Главная              Рефераты - Химия

Синтез жирных кислот - контрольная работа

Контрольная работа по теме:

C ИНТЕЗ ЖИРНЫХ КИСЛОТ

Введение

Синтетические жирные кислоты (далее по тексту – СЖК) находят широкое применение как заменители пищевых жиров в производстве мыла и моющих средств, пластификаторов, мягчителей, стабилизаторов, эмульгаторов, пластичных смазок, лакокрасочных материалов и многих других полезных продуктов.

Целью данной контрольной работы являлось произвести обзор способов промышленного производства СЖК.

1. Химические и физические свойства жирных кислот

По степени воздействия на организм человека СЖК относятся к 3-му классу опасности по ГОСТ 12.1.007 (вещества умеренно опасные) с предельно допустимой концентрацией паров кислот в воздухе рабочей зоны для суммы кислот 5 мг/м3 (в пересчете на уксусную кислоту).

Кислоты всех фракций обладают раздражающим действием на неповреждённую кожу и слизистые оболочки.

При работе с СЖК применяют индивидуальные средства защиты согласно нормам, утверждённым в установленном порядке. В случае розлива кислот применяют индивидуальные средства защиты органов дыхания по ГОСТ 12.4.034: противогазы марок ФУ-2, ФУ-3, изолирующие.

Таблица 1 – Физические свойства наиболее распространённых природных ВЖК

Кислота

Мол.масса

Т.плавл., ºС

Т.заст., ºС

Т.кип., ºС/мм.рт.ст.

d4 ( ºС )

n D ( ºС )

Капроновая (гексановая) С5 Н11 СООН

128,20

-3,4

-3,3

205-207

0,9290(20)

1,4170(20)

Каприловая (октановая) С7 Н15 СООН

144,21

16-16,7

16,3-16,5

237-239,7

0,9088-0,9105(20)

1,4280(20)

Каприновая (декановая) С9 Н19 СООН

172,17

31-31,6

31,2

266,4-270

0,8858(40)

1,4288(40)

Ундециловая (ундекановая) С10 Н21 СООН

186,30

28-30,5

28,1

284; 179/28

0,8505(80)

1,4319(40)

Лауриновая* (додекановая) С11 Н23 СООН

200,32

43,6-44,5

43,9

298,9; 176/15

0,8690(50)

1,4304(50)

Тридециловая (тридекановая) С12 Н25 СООН

214,35

41,5

41,8

312,4; 199-200/24

0,8458(80)

1,4215(80)

Миристиновая* (тетрадекановая) С13 Н27 СООН

228,38

53,5-54,4

54,1

196,5/15

0,8589(60)

1,4310(60)

Пентадециловая (пентадекановая) С14 Н29 СООН

242,40

52-54

52,5

339,1; 157,8/1

0,8423(80)

1,4254(80)

Пальмитиновая (гексадекановая) С15 Н31 СООН

256,43

62,5-64,0

62,8

215/15

0,8414(80)

1,4269(80)

Маргариновая (гептадекановая) С16 Н33 СООН

270,46

60,0

61,0

277/100

0,8630(80)

1,4342(60)

Стеариновая (октадекановая) С17 Н35 СООН

284,48

69,2-69,9

69,3

232/15

0,8390(80)

1,4296(80)

Нонадекановая (нонадециловая) С18 Н37 СООН

298,51

68,6

69,5

297-298/100

0,8770(69)

1,4512(70)

Арахиновая (эйкозановая) С19 Н39 СООН

312,54

75,3

74,9

328 (с разл.); 203-205/1

0,8240(100)

1,4250(100)

Бегеновая (докозановая) С21 Н43 СООН

340,59

79,9-84

79,7

306/60; 262-265/15-16

0,8221(100)

1,4270(100)

Олеиновая (октадеценовая) С17 Н33 СООН

282,47

13,4 и 16,3 (полиморфизм)

-

232/15

0,8950(18)

1,4582(20)

Эруковая (докозеновая) С21 Н41 СООН

338,58

33,0-34,7

-

281/30

0,8532(70)

1,4440(70)

Линолевая (октадекадиеновая) С17 Н29 СООН

280,45

от -5 до -5,2

-

230-233/15

0,9030(20)

1,4699(20)

Линоленовая (октадекатриеновая) С17 Н27 СООН

278,44

от -11 до -12,8

-

230-232/17

0,903-0,914(20)

