Главная              Рефераты - Физика

Книга: Анализ классической электродинамики и теории относительности

Корнева М.В., Кулигин В.А., Кулигина Г.А.

Исследовательская группа АНАЛИЗ.

http://kuligin.mylivepage.ru ; http://www.n-t.ru/ac/iga/

Анализ классической электродинамики и теории относительности

Аннотация . Рассматриваются некоторые математические и физические некорректности, устранение которых радикально меняет наши представления об основах электродинамики и о сущности теории относительности.

Глава 1. Многообразие решений уравнений Максвелла. 3

Глава 2. Причинность и физические взаимодействия. 14

Глава 3. Электромагнитная масса. 27

Глава 4. Лагранжиан взаимодействия двух зарядов. 41

Глава 5. Вариационные основы квазистатических явлений. 53

Глава 6. Объяснение магнитных явлений. 66

Глава 7. Тензор энергии-импульса электромагнитной волны.. 81

Глава 8. Безынерциальные заряды и токи. 96

Глава 9. Новый вид электромагнитного излучения?. 106

Глава 10. Анализ пространственно-временных отношений СТО.. 115

Глава 11. Наблюдаемые и реальные характеристики. 127

Глава 12. «Вариационный» принцип релятивистских теорий. 136

Глава 13. Эфирные теории и баллистическая гипотеза Ритца. 145

Глава 14. Волновой вариант теории Ритца. 159

Глава 15. Волны и функции Бесселя. 168

Заключение . 186

Введение

Эта книга посвящена анализу проблем классической электродинамики и основ специальной теории относительности. Целью исследований явилось желание дать логически последовательное изложение, избавив эти теории от ошибок и внутренних противоречий. В книге все результаты математически обоснованы и снабжены доказательствами. Изложение не опирается на какие-либо гипотезы. Однако там, где это необходимо, мы указываем возможные направления исследований. Условно содержание книги можно разделить на пять частей.

Первая часть (Главы 1 и 15) посвящена математическим вопросам электродинамики. Узловой является Глава 1, в которой показано, что решение волнового уравнения не всегда выражается через функции запаздывающих и опережающих потенциалов. Решение волнового уравнения (в зависимости от начальных условий) может содержать члены мгновенно действующего характера.

Вторая часть (Главы 2, 3, 4, 5, 6) посвящена анализу квазистатических явлений. Дано строгое решение проблемы электромагнитной массы, рассмотрены вариационные основы взаимодействия зарядов и токов, сформулированы законы сохранения для квазистатических полей, дано последовательное объяснение ряда проблем квазистатической электродинамики и объяснение магнитных явлений.

Третья часть (Главы 7, 8, 9) содержит анализ уравнений волновой электродинамики. Дан вывод тензора энергии-импульса электромагнитного поля, приводится доказательство обобщенного закона сохранения энергии-импульса. Показано, что уравнения квазистатической электродинамики не могут быть следствиями предельного перехода от уравнений волновой электродинамики. Рассмотрены вопросы, связанные с безинерциальными зарядами и токами, которые не анализировались в современной литературе, а также вопросы волновой электродинамики, которые в настоящее время не нашли объяснения в рамках уравнений Максвелла.

В четвертой части (Главы 10, 11, 12) обсуждаются проблемы теории относительности с физических и философских позиций. Показано, что в этой теории имеются три, а не два, постулата, что волновые уравнения инвариантны относительно большого класса преобразований. Доказано, что релятивистский вариационный принцип математически некорректен и принцип наименьшего действия не реализуется в релятивистских теориях. Анализ проблем позволяет сделать заключение, что преобразование Лоренца (как и другие преобразования) применимы только для электромагнитных волн и не применимы для материальных тел.

Пятая часть (Главы 13, 14) посвящена анализу взаимодействия волновых полей и токов, на основании которого устанавливается, что такое взаимодействие имеет диссипативный характер. Это позволяет отклонить «эфирные» гипотезы и баллистическую теорию Ритца. Однако если рассматривать электромагнитную волну как самостоятельный вид материи, то возникает волновой вариант теории Ритца, который сохраняет неизменной форму волнового уравнения и обеспечивает постоянство скорости света в любых инерциальных системах отсчета.

Глава 1. Многообразие решений уравнений Максвелла

1.1 Математическая и физическая постановки задачи

Мы начнем с математической постановки задачи для волнового уравнения. Следуя [1], сформулируем задачу. Необходимо найти решение неоднородного волнового уравнения

∂ 2u 2 ∂ 2u

2 = a 2 + f (x ;t )

t x

при заданных начальных условиях

u

u (x ,0) = ϕ(x ); = ψ(x )

t t =0

и некоторых граничных условиях. Не ограничивая общности, мы рассмотрим одномерный случай для безграничной струны

Такое решение, как известно, существует и оно единственно [1].

ϕ(x + at ) + ϕ(x at ) 1 x +at 1 t x +a (t −τ)

u (x ;t ) = + ψ(ξ)d ξ + 2a 0 d τxa (tf τ)(ξ;τ)d ξ (1.1.1)

2 2a xat

Рассматривая структуру решения (1.1.1), можно сделать следующие предположения.

Последнее слагаемое (двойной интеграл) определяет вклад в потенциал u, создаваемый источником обильностью f (x ;t ).

Два первых слагаемых дают вклад, не связанный с какими-либо источниками в пространстве («свободный» потенциал). Эта часть потенциала имеет запаздывающие и опережающие составляющие.

Итак, постановка математической задачи.

Имеется неоднородное волновое уравнение. Нам необходимо найти решение, удовлетворяющее заданным начальным и граничным условиям. В рамках такой постановки решение задачи единственно.

В физике встречается ряд задач, когда необходимо найти поля, создаваемые известным источником. По этой причине два первых слагаемых не представляют интереса, поскольку источники их отсутствуют, а потенциал поля источника определяется лишь третьим членом. Можно предположить, что начальные условия не играют существенной роли и ими можно пренебречь. Физическая задача формулируется фактически при этом допущении.

Итак, постановка физической задачи.

Имеется источник (или движущиеся источники) полей. Необходимо найти поля, создаваемые этими источниками и удовлетворяющие заданным граничным условиям при следующих ограничениях.

В решении должны быть поля только этих источников.

