаринцева, Л.Г. Панова // Пластические массы.-2003.-№2.-С.39-40;

2. Плакунова Е.В. Наполнение эпоксидных смол отходами производства поликапроамида / Е.В. Плакунова, Е.А. Татаринцева, Л.Г. Панова // Экологические проблемы промышленных городов: Сб. науч. тр., Саратов, 2004 г. - Саратов, 2004. – С.148-150;

3. Плакунова Е.В. Исследование возможности использования шламов гальванических производств в качестве наполнителя полимерных композиций / Е.В. Плакунова, Е.А. Татаринцева, Л.Г. Панова // «Композит-2004»: Докл. Междунар. конф., Саратов, 6 – 9 июля 2004 г. – Саратов, 2004.- С.217-221;

4. Плакунова Е.В. Исследование свойств гальваношламов / Е.В.Плакунова, Е.А.Татаринцева, Л.Г.Панова // Экология и промышленность России.-2005.-№3.-С.38-39;

5. Плакунова Е.В. Техногенные отходы как перспективные наполнители / Е.В. Плакунова, Е.А. Татаринцева // Экологические проблемы промышленных городов: Сб. науч. тр., Саратов, 2005 г. - Саратов, 2004. – С.61-64;

6. Плакунова Е.В. Модификация как способ создания новых композиционных материалов / Е.В.Плакунова, Е.А.Татаринцева, Л.Г.Панова // Актуальные проблемы электрохимической технологии: Сб. статей / Сарат. гос. техн. ун-т. – Саратов, 2000. – С.133-138.