Главная              Рефераты - Химия

Виды антиоксидантов полимерных материалов - реферат

При переработке, хранении и эксплуатации полимеры подвергаются действию тепла, света, кислорода, механических нагрузок и другим воздействиям. В результате этого меняются свойства полимеров: уменьшается механическая прочность, эластичность, возникает хрупкость, изменяется цвет, гладкая поверхность становится шероховатой и т.д. Изменения свойств полимеров, которые приводят к ухудшению качества и сокращению срока службы изделий, называют старением. Старение можно предотвратить введением в полимеры небольших количеств химических веществ ― стабилизаторов. При их введении повышается стойкость полимера к внешним воздействиям, расширяются области применения изделий из полимеров и увеличиваются сроки их эксплуатации [1].

По защитному действию в полимерах стабилизаторы условно делятся на несколько классов, важнейшим из которых является класс антиоксидантов. Антиоксиданты защищают полимеры от разрушения под действием тепла и кислорода. Они подразделяются на две большие группы: первичные (защищают готовое изделие в течение всего срока службы) и вторичные (защищают полимер в процессе переработки в изделие) [3].

К первой группе антиоксидантов относят замещённые фенолы и вторичные ароматические амины.

По химическому строению фенольные стабилизаторы можно разделить на производные моноядерных фенолов, бисфенолов и трисфенолов. Важнейшим представителем моноядерных фенолов является 4-метил – 2,6 – дитретбулфенол. Торговое название его ― алкафен БП (или ионол):


ОН


(СН3 )3 С― ―С(СН3 )3


СН3

Его получают при алкилировании n-крезола изобутиленом в присутствии кислых катализаторов: ОН

ОН

(СН3 )3 С С(СН3 )3

+ 2 (СН3 )2 СН=СН2


СН3 СН3

Этот процесс происходит следующим образом: расплавленный n-крезол и концентрированную серную кислоту (4% от массы n-крезола) загружают в специальный реактор. В реакторе смесь нагревают до 90 0 С и при этой же температуре пропускают изобутилен. Для того чтобы изобутилен успел почти полностью вступить в реакцию, скорость его подачи регулируют. После этого массу веществ, вступивших в реакцию, нейтрализуют содой. Затем органический слой отделяют, промывают водой и разделяют смеси при остаточном давлении 20 мм ртутного столба. Сначала отгоняют не вступивший в реакцию n-крезол, затем 4-метил – 2,6 – дитретбулфенол, и, наконец, ионол.

Этот стабилизатор практически не влияет на цвет полимера, благодаря чему и используется для защиты очень многих изделий из полимера. Также его применяют для защиты моторных топлив, масел и других нефтепродуктов [4].

В группе бисфенолов важнейшим стабилизатором является 2,2 –метилен – бис ― высокоэффективный стабилизатор для каучуков, резин, пластмасс, известный под торговым названием бисалкофен БП или антиоксидант 2246:

ОН ОН

(СН3 )3 С СН2 С(СН3 )3


СН3 СН3

Он образуется при конденсации 4-метил-2-третбутилфенола с формальдегидом в присутствии кислотных катализаторов.

Синтез идёт по схеме:

ОН ОН ОН

2 (СН3 )3 С (СН3 )3 С СН2 С (СН3 )3

+ СН2 О →


СН3 СН3 СН3

Этот процесс происходит следующим образом: в стальной аппарат загружают горячую воду, расплавленный 4-метил-6-третбутилфенол, серную кислоту и эмульсию сульфанола в бензине (для получения хорошо фильтрующихся кристаллов стабилизатора). Полученную массу, перемешивая, нагревают до 80―85 0 С. К ней добавляют формалин, после чего начинают выпадать кристаллы стабилизатора. После добавления формалина массу размешивают 2 часа при температуре 80―85 0 С, затем охлаждают до 60―65 0 С, а серную кислоту нейтрализуют. Полученный продукт отфильтровывают, промывают водой и сушат в вакуум-сушилке.