«Свободные» поля (поля без источников) и поля, создаваемые другими источниками, не входящими в уравнение, должны отсутствовать, поскольку они не представляют интереса в рамках поставленной задачи.

Как мы видим, различие в постановках задач весьма «небольшое», но весьма существенное. Начальные условия «выпали» из постановки физической задачи. Законна ли такая постановка физической задачи и к чему ведет подобный подход? Это первое положение, которое нуждается в анализе.

Второе положение связано со следующим фактом. Запишем уравнение для скалярного потенциала, создаваемого источником заряда с плотностью ρ, локализованным в некотором замкнутом объеме.

1 ∂ 2 φ ρ(x ; y ;z )

Δφ − 2 2 = − c t ε

Потенциал φ вне источника является запаздывающим. При c → ∞ мы получаем уравнение ρ(x ; y ;z )

Δφ = − , потенциал которого мгновенно действующий. Чтобы убедиться, этого ε

достаточно взглянуть на таблицу, приведенную ниже.

Таблица 1

Сравнительные характеристики запаздывающих и мгновенно действующих потенциалов

Запаздывающие потенциалы Мгновенно действующие потенциалы

1. Потенциал в точке наблюдения 1. Потенциал движется синхронно при движении источника со своим источником (безо всякого запаздывает . Запаздывание зависит запаздывания ).

от расстояния до источника потенциала.

2. Потенциал сохраняет информацию о предшествующем движении источника потенциала.

2. Потенциал не сохраняет информации о предшествующем движении источника поля.

3. Потенциал описывается

3. Потенциал описывается

уравнением гиперболического типа , уравнением эллиптического типа , например, волновым уравнением. например, уравнением Пуассона.

Существуют ли мгновенно действующие решения при конечной величине c ? Как можно согласовать наличие таких решений с положениями Специальной теории

относительности? Справедлив ли предельный переход при c → ∞ от волновых явлений к квазистатическим? На часть этих вопросов мы постараемся ответить сейчас, на другие в следующих главах.

1.2 Потенциал движущегося заряда

Рассмотрим в качестве иллюстрации скалярный потенциал равномерно движущегося заряда, который описывается волновым уравнением

где: φ - скалярный потенциал поля заряда, δ - дельта функция Дирака, v – скорость заряда q вдоль оси z .

Мы ищем решение уравнения (1.1.2) в заданной фиксированной системе отсчета, не прибегая к каким-либо пространственно-временным преобразованиям. С точки зрения математической постановки задачи нам следовало бы задать начальные условия. С точки зрения физической постановки задачи, эти начальные условия несущественны, поскольку непосредственно не связаны с источником потенциала (зарядом), как было сказано выше. Решение задачи ищется исходя из физических соображений, т.е. исходя из физической модели описания процессов.

Покажем, что при физической постановке задачи единственность решения нарушается и не просто нарушается.

Итак, с одной стороны, решение уравнения (1.2.1) определяется формулой (потенциал Лиенара-Виехерта [2], [3]).

e

φ=(1.2.2)

vR

(R − )

c

где R есть расстояние от заряда до точки, где измеряется потенциал. Если точка наблюдения в начале координат, то R 2 = x 2 + y 2 + z 2 , где (x ;y ;z ) – координаты заряда.

Потенциалы Лиенара-Виехерта являются запаздывающими. Это видно из самой структуры решения (1.2.2).

С другой стороны, имеется формула Лоренца для потенциала равномерно движущегося заряда

e

φ = (1.2.3)

Это выражение получено Лоренцем в результате применения его преобразования к потенциалу покоящегося заряда. Оно тоже удовлетворяет уравнению (1.2.1).

Сравнивая выражения (1.2.2) и (1.2.3), легко убедиться, что они принципиально различны!

Комбинируя их, можно записать ряд новых решений. Например, полусумма выражений (1.2.2) и (1.2.3) тоже является решением поставленной физической задачи. Нарушение единственности решения уравнения (1.2.1) при физической постановке задачи очевидно.

Итак, с математической точки зрения:

Имеем одно исходное волновое уравнение (1.2.1);

Имеем одно и то же пространство и время (систему отсчета);

Имеем одни и те же граничные условия;

Но имеем различные начальные условия и, соответственно, получаем различные решения (1.2.2) и (1.2.3).

Покажем, что потенциал (1.2.3) является мгновенно действующим, т.е. он является решением уравнения эллиптического типа при постоянной скорости движения заряда.

Действительно, в калибровке Лоренца потенциал должен удовлетворять уравнению

1 ∂ 2 φ 4πq

Δφ − 2 2 = − ⋅δ(x ; y ;z vt ) c t ε

В то же время, скалярный потенциал φ должен удовлетворять уравнению непрерывности ∂φ

divφv + = 0

t

При равномерном движении заряда

∂φ ∂φ

= −v gradφ = −v (1.2.4)

t z

Учитывая условие непрерывности (1.2.4) для потенциала, можно показать, что вторую производную по времени от потенциала в выражении (1.2.1) можно привести к виду

∂ ∂φ ∂ ∂φ 2 2 φ ( ) = − (v gradφ) = −v grad = v grad(v gradφ) = v 2

t t t t z

Уравнение (1.2.1) принимает вид

2 φ ∂ 2 φ v 2 2 φ 4πq

2 + 2 + (1− 2 ) 2 = − δ(x ; y ;z vt )

x y c z ε

Левая часть уравнения (1.2.1) теперь представляет собой уравнение эллиптического (а не гиперболического ) типа, решением которого является выражение (1.2.3), т.е. мгновенно действующий потенциал. Нарушение единственности решения физической задачи налицо.

Итак, что бы ни доказывали релятивисты, как бы они ни жонглировали штрихами над переменными и ни манипулировали преобразованиями, выражение (1.2.3) есть мгновенно действующий потенциал ! Сторонники СТО приводят аргументы со ссылками на «пространственно-временные изменения», происходящие при использовании преобразования Лоренца и на теорему о единственности решения. Но это лишь декларации, поскольку начальные условия (как принципиальный элемент) «выпали» из постановки задачи. Без учета этих условий применять теорему о единственности решения задачи Коши математически неграмотно.

1.3 Вырожденные члены в решении волнового уравнения

Вернемся к математической постановке задачи, рассмотренной в начале первого параграфа. Имеем:

– Неоднородное волновое уравнение, описывающее некоторый потенциал u.