1,4800(20)

Арахидоновая (эйкозантетраеновая) С19 Н31 СООН

304,47

-49,5

-

-

-

1,4824(20)

Клупанодоновая (докозантетраеновая) С21 Н33 (ОН)СООН

330,51

от -100,0 до -11,3

-

230-232/17

0,9218(15)

-

Рицинолевая (гидроксиоктадеценовая) С17 Н32 (ОН)СООН

298,47

4-5; 7,7-16 (полиморфизм)

-

250/15

0,9496(15)

1,7714(20)

По физико-химическим показателям кислоты должны соответствовать требованиям и нормам, указанным в табл.2 [5]

СЖК реагируют также как и другие карбоновые кислоты, что подразумевает этерификацию и кислотное реакции. Восстановление СЖК приводит к жирным спиртам. Ненасыщенные жирные кислоты также могут вступать в реакции присоединения, наиболее характерно гидрирование.

При загорании небольших количеств кислот применяют пенные и углекислотные огнетушители; при загорании продукта, разлитого на значительной площади – водяной пар, воздушно-механическую пену средней кратности с пенообразователем ПО-ЗАИ, порошок ПСБ. Для тушения кислот в резервуарах применяют водяной пар.


2. Способы производства жирных кислот

Синтетические жирные кислоты (далее по тексту – СЖК), получаемые в промышленности из нефтехимического сырья, представляют собой, как правило, смеси насыщенных, преимущественно монокарбоновых кислот нормального и изостроения с четным и нечетным числом атомов углерода в молекуле, содержащие примеси дикарбоновых, гидрокси- и кетокарбоновых кислот и других соединений.

2.1 Окисление парафинов кислородом воздуха

До недавнего времени основным способом синтеза СЖК в России было окисление парафинов кислородом воздуха (см.рис.1) при 105-120°С и атмосферном давлении (катализаторы – соединения марганца, например MnSO4 , MnO2 , КМnО4 ).

СН3 -…СН2 …-СН3 + 3О2 -> СН3 -…СН2 …-СООН +Н2 О

Степень превращения парафина составляла 30-35%. Продукты окисления нейтрализовали при 90-95ºС 20%-ным раствором Na2 CO3 и омыляли 30%-ным раствором NaOH; из полученных мыл кислоты выделяли обработкой H2 SO4 и фракционировали. Предусмотренные к выпуску фракции указаны в табл. 2.

Неомыляемые продукты удаляли термической обработкой в автоклаве при 160-180°С и 2,0 МПа, а затем в термической печи при 320-340°С.

В СССР производство СЖК осуществлялось на ряде предприятий: Омском НПК, Надворнянском и Волгоградском НПЗ, Волгодонском и Шебекинском химкомбинатах и Уфимском НПЗ им. ХХII съезда КПСС. Начиная с 90-х годов, эти производства были постепенно ликвидированы в связи с нерентабельностью существующих технологий: невысокий выход целевой фракции С1020 (около 50% на сырье), низкое качество кислот, обусловленное присутствием до 3% побочных продуктов (дикарбоновых, кето- и гидроксикарбоновых кислот и др.), большой объем сточных вод (до 8 м3 на 1 т кислот), загрязненных Na2 SO4 и низкомолекулярными кислотами. Кроме того, сырьевая база парафинов является достаточно дефицитной. Последним было закрыто в начале 2001 года производство СЖК на Уфимском НПЗ.

2.2 Окисление альдегидов оксосинтеза кислородом

2-Этилгексановую кислоту и фракцию кислот С810 получают окислением соответствующих альдегидов оксосинтеза кислородом или кислородсодержащим газом при 40-90°С и 0,1-1,0 МПа (катализаторы – металлы I, II или VIII группы). СЖК фракций С1215 , С1618 синтезируют окислением оксоспиртов, например в водных щелочных растворах при 70-120 °С в присутствии металлов платиновой группы или расплавленной щелочью при 170-280°С и давлении, необходимом для поддержания продуктов в жидкой фазе. Получаемые кислоты содержат меньше побочных продуктов, чем кислоты, синтезируемые из парафинов.