Один из важнейших стабилизаторов группы трисфенолов ― 2,4,6 – трис (3,5 – дитретбутилен-4-оксибензил) мезитилен ― высокоэффективный нелетучий и неокрашивающий стабилизатор полиолефинов и других полимеров, известный под торговым названием стабилизатор АО-40:


НО ОН

СН3

Н2 С СН2


Н3 С СН3

СН2


СН3

где + = С(СН3 )3 [1], стр. 164. Получают его следующим способом: хлористый метилен (0―100 С), мезитилен и 3,5 – дитретбутил-4-оксибензиловый спирт загружают в реактор. Полученную массу охлаждают. Не давая температуре массы подняться выше 100 С, добавляют концентрированную серную кислоту. После этого массу размешивают в течение 1,5―2 часов, а затем нейтрализуют. Отделяют водный слой. Затем из раствора стабилизатора отгоняют хлористый метилен. При этом стабилизатор выпадает в осадок и его отфильтровывают, промывают метиловым спиртом и сушат.

Фенольные антиоксиданты обладают рядом преимуществ: высокоэффективны, не летучи, а также их можно применять с пищевыми и косметическими продуктами.

К группе вторичных ароматических аминов относят ряд важных стабилизаторов, которые эффективно защищают от старения синтетические каучуки, резины, пластмассы и химические волокна. Их применяют в основном в изделиях, окрашенных в тёмные цвета, т. к. они могут вызывать изменение цвета изделия [4].

Одним из важнейших стабилизаторов ароматических аминов является фенил-2-нафтиламин, образующийся при взаимодействии анилина с 2-нафтолом и известный под торговым названием неозон Д:

NH


Армирование 2-нафтола анилином ведут в присутствии соляной кислоты, которую вводят в форме анилиновой соли С6 Н52 ·НСL. Реакция протекает по схеме:

NH2

ОН C6 H5 NH2 ·HClNH

+ + H2 O

Этот процесс происходит следующим образом: готовят смесь анилина и 2-нафтола, которую загружают в реактор и добавляют небольшое количество солянокислого анилина. Всё это размешивают и нагревают. Реактор оборудован двумя последовательно соединёнными холодильниками ― прямым и обратным. Обратный холодильник охлаждается горячей водой. Сначала в него поступают пары воды и анилина. Через обратный холодильник анилин стекает в реактор, а вода поступает в прямой холодильник, а затем в приёмник. Таким образом, удаляется вода из реакционной массы. Затем температуру реакционной массы постепенно повышают до 250―2600 С. По окончании реакции для нейтрализации кислоты добавляют щёлочь и убирают избыточный анилин. После этого расплавленный неозон Д чистят и кристаллизуют.

К вторичным антиоксидантам относят органические соединения трёхвалентного фосфора (фосфиты и фосфониты), металлические соли дитиокарбаматов и дитиосульфатов и тиоэфиры. Они взаимодействуют с гидропероксидами и разрушают их без образования активных радикалов. Образующиеся продукты должны обладать очень низкой реакционной способностью и высокой термической стабильностью [2].

Наиболее эффективными в группе вторичных антиоксидантов являются фосфиты и фосфониты. Они прекрасно подходят для защиты полимеров в процессе переработки в изделие. Однако их недостатком является чувствительность к гидролитической деструкции, которая приводит к образованию кислых соединений, вызывающих коррозию перерабатывающего оборудования.

Защитное действие антиоксидантов этой группы, которое характеризуется величиной индукционного периода на кривой поглощения кислорода при заданной температуре, зависит от количества примененного антиоксиданта [3].

Рисунок 1. Зависимость величины индукционного периода окисления полимеров от концентрации ингибитора окисления (указаны критическая и оптимальная концентрации ингибитора)


Таким образом, исходя из рисунка, можно говорить о том, что в полимере существует критическая концентрация, ниже которой защитное действие не проявляется, и оптимальная концентрация, при которой индукционный период имеет наибольшую длину. Антиоксиданты этой группы обычно не влияют на длину индукционного периода, но сильно снижают скорость присоединения кислорода к полимеру в главном периоде процесса.


Список использованной литературы

1. Химия и технология промежуточных продуктов, органических красителей и химикатов для полимерных материалов: учеб. пособие для сред. проф. ― техн. училищ/ Я.А. Гурвич, С.Т. Кумок. ― Изд. 2-е, перераб. и доп. ― Москва: Высш. шк., 1974. ― 327 с.

2. Интернет ресурсы: http://junker-mk.com/articles/p-684.html

3. Интернет ресурсы: http://softacademy.lnpu.edu.ua/Programs/fizika_polimerov/Theme % 202/Section % 207.htm