2 u 1 ∂ 2 u

2 2 2 = f (x ;t ) (1.3.1)

x c t

– Граничные условия, которым должен удовлетворять этот потенциал.

Начальные условия u (x ;0) =ϕ(x ); u =ψ(x )

t t =0

Иногда по условию задачи вводится добавочное условие на производную потенциала во времени, например,

u

= F (u ; x ;∂x / ∂t ) = F (u ; x ;v )

t (1.3.2)

Например, таким условием может служить уравнение непрерывности для потенциала u

u

+divu v = 0

t .

Покажем, что если решение задачи при дополнительном условии существует, то оно будет содержать вырожденный (мгновенно действующий) член в решении.

Процедура решения.

Пользуясь выражением (1.3.2), найдем вторую производную ∂2 u /∂t 2

2 u F u F x F v

= + + = 2

t u t x t v t

F F x F v

= F + + =Ф (u ;x ;v ;∂v /∂t )

u x t v t

Таким образом, дополнительное условие позволяет преобразовать волновое уравнение (1.3.1) (в общем случае) к неоднородному уравнению эллиптического типа, поскольку это уравнение не содержит частных производных от потенциала по времени.

2 u 1 − Ф = f (x ;t )

2 2

x c

Пусть общим решением этого неоднородного уравнения служит решение u 1 = u * +C 1x +C 2

Чтобы это решение было общим решением (1.3.1), в него необходимо добавить два члена.

Итак, общее решение (1.3.1) будет иметь вид u = u 1 +C 3 (x +ct )+C 4 (x ct ) = u * +C 1 x +C 2 +C 3 (x +ct )+C 4 (x ct ) (1.3.3)

Если нам удастся подобрать коэффициенты С 1 , С 2 , С 3 (x + ct ), C 4 (x - ct ) так, чтобы удовлетворялись начальные и граничные условия, то решение задачи при наличии добавочного условия существует. Это решение содержит хотя бы один вырожденный (мгновенно действующий) член u *.

Добавление.

Вернемся к выражению (1.3.3). В силу теоремы существования и единственности решения решение уравнения (1.3.1) решение (1.3.3) единственно, существует и может содержать (мгновенно действующий) член независимо от добавочного условия . Добавочное условие мы ввели в математическую постановку задачи только для иллюстрации появления в решении мгновенно действующих членов. Мы не будем здесь определять класс начальных условий, при которых решение содержит (или не содержит) вырожденных членов. Это задача математики.

Мы обращаем внимание на это потому, что при постановке физических задач начальные условия «выпадают» (их игнорируют) и возникает «произвол», который частично снимается добавочным условием. Наличие этого добавочного условия как раз и определяет характер решения при постановке физических задач.

В качестве примера можно сослаться на уравнения Максвелла в калибровке Лоренца. При решении физических задач два условия предопределяют появление мгновенно действующих потенциалов в решениях этих уравнений φv 1 ∂φ

A = 2 ; divA + 2 = 0 c c ∂t

Последнее условие эквивалентно уравнению непрерывности для скалярного потенциала φ

∂φ

divφv + = 0.

t

Отсюда следует весьма важные выводы для решений при физической постановке задачи.

1. Для различных начальных условий решение неоднородного волнового уравнения будет различным. Этот вывод тривиален. Но мы его дополним следующим важным положением: решения неоднородного волнового уравнения в зависимости от начальных условий могут быть функционально различными. Решения могут иметь либо запаздывающий характер, либо мгновенно действующий характер (вырожденные решения ).

2. Преобразование Лоренца, являясь линейным преобразованием координат и времени, не меняет функционального характера полей. Если потенциал неподвижного заряда является мгновенно действующим, то потенциал равномерно движущегося заряда также является мгновенно действующим (но никак не запаздывающим).

3. Функциональная зависимость решений волнового уравнения от выбранных начальных условий это, прежде всего, математическая задача. Именно математики должны дать ее решение. Однако в стандартных учебниках по математической физике внимания этой проблеме практически не уделяется. В результате в электродинамике существует масса проблем, связанных с «вырождением решений» и требующих анализа.

Важно отказаться от иллюзии (предрассудка), что решение волнового уравнения всегда является функцией только запаздывающих и опережающих потенциалов, а появление вырожденных членов (мгновенно действующих) в решении волнового уравнения исключено.

Итак, в зависимости от начальных условий решение волнового уравнения может быть как запаздывающим, так и мгновенно действующим (вырожденное решение).

1.4 Решения и модели

Математика хороша тем, что достаточно одного отрицательного примера, чтобы опровергнуть положение, претендующее на истину. Здесь на примере проблемы существования продольных волн в электродинамике мы покажем, что при физической постановке задачи решение волнового уравнения (например, уравнений Максвелла) зависит от выбора модели. Под моделью мы понимаем определенные положения, на основе которых дается физическое объяснение явлений.

Рассмотрим электрон, который колеблется относительно начала координат, перемещаясь вдоль оси z . Выпишем его координаты и скорость

x = 0; y = 0; z = b cosωt

v = ∂z /∂t = −b ωsinωt

Вдали от точечного заряда, когда b << R , поле волны должно запаздывать и убывать обратно пропорционально R . Для простоты рассмотрим поле на больших расстояниях от заряда R >> b для нерелятивистского случая v = b ω << c.

Для вычислений воспользуемся потенциалами Льенара-Виехерта e e e v e v

φ = ≈ A = ≈ (1.4.1) vR R vR cR

(R − ) c (R − ) c c

где R – радиус-вектор, проведенный из точки нахождения заряда в точку наблюдения.

Значение векторного потенциала в точке наблюдения, отстоящей от начала координат на расстоянии R , должно быть взято с запаздыванием R / c , определяемым конечной величиной скорости распространения волны.

Поскольку векторный потенциал имеет составляющую только вдоль оси z , электрическое поле, вычисленное с точностью до членов R -2 , имеет вид

A z eb ω sinω(t - R/c )

E z = - ≈ 2 (1.4.2)

сt с R

Других составляющих электрического поля в этом приближении нет. Строгое решение уравнений Максвелла в калибровке Лоренца для этой задачи дает такую же картину.