Гидрокарбоксилирование олефинов в присутствии Со2 (СО)8

Практическую значимость приобретают методы синтеза СЖК из олефинов в присутствии Со2 (СО)8 :

· гидрокарбоксилирование при 145-165 °С и 5-30 МПа:

RCH=СН2 + СО + Н2 О → RCH2 CH2 COOH;

· гидрокарбоалкоксилирование при 165-175 °С и 5-15 МПа с последующим гидролизом образующегося эфира:


Преимущества процессов: малостадийность, высокие выходы кислот; недостатки: довольно жесткие условия (сложность технологического оформления), образование большого количества (до 50%) кислот изостроения, в следствие чего – высокая стоимость получающихся кислот.

2.3 Гидрокарбоксилирование олефинов в присутствии кислот

СЖК синтезируют также гидрокарбоксилированием олефинов в присутствии кислот, например H2 SO4 , HF, BF3 , при температуре 50-100°С, давлении 5-15 МПа (процесс Коха). При использовании сокатализаторов (карбонилов меди и серебра) реакцию можно вести при 0-30°С и 0,1 МПа. Получают в основном смеси кислот изостроения. Они отличаются низкими температурами плавления и кипения, высокой вязкостью, хорошей растворимостью. Недостаток метода – высокоагрессивная среда.

2.4 Жидкофазное окисление α-олефинов

Метод жидкофазного окисления технической фракции α-олефинов на однотарельчатой сетчатой колонне 40×900мм в присутствии стеарата кобальта. Условия процесса: температура 1300ºС, время – 2,5ч , количество катализатора – 0,07%, скорость воздуха – 2,5 л/мин. В результате образуется смесь кислородсодержащих соединений со средним молекулярным весом 536, содержащая карбонильные, гидроксильные и карбоксильные группы. Высокие йодные числа полученного оксидата указывают на наличие непредельных веществ. Для выделения кислот из оксидата предлагается экстракция водным раствором карбоната натрия с последующим подкислением щелочной фазы. Другой описанный метод получения карбоновых кислот окислением олефинов кислородом воздуха включает использование в качестве инициирующей добавки органических перекисей. Смесь высших α-олефинов окисляют кислородом воздуха при 75-1100ºС в присутствии 1% перекиси третбутила до 20%-ной конверсии, затем добавляют 1% стеарата марганца и продолжают окисление. Длительность процесса - 8-12 часов. Кислоты экстрагируют раствором карбоната натрия. Конверсия – 75%. Карбоновые кислоты получали также при окислении α-олефинов С420 кислородом воздуха при 100-1600ºС в присутствии Ce(NO3 )3 и азотной кислоты. В качестве растворителя использовали низкомолекулярные жирные кислоты. Выход кислот составил не более 75%.

2.5 Окисление кислородом и озонирование альфа-олефинов

Перспективным альтернативным сырьем для получения СЖК могли бы стать дешёвые фракции α-олефинов – С20 -26 и С28 и выше. Линейные α-олефины являются крупнотоннажным продуктом.

Задачей исследования [6] являлась разработка технологии производства синтетических жирных кислот из олефинов, которые могли бы использоваться для получения пластичных смазок и эмульсолов, не требующих применения чистых кислот (целью являлось получение достаточно простой, малозатратной технологии, которая бы не требовала крупных капиталовложений и основывалась на дешевом сырье).

Были проведены лабораторные исследования жидкофазного окисления α-олефинов фракций С20 -26 и С28 и выше кислородом воздуха. Условия окисления были подобраны по аналогии с известным процессом окисления парафинов, применявшимся для получения жирных кислот. Реакцию осуществляли в лабораторном реакторе колонного типа, барботируя через фракцию олефинов воздух со скоростью 3-4 л/мин при нормальном давлении в интервале температур 80-1300ºС в присутствии катализаторов (0,03-0,3%).В качестве катализаторов использовали стеарат кобальта, а также смесь калиевых, натриевых и марганцевых мыл, полученных из СЖК С7 -9 , натуральных жирных кислот, олеина технического и оксидата – продукта окисления олефинов. Окисление исследовали, меняя температуру, время реакции, количество и порядок добавления (вместе с олефином или порционно в процессе окисления) катализатора. Было установлено, что ниже температуры 1100ºС окисление практически не идет. Окисление при использовании в качестве катализатора смеси калиевых и марганцевых мыл идет лучше, чем при использовании только марганцевых соединений. Каталитическая активность стеарата кобальта сопоставима с соединениями марганца. Строение органического радикала солей марганца не оказывает существенно влияния на выход кислот. Максимальное кислотное число 69 было достигнуто при проведении процесса с использованием калий-марганцевых мыл (0,2% в пересчете на марганец) при температуре 1150ºС в течение 36 часов. Большое значение числа омыления (124,3) свидетельствует о присутствии значительного количества побочных продуктов (эфиров, окисей, перекисей и др.). Увеличение времени реакции не является целесообразным, т.к. идет значительное замедление скорости процесса, кислотное число увеличивается незначительно, но увеличивается количество побочных продуктов и продуктов разложения.