Итак, заряд, колеблющийся с малой скоростью относительно положения равновесия, обладает изотропным излучением. Он равномерно излучает во все стороны, создавая как поперечные, так и продольные волны. Причем максимальная плотность потока тех и других волн одинакова (о продольных волнах см. Главу 7). Следовательно, продольные волны (если они существуют) можно достаточно просто обнаружить экспериментально! Заметим, что экспериментально таких волн обнаружено не было.

С другой стороны, имеется решение задачи об излучении диполя Герца, где продольные волны отсутствуют. Забегая вперед, скажем, что отсутствие продольных волн связано с условием, приведенным в работе [2] (Градиентная инвариантность):

«Описанная неоднозначность потенциалов дает всегда возможность выбрать их так, чтобы они удовлетворяли одному произвольному, дополнительному условию, - одному, так как мы можем произвольно выбрать одну функцию f в (8.12). В частности, всегда можно выбрать потенциалы поля так, чтобы скалярный потенциал φ был равен нулю ».

Как видно из сказанного, даже в рамках одной калибровки можно получить различные по характеру, но функционально одинаковые решения (запаздывающие поля). Это, как уже говорилось, связано с определенными модельными представлениями в теории электромагнетизма.

Помимо калибровки Лоренца в электродинамике широко используется кулоновская калибровка. Формально последовательный вывод кулоновской калибровки из калибровки Лоренца дан в [4]. Логика доказательства следующая:

1 ∂ψ

Делается замена потенциалов A A '+gradψ; φ → φ'− . c ∂t

Показано, что при такой замене поля Е и Н сохраняются неизменными.

Заменяя в условии калибровки Лоренца не штрихованные величины штрихованными,

1 ∂φ 1 ∂ 2 ψ 1 ∂φ'

находят: divA + = divA '+Δψ − 2 ( 2 − ) = 0 . c t c t c t

Для получения кулоновской калибровки необходимо, чтобы выполнялось соотношение

1 ∂ 2 ψ 1 ∂φ'

Δψ − 2 2 = 2 . c t c t

При замене потенциалов на штрихованные волновые уравнения для скалярного и векторного потенциалов (в калибровке Лоренца) преобразуются в уравнения

1 ∂ 2 A ' 1 ∂gradφ' ρ

Δ A '− 2 2 = −μ j + 2 ; Δ φ'= − ; divA '= 0 (1.4.3). c t c t ε

Так мы получаем кулоновскую калибровку. Кажется, что с формально-математической точки зрения здесь все корректно, и обе калибровки совершенно равноправны . Однако:

1. «Корректность» действительно существует, но только формально-символьная.

2. Автор нигде не упоминает о преобразовании начальных условий.

3. По существу поля Е и Н оказываются различными по своей функциональной структуре. Потенциал φ, например, является мгновенно действующим .

Последнее не совместимо с постулатами СТО. Поэтому не случайно В.Г. Левич, оправдываясь, пишет следующее [4]:

«При кулоновской калибровке скалярный потенциал φ’ определяется распределением зарядов так, как будто они покоились. Само собой разумеется, напряженности полей Е и Н, найденные из решений с кулоновской калибровкой и калибровкой Лоренца, совпадают».

Выражение: «как будто они покоились », (хотя заряды движутся (!) ), как раз и отражает мгновенное действие , поскольку никакого «запаздывания» такие поля не испытывают при движении заряда. Электрическое поле скалярного потенциала движется синхронно с зарядом, не имеет никакого приписываемого ему «запаздывания »! Нужно действительно иметь «научное мужество », чтобы черное назвать белым вопреки фактам. Вернемся к кулоновской калибровке с точки зрения модели электромагнитных явлений.

Во-первых , классическая связь между скалярным и векторным потенциалами для движущегося заряда A = φv /c 2 в общем случае не имеет места. Скалярный потенциал является мгновенно действующим, а векторный (в общем случае) – запаздывающим, поскольку описывается волновым уравнением.

Однако положение можно «исправить». Например, можно записать уравнения (1.4.3) в

другой форме, представив векторный потенциал A как сумму мгновенно действующего

' ~ " потенциала и запаздывающего потенциала A = A + A :

ρ ~ ~ 1 ∂φ'

Δ φ'= − ; ΔA = −μj ; divA + 2 = 0 ε c t

2 " ~ 1 ∂ A 1 ∂ ∂A "

Δ A "− 2 2 = 2 (gradφ'+ ); divA = 0 c t c t t

Но это уже другая модель описания электромагнитных процессов, которая включает в себя не только запаздывающие потенциалы электромагнитных волн, но и мгновенно действующие потенциалы полей зарядов. Она существенно отличается от калибровки Лоренца. Можно добавить, что здесь поля запаздывающих потенциалов являются вихревыми. Они не создают продольных волн. Источниками электромагнитных волн вихревого характера являются не сами заряды и их движение (как в калибровке Лоренца), а изменение во времени мгновенно действующего поля, создаваемого движущимися

~

~ ∂A зарядами E = −(gradφ'+ ) .

t

Во вторых , часто в учебниках по классической электродинамике можно встретить утверждение, что излучение диполя Герца не зависит от выбора калибровки и описывается одинаково в калибровке Лоренца и в кулоновской калибровке. Это утверждение грешит ссылками на теорему о существовании и единственности решений уравнений Максвелла. Однако ни в одном учебнике решения этой задачи в рамках кулоновской калибровки не приводится.

Соответственно, в этих декларативных утверждениях и «доказательствах» ничего не говорится о начальных условиях и их преобразовании при переходе от одной калибровки к другой. Начальные условия игнорируются при постановке физических задач.

Как следствие, физическая постановка задачи допускает нарушение единственности решения уравнений. Более того, в рамках уравнений Максвелла может существовать несколько различных физических моделей описания электромагнитных явлений, связанных с различными калибровками. Это мы уже видели на примере кулоновской калибровки и калибровки Лоренца. Поэтому необходим детальный анализ уравнений Максвелла. Этому вопросу будут посвящены последующие главы книги.

Примечание.

1. Заметим, что мгновенное взаимодействие не противоречит принципу причинности. Этому сложному философскому вопросу посвящена Глава 2.

2. Мгновенное действие есть и у запаздывающих потенциалов. Например, поперечная электромагнитная волна (однородная плоская волна, ТЕМ волна в однопроводной линии, в двухпроводной линии и т.д.) имеет фазовый множитель ϕ = ωt – kz . Нетрудно показать, что поперечные компоненты поля должны удовлетворять оператору

2 . Формально оператор принадлежит эллиптическому типу. Компоненты

x y 2

электромагнитного поля в поперечной плоскости x , y имеют мгновенно действующий характер. Таким образом, не следует относиться к мгновенному действию как к «монстру» или физической нелепости (см. также [5]).

Можно добавить следующее. Среди различных видов взаимодействий тел в физике имеются контактные взаимодействия, например, столкновение биллиардных шаров. Ничего предосудительного в таких взаимодействиях физики не видят. Теперь представим себе сферическое материальное тело покрыто слоями резины с различными коэффициентами жесткости. Будем считать, что с ростом радиуса коэффициент жесткости падает.

Можно ли рассматривать столкновение двух тел (покрытых такими слоями) как контактное взаимодействие? Можно. По аналогии кулоновское взаимодействие двух заряженных частиц тоже можно считать «контактным » взаимодействием. Обратите внимание, как деформируются линии равных потенциалов при столкновении одноименных зарядов. Если при соприкосновении материальных тел (биллиардных шаров, например) осуществляется точечный контакт, то при взаимодействии зарядов – объемный , а не точечный контакт. В этом их различие.

Заряд нельзя рассматривать примитивно как, например, биллиардный шар. Заряд окружен своим полем, обладающим абсолютно упругими свойствами. При «столкновении» зарядов они взаимодействуют через свои поля. При этом возникает не точечный «контакт», а объемный, распределенный по всему пространству. Например, энергию взаимодействия первого заряда со вторым можно записать двумя способами как ρ1 φ2 или как εgradφ1 ⋅gradφ2 .

Итак, мгновенное действие относится к контактному типу и не должно вызывать недоумений по поводу бесконечной так называемой «скорости распространения взаимодействий». И, конечно, в «эфирной поддержке» такое взаимодействие не нуждается.

Заключение

Мы покажем далее, что существование в рамках уравнений Максвелла двух типов решений (запаздывающего и вырожденного) проходит «красной нитью» через всю электродинамику. Эти решения не являются взаимоисключающими. Они необходимы для правильного осмысления и описания квазистатических и волновых явлений электромагнетизма.

Причина в том, что поле заряда неразрывно связано со своим зарядом. Какие бы эволюции в пространстве ни совершал заряд, какие бы волны он ни излучал, поле всегда будет определяться только величиной заряда в системе отсчета, где он покоится.

Соответственно, поля зарядов отвечают за квазистатические явления электродинамики.

Электромагнитные волны после излучения «улетают», в то время как поле заряда остается, сохраняется. Электромагнитные волны и заряды со своими полями это различные материальные объекты. По этой причине разделение явлений на волновые и квазистатические имеет под собой не только физическую, но одновременно и математическую основу. И с этим мы будем постоянно сталкиваться в дальнейшем.

Источники информации:

1. А.Н. Тихонов, Ф.Ф. Самарский Уравнения математической физики. ГИТТЛ, М. 1953.

2. Л.Д Ландау, Е.М Лифшиц. Теория поля. ГИФФМЛ, М. 1960.

3. В. Пановски, М. Филипс. Классическая электродинамика. ГИФМЛ, М. 1968.

4. В.Г.Левич. Курс теоретической физики, Т.1, ФИЗМАТГИЗ, 1962.

5. М.В. Корнева, В.А. Кулигин, Г.А. Кулигина. Математические ляпы в электродинамике.

http://kuligin.mylivepage.ru/file/index/

Глава 2. Причинность и физические взаимодействия

Введение

Вопрос о причинности очень важен для обоснования мгновенных взаимодействий.

Философская категория «причинность», как и связанный с ней принцип причинности, восходит к основополагающему принципу диалектического материализма о всеобщей связи и взаимной обусловленности явлений материального мира. Содержание категории «причинность» может быть раскрыто через содержание и конкретизацию взаимной связи исходных философских категорий «причина» и «следствие» (причинно-следственное отношение).

Как известно, раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью, наглядностью и конкретностью, но и иметь эвристическую ценность.

Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

a Модели, опирающиеся на временной подход (эволюционные модели). Здесь главное внимание акцентируется на временной стороне причинно-следственных отношений. Одно событие — «причина» — порождает другое событие — «следствие», которое во времени отстает от причины (запаздывает). Запаздывание — отличительный признак эволюционного подхода. Причина и следствие взаимно обусловлены. Однако ссылка на порождение следствия причиной (генезис), хотя и законна, но привносится в определение причинно-следственной связи как бы со стороны, извне.

Она фиксирует внешнюю сторону этой связи, не захватывая глубоко сущности. Эволюционный подход развивался Ф. Бэконом, Дж. Миллем и др. Крайней полярной точкой эволюционного подхода явилась позиция Юма. Юм игнорировал генезис, отрицая объективный характер причинности, и сводил причинную связь к простой регулярности событий.

b Модели, опирающиеся на понятие «взаимодействие » (структурные или диалектические модели). Смысл названий мы выясним позже. Главное внимание здесь уделяется взаимодействию как источнику причинно-следственных отношений. В роли причины выступает само взаимодействие. Большое внимание этому подходу уделял Кант, но наиболее четкую форму диалектический подход к причинности приобрел в работах Гегеля. Из современных советских философов этот подход развивал Г. А. Свечников [1], который стремился дать материалистическую трактовку одной из структурных моделей причинно-следственной связи.

Существующие и использующиеся в настоящее время модели различным образом вскрывают механизм причинно-следственных отношений, что приводит к разногласиям и создает основу для философских дискуссий. Острота обсуждения и полярный характер точек зрения свидетельствуют об их актуальности [2].