Также были исследованы окисление олефинов воздухом в присутствии фталоцианинов меди и кобальта, промышленно доступных соединений. На фталоцианине кобальта (содержание в реакционной смеси 0,01%) при пропускании воздуха через олефины в течение 32 часов при 115-1200ºС был получен оксидат с кислотным числом 32 и числом омыления 81. Фталоцианин меди оказался менее эффективным, был получен оксидат с кислотным числом 14 через 25 часов окисления.

Процесс окисления олефинов кислородом воздуха требует дальнейших исследований в плане интенсификации, увеличения селективности, поиска новых катализаторов при соблюдении условия технологичности с одной стороны и низкой себестоимости получаемых СЖК – с другой.

Альтернативным окислению кислородом воздуха в присутствии катализаторов является метод озонирования высших α-олефинов озонно-кислородной смесью. Применение озона в химической технологии в последние годы увеличивается быстрыми темпами. К числу действующих относятся производства азелаиновой кислоты из олеиновой кислоты или соевого масла, гормональных препаратов и стероидов и др. Озон, необходимый для процесса, получают при действии на кислород или воздух тихого электрического разряда в специальных генераторах. Озоновые генераторы различной производительности выпускаются отечественной промышленностью, например, озонатор П-850-200 1МК производства ТД «Курганхиммаш-Озон», стоимостью порядка 14 млн. руб., с производительностью по озону 25,8 кг/ч. Озонаторы обеспечивают образование газовой смеси с содержанием озона до 10% вес. Эти смеси и используются для озонирования олефинов и других непредельных соединений.

При гидролизе или термолизе озонидов конечными продуктами в основном являются альдегиды и кислоты. Поскольку альдегиды легко окисляются, их нетрудно количественно превратить в кислоты.

В качестве сырья для озонирования могут быть использованы индивидуальные олефины и технические фракции с определенными пределами выкипания (например, 140-1800ºС, 180-2400ºС, 200-2400ºС), содержащие олефины С68 , С810 , С1014 , С1016 и т.п. Изомерный состав олефинового сырья желательно иметь максимально однородный. Концентрация олефинов в сырье может колебаться от 10 до 100%, ароматических углеводородов и циклоолефинов не должно быть, а присутствие парафинов не влияет существенно на процесс, ибо в условиях озонирования они являются инертными до тех пор, пока олефин не превратится полностью. Озонирование олефинов осуществляется при атмосферном давлении и умеренных температурах путем барботажа озонсодержащего газа через жидкие олефины или смеси олефинов с парафинами, при температурах от -40 до +1300ºС. Поскольку реакция высокоэкзотермична, возникает вопрос об отводе реакционного тепла и выборе хладагента. При использовании водяного охлаждения наиболее предпочтительны температуры 10-350ºС. Озонирование можно проводить как периодический или непрерывный процесс.

Имеется ряд зарубежных патентов по озонированию олефинов с получением карбоновых кислот. Однако предлагаемые технологии достаточно сложны и дорогостоящи. Так, карбоновые кислоты и кетоны получают озонированием и окислением олефинов в присутствии ОН-содержащего растворителя (вода, уксусная кислота или третичный спирт) при -78÷560ºС, окисляя озониды раствором хромовой кислоты в водной серной кислоте.

В итоге, авторами исследования [6] был сделан вывод, что технологии, основанные на озонировании α-олефинов либо на их окислении кислородом воздуха, несомненно могут стать достаточно перспективными способами получения недорогих высших синтетических жирных кислот, которые найдут прежде всего широкое применение в производстве пластичных смазок и смазочно-охлаждающих жидкостей. Однако эти процессы требуют серьезного изучения и поиска методов их интенсификации (например, применение роторно-пульсационных аппаратов, УФ-облучения, ультразвука и т.п.).