Выделим некоторые из дискутируемых проблем.

a Проблема одновременности причины и следствия. Это основная проблема. Одновременны ли причина и следствие или разделены интервалом времени? Если причина и следствие одновременны, то почему причина порождает следствие, а не наоборот? Если же причина и следствие неодновременны, может ли существовать «чистая» причина, т. е. причина без следствия, которое еще не наступило, и «чистое» следствие, когда действие причины кончилось, а следствие еще продолжается? Что происходит в интервале между причиной и следствием, если они разделены во времени, и т. д.?

b Проблема однозначности причинно-следственных отношений. Порождает ли одна и та же причина одно и то же следствие или же одна причина может порождать любое следствие из нескольких потенциально возможных? Может ли одно и то же следствие быть порожденным любой из нескольких причин? c Проблема обратного воздействия следствия на свою причину.

d Проблема связи причины, повода и условий . Могут ли при определенных обстоятельствах причина и условие меняться ролями: причина стать условием, а условие — причиной? Какова объективная взаимосвязь и отличительные признаки причины, повода и условия?

Решение этих проблем зависит от выбранной модели, т. е. в значительной степени от того, какое содержание будет заложено в исходные категории «причина» и «следствие». Дефиниционный характер многих трудностей проявляется, например, уже в том, что нет единого ответа на вопрос, что следует понимать под «причиной». Одни исследователи под причиной мыслят материальный объект, другие [3]—явление, третьи [4]— изменение состояния, четвертые — взаимодействие и т. д.

К решению проблемы не ведут попытки выйти за рамки модельного представления и дать общее, универсальное определение причинно-следственной связи. В качестве примера можно привести следующее определение:

«Причинность — это такая генетическая связь явлений, в которой одно явление, называемое причиной, при наличии определенных условий неизбежно порождает, вызывает, приводит к жизни другое явление, называемое следствием » [5].

Это определение формально справедливо для большинства моделей, но, не опираясь на модель, оно не может разрешить поставленных проблем (например, проблему одновременности) и потому имеет ограниченную теоретико-познавательную ценность.

Решая упомянутые выше проблемы, большинство авторов стремятся исходить из современной физической картины мира и, как правило, несколько меньше внимания уделяют гносеологии. Между тем, на наш взгляд, здесь существуют две проблемы, имеющие принципиальное значение: проблема удаления элементов антропоморфизма из понятия причинности и проблема непричинных связей в естествознании. Суть первой проблемы в том, что причинность как объективная философская категория должна иметь объективный характер, не зависящий от познающего субъекта и его активности. Суть второй проблемы: признавать ли причинные связи в естествознании всеобщими и универсальными или считать, что такие связи имеют ограниченный характер и существуют связи непричинного типа, отрицающие причинность и ограничивающие пределы применимости принципа причинности? Мы считаем, что принцип причинности имеет всеобщий и объективный характер и его применение не знает ограничений.

Итак, два типа моделей, объективно отражая некоторые важные стороны и черты причинно-следственных связей, находятся в известной степени в противоречии, поскольку различным образом решают проблемы одновременности, однозначности и др., но вместе с тем, объективно отражая некоторые стороны причинно-следственных отношений, они должны находиться во взаимной связи. Наша первая задача — выявить эту связь и уточнить модели.

2.1 Границы применимости

Попытаемся установить границу применимости моделей эволюционного типа. Причинноследственные цепи, удовлетворяющие эволюционным моделям, как правило, обладают свойством транзитивности [6]. Если событие А есть причина события В (В—следствие А), если, в свою очередь, событие В есть причина события С, то событие А есть причина события С. Если А → В и В → С, то А → С. Таким способом составляются простейшие причинно-следственные цепи. Событие В может выступать в одном случае причиной, в другом — следствием. Эту закономерность отмечал Ф. Энгельс:

«... причина и следствие суть представления, которые имеют значение, как таковые, только в применении к данному отдельному случаю: но как только мы будем рассматривать этот отдельный случай в общей связи со всем мировым целым, эти представления сходятся и переплетаются в представлении универсального взаимодействия, в котором причины и следствия постоянно меняются местами; то, что здесь или теперь является причиной, становится там или тогда следствием и наоборот » (т. 20, с. 22).

Свойство транзитивности позволяет провести детальный анализ причинной цепи. Он состоит в расчленении конечной цепи на более простые причинно-следственные звенья. Если А → С, то А → В1 , В1 →В2 ,..., ВN →C. Но обладает ли конечная причинноследственная цепь свойством бесконечной делимости? Может ли число звеньев конечной цепи N стремиться к бесконечности?

Опираясь на закон перехода количественных изменений в качественные, можно утверждать, что при расчленении конечной причинно-следственной цепи мы столкнемся с таким содержанием отдельных звеньев цепи, когда дальнейшее деление станет бессмысленным. Заметим, что бесконечную делимость, отрицающую закон перехода количественных изменений в качественные, Гегель именовал «дурной бесконечностью ».

Переход количественных изменений в качественные возникает, например, при делении куска графита. При разъединении молекул вплоть до образования одноатомного газа химический состав не меняется. Дальнейшее деление вещества без изменения его химического состава уже невозможно, поскольку следующий этап — расщепление атомов углерода. Здесь с физико-химической точки зрения количественные изменения приводят к качественным.

В приведенном выше высказывании Ф. Энгельса отчетливо прослеживается мысль о том, что в основе причинно-следственных связей лежит не самопроизвольное волеизъявление, не прихоть случая и не божественный перст, а универсальное взаимодействие. В природе нет самопроизвольного возникновения и уничтожения движения, есть взаимные переходы одних форм движения материи в другие, от одних материальных объектов к другим, и эти переходы не могут происходить иначе, чем через посредство взаимодействия материальных объектов. Такие переходы, обусловленные взаимодействием, порождают новые явления, изменяя состояние взаимодействующих объектов.

Взаимодействие универсально и составляет основу причинности. Как справедливо отмечал Гегель, «взаимодействие есть причинное отношение, положенное в его полном развитии» [7]. Еще более четко сформулировал эту мысль Ф. Энгельс:

«Взаимодействие — вот первое, что выступает перед нами, когда мы рассматриваем движущуюся материю в целом с точки, зрения теперешнего естествознания <...> Так естествознанием подтверждается то ... что взаимодействие является истинной causa finalis вещей. Мы не можем пойти дальше познания этого взаимодействия именно потому, что позади его нечего больше познавать » (т. 20, с. 546).

2.2 Диалектическая модель причинности

Поскольку взаимодействие составляет основу причинности, рассмотрим взаимодействие двух материальных объектов, схема которого приведена на рис. 2.1. Данный пример не нарушает общности рассуждений, поскольку взаимодействие нескольких объектов сводится к парным взаимодействиям и может быть рассмотрено аналогичным способом.

Нетрудно видеть, что при взаимодействии оба объекта одновременно воздействуют друг на друга (взаимность действия). При этом происходит изменение состояния каждого из взаимодействующих объектов. Нет взаимодействия — нет изменения состояния [8]. Поэтому изменение состояния какого-либо одного из взаимодействующих объектов можно рассматривать как частное следствие причины — взаимодействия. Изменение состояний всех объектов в их совокупности составит полное следствие.

Очевидно, что такая причинно-следственная модель элементарного звена эволюционной модели принадлежит классу структурных (диалектических). Следует подчеркнуть, что данная модель не сводится к подходу, развивавшемуся Г. А. Свечниковым, поскольку под следствием Г. А. Свечников, по словам В. Г. Иванова, понимал «...изменение одного или всех взаимодействовавших объектов или изменение характера самого взаимодействия, вплоть до его распада или преобразования » [9]. Что касается изменения состояний, то это изменение Г. А. Свечников относил к непричинному виду связи.

Рис. 2.1 Структурная (диалектическая) модель причинности

Итак, мы установили, что эволюционные модели в качестве элементарного, первичного звена содержат структурную (диалектическую) модель, опирающуюся на взаимодействие и изменение состояний. Несколько позже мы вернемся к анализу взаимной связи, этих моделей и исследованию свойств эволюционной модели. Здесь нам хотелось бы отметить, что в полном соответствии с точкой зрения Ф. Энгельса смена явлений в эволюционных моделях, отражающих объективную реальность, происходит не в силу простой регулярности событий (как у Д. Юма), а в силу обусловленности, порожденной взаимодействием (генезис). Поэтому хотя ссылки на порождение (генезис) и привносятся в определение причинно-следственных отношений в эволюционных моделях, но они отражают объективную природу этих отношений и имеют законное основание.

Вернемся к структурной модели. По своей структуре и смыслу она превосходно согласуется с первым законом диалектики — законом единства и борьбы противоположностей, если интерпретировать:

единство — как существование объектов в их взаимной связи (взаимодействии);

противоположности — как взаимоисключающие тенденции и характеристики состояний, обусловленные взаимодействием;

борьбу — как взаимодействие;

развитие — как изменение состояния каждого из взаимодействующих материальных объектов.

Поэтому структурная модель, опирающаяся на взаимодействие как причину, может быть названа также диалектической моделью причинности. Из аналогии структурной модели и первого закона диалектики следует, что причинность выступает как отражение объективных диалектических противоречий в самой природе, в отличие от субъективных диалектических противоречий, возникающих в сознании человека. Структурная модель причинности есть отражение объективной диалектики природы.

Рассмотрим пример, иллюстрирующий применение структурной модели причинноследственных отношений. Таких примеров, которые объясняются с помощью данной модели, можно найти достаточно много в естественных науках (физике, химии и др.), поскольку понятие «взаимодействие» является основополагающим в естествознании.

Возьмем в качестве примера упругое столкновение двух шаров: движущегося шара А и неподвижного шара В. До столкновения состояние каждого из шаров определялось совокупностью признаков Сa и Сb (импульс, кинетическая энергия и т. д.). После столкновения (взаимодействия) состояния этих шаров изменились. Обозначим новые состояния С'a и С'b . Причиной изменения состояний (Сa → С'a и Сb → С'b ) явилось взаимодействие шаров (столкновение); следствием этого столкновения стало изменение состояния каждого шара.

Как уже говорилось, эволюционная модель в данном случае малопригодна, поскольку мы имеем дело не с причинной цепью, а с элементарным причинно-следственным звеном, структура которого не сводится к эволюционной модели. Чтобы показать это, проиллюстрируем данный пример объяснением с позиции эволюционной модели: «До столкновения шар А покоился, поэтому причиной его движения является шар В, который ударил по нему ». Здесь шар В выступает причиной, а движение шара А — следствием. Но с тех же самых позиций можно дать и такое объяснение: «До столкновения шар В двигался равномерно по прямолинейной траектории. Если бы не шар А, то характер движения шара В не изменился бы ». Здесь причиной уже выступает шар А, а следствием — состояние шара В. Приведенный пример показывает:

a определенную субъективность, которая возникает при применении эволюционной модели за пределами границ ее применимости: причиной может выступать либо шар А, либо шар В; такое положение связано с тем, что эволюционная модель выхватывает одну частную ветвь следствия и ограничивается ее интерпретацией;

b типичную гносеологическую ошибку. В приведенных выше объяснениях с позиции эволюционной модели один из однотипных материальных объектов выступает в качестве «активного», а другой — в качестве «страдательного» начала. Получается

так, будто одиниз шаров наделен (по сравнению с другим) «активностью», «волей», «желанием», подобно человеку. Следовательно, только благодаря этой «воле» мы и имеем причинное отношение.

Подобная гносеологическая ошибка определяется не только моделью причинности, но и образностью, которая присуща живой человеческой речи, и типичным психологическим переносом свойств, характерных для сложной причинности (о ней мы будем говорить ниже) на простое причинно-следственное звено. И такие ошибки весьма характерны при использовании эволюционной модели за пределами границ ее применимости. Они встречаются в некоторых определениях причинности. Например: «Итак, причинность определяется как такое воздействие одного объекта на другой, при котором изменение первого объекта (причина) предшествует изменению другого объекта и необходимым, однозначным образом порождает изменение другого объекта (следствие )» [10]. Трудно согласиться с таким определением, поскольку совершенно не ясно, почему при взаимодействии (взаимном действии!) объекты должны деформироваться не одновременно, а друг за другом? Какой из объектов должен деформироваться первым, а какой вторым (проблема приоритета)?

2.3 Свойства диалектической модели причинности

Рассмотрим теперь, какие качества удерживает в себе структурная модель причинности. Отметим среди них следующие: объективность, универсальность, непротиворечивость, однозначность.

Объективность причинности проявляется в том, что взаимодействие выступает как объективная причина, по отношению к которой взаимодействующие объекты являются равноправными . Здесь не остается возможности для антропоморфного истолкования.