2.6 Окисление альдегидов кислородом воздуха

В исследовании [8] изучалась возможность получения насыщенных кислот С48 окислением соответствующих альдегидов кислородом воздуха в присутствии незначительных количеств изопропанола. Окисление проводили при 55-70ºС в течение 11-14 часов при скорости подачи воздуха 15 л/час. Выход карбоновых кислот составлял 92-94%. Синтез кислот осуществлялся в одну стадию без применения дорогостоящих катализаторов


Применение

СЖК (см. табл. 2) применяют в производстве: пластичных смазок (фракции С56 , С79 , С20 и выше); синтетических спиртов (С79 , С910 , С1016 ); лакокрасочных материалов – для улучшения смачиваемости и диспергирования пигментов, предотвращения их оседания, изменения вязкости красок (С818 ); латексов и каучуков - как эмульгаторы при полимеризации бутадиенсодержащих мономеров (С1013 , С12 -C16 ); неионогенных ПАВ – моно- и диэтаноламидов (С1016 и С1013 соответственно); текстильно-вспомогательных веществ (С1416 , С1418 ); свечном производстве (С1420 ); алифатических аминов и амидов; мягчителей и диспергаторов ингредиентов для резинотехнических изделий; добавок к ракетному топливу, увеличивающих противоизносные свойства (С1720 ); искусственные кожи; депрессорных присадок к дизельным топливам (С2125 ).

Таблица 2 – Характеристика фракций СЖК

Показатель

С56

С79

С910

С1013

С1016

С1216

С1720

1) Внешний вид и цвет при 20±5ºС

Прозрачные маслянистые жидкости, бесцветные или слегка желтоватые

Мазеобразные продукты от белого до светло-жёлтого цвета

Твёрдый продукт от белого до светло-жёлтого цвета

2) Цветность по йодной шкале, мг I2 /100 см2 , не более

4,0-6,0

6,0-9,0

5,5-7,0

7,0-10,0

6,0-8,0

7,0-8,0

7,0-11,5

3) Кислотное число,

мг КОН/г, не более

430-500

370-410

330-370

275-300

240-260

235-265

195-210

4) Эфирное число,

мг КОН/г, не более

-

-

-

5,0

4,5

5,0

6,5

5) Карбонильное число,

мг КОН/г, не более

-

-

-

12

12

12

14,5

6) Содержание неомыляемых веществ,

7) % по массе, не более

-

1,0

1,2

1,5

2,1

2,0

4,5

8) Температура плавления, ºС

-

-

-

-

25-35

25-35

45-53

9) Температура вспышки, ºС

82-97

204

104

125

137

140

173

10) Температура воспламенения, ºС

93-109

118

118

168

176

185

197

11) Температура самовоспламенения, ºС

315-400

260

260

240

330

345

343

Примечание: Температуры застывания: 25-35ºС (фракция С1016 ), 45-51°С (С1720 ).

Мощности по производству СЖК оценивались в 0,25 млн. т/год (1984) при загрузке мощностей 50-80%. Возросший интерес к кислотам до С12 и выше С20 стимулирует развитие производства СЖК из нефтехимического сырья.

Перечень литературы

1. Брунштейн Б.А., Клименко В.Л., Цыркин Е.Б., Производство синтетических кислот из нефтяного и газового сырья. Л.: 1970.

2. Болотин И.М., Милосердое П.Н., Суржа Е.И.. Синтетические жирные кислоты и продукты на их основе, М.: 1970.

3. Kirk-Othmer encyclopedia, 3 ed., v. 4, N. Y.-[a. о.], 1978, p. 814-71.

4. Hofmann P., Muller W., «Hydrocarbon Processing», 1981, v. 60, № 10, Sect. 1, p. 151-57.

5. ГОСТ 23239-89 «Кислоты жирные синтетические фракций С56 , С79 , С59 , С1013 , С1016 , С1720 . Технические условия». ИПК Издательство стандартов, М.: переиздание 1998 г. с изменением №1 (ИУС 5-95).

6. «Исследование окисления высших альфа-олефинов с целью получения синтетических жирных кислот», Лакеев С.Н., Карчевский С.Г., Майданова И.О., Алексашев В.И., Материал межрегиональной научно-практической конференции «Инновационные процессы в области образования, науки и производства», апрель 2004 г. Россия, Республика Татарстан, г. Нижнекамск.

7. Н.К. Маньковская, Синтетические жирные кислоты. Получение, свойства, применение. М.: Химия. 1965. 168 с.