Универсальность обусловлена тем, что в основе причинности всегда лежит взаимодействие . Причинность универсальна, как универсально само взаимодействие.

Непротиворечивость обусловлена тем, что, хотя причина и следствие (взаимодействие и изменение состояний) совпадают во времени, они отражают различные стороны причинно-следственных отношений. Взаимодействие предполагает пространственную связь объектов, изменение состояния — связь состояний каждого из взаимодействующих объектов во времени.

Помимо этого структурная модель устанавливает однозначную связь в причинно-следственных отношениях независимо от способа математического описания взаимодействия. Более того, структурная модель, будучи объективной и универсальной, не предписывает естествознанию ограничений на характер взаимодействий. В рамках данной модели справедливы и мгновенное дально- или близкодействие, и взаимодействие с любыми конечными скоростями . Появление подобного ограничения в определении причинноследственных отношений явилось бы типичной метафизической догмой, раз и навсегда постулирующей характер взаимодействия любых систем, навязывая физике и другим наукам натурфилософские рамки со стороны философии, либо ограничило пределы применимости модели настолько, что польза от такой модели оказалась бы весьма скромной.

Здесь уместно было бы остановиться на вопросах, связанных с конечностью скорости распространения взаимодействий. Вопрос о содержании этого термина мы обсудим позже.

Рассмотрим пример. Пусть имеются два неподвижных заряда. Если один из зарядов начал двигаться с ускорением, то электромагнитная волна подойдет ко второму заряду с запаздыванием. Не противоречит ли данный пример структурной модели и, в частности, свойству взаимностидействия, поскольку при таком взаимодействии заряды оказываются в неравноправном положении? Нет, не противоречит. Данный пример описывает не простое взаимодействие, а сложную причинную цепь, в которой можно выделить три различных звена.

1. Взаимодействие первого заряда с объектом , который вызывает его ускорение. Результат этого взаимодействия — изменение состояния источника, воздействовавшего на заряд, и, в частности, потеря этим источником части энергии, изменение состояния первого заряда (ускорение) и появление электромагнитной волны, которая излучилась первым зарядом при его ускоренном движении.

2. Процесс распространения электромагнитной волны, излученной первым зарядом (распространение взаимодействия ?).

3. Процесс взаимодействия второго заряда с электромагнитной волной . Результат взаимодействия — ускорение второго заряда, рассеяние первичной электромагнитной волны и излучение электромагнитной волны вторым зарядом.

В данном примере мы имеем два различных взаимодействия, каждое из которых укладывается в структурную модель причинности. Таким образом, структурная модель превосходно согласуется как с классическими, так и с релятивистскими теориями, а конечная скорость распространения взаимодействий не является принципиально необходимой для структурной модели причинности.

Касаясь структурной модели причинности, отметим, что ей не противоречат реакции распада и синтеза объектов. В этом случае между объектами либо разрушается относительно устойчивая связь как особый вид взаимодействия, либо такая связь образуется в результате взаимодействия.

Поскольку квантовые теории (равно как и классические) широко используют категории «взаимодействие» и «состояние», то структурная модель принципиально применима и в этой области естествознания. Встречающиеся иногда трудности обусловлены, на наш взгляд, тем, что, обладая хорошо развитым математическим формализмом, квантовые теории еще недостаточно полно развиты и отточены в плане понятийной интерпретации. Марио Бунге [11] пишет, например, об интерпретации ψ -функции:

«Одни относят функцию ψ к некоторой индивидуальной системе, другие — к некоторому действительному или потенциальному статистическому ансамблю тождественных систем, третьи рассматривают ψ -функцию как меру нашей информации, или степень уверенности относительно некоторого индивидуального комплекса, состоящего из макросистемы и прибора, или же, наконец, просто как каталог измерений, производимых над множеством идентично приготовленных микросистем ».

Такое многообразие вариантов истолкования ψ-функции затрудняет строгую причинную интерпретацию явлений микромира. Это одно из свидетельств того, что квантовые теории находятся в стадии становления и развития и не достигли уровня внутренней завершенности, свойственной классическим теориям.

Но о проблемах становления квантовых теорий свидетельствует не только интерпретация ψ-функции. Хотя релятивистская механика и электродинамика на первый взгляд представляются законченными теориями, более глубокий анализ показывает, что по ряду причин эти теории также не избежали противоречий и внутренних трудностей. Например, в электродинамике существуют проблема электромагнитной массы, проблема реакции излучения заряда и др. Неудачи в попытках разрешения этих проблем в рамках самих теорий в прошлом и бурное развитие теорий микромира породили надежду, что развитие квантовых теорий поможет ликвидировать трудности. А до тех пор они должны восприниматься какнеизбежное «зло», с которым так или иначе приходится мириться, и ждать успехов от квантовых теорий.

В то же время квантовые теории сами столкнулись со многими проблемами и противоречиями. Любопытно заметить, что часть этих трудностей имеет «классическую » природу, т. е. досталась «по наследству» от классических теорий и обусловлена их внутренней незавершенностью. Получается «порочный круг »: разрешение противоречий классических теорий мы возлагаем на квантовые теории, а трудности квантовых определяются противоречиями классических.

Со временем надежда на способность квантовых теорий устранить противоречия и трудности в теориях классических стала угасать, но до сих пор интерес к разрешению противоречий классических теорий в рамках их самих все еще остается на втором плане.

Таким образом, трудности, встречающиеся иногда при объяснении явлений микромира с позиции причинности, имеют объективное происхождение и объясняются особенностями становления квантовых теорий, но они не являются принципиальными, запрещающими или ограничивающими применение принципа причинности в микромире, в частности применение структурной модели причинности.

Причинность и взаимодействие всегда взаимосвязаны. Если взаимодействие обладает свойствами всеобщности, универсальности и объективности, то столь же универсальны, всеобщи и объективны причинно-следственные связи и отношения. Поэтому в принципе нельзя согласиться с утверждениями Бома, что при описании явлений микромира можно в одних случаях опираться на философский индетерминизм, в других — придерживаться принципа причинности [12].

Мы считаем глубоко ошибочной мысль В. Я. Перминова о том, что «понятие дополнительности указывает путь примирения (!) детерминизма и индетерминизма » [13], независимо от того, относится эта мысль к философии естествознания или к конкретной естественнонаучной теории. Путь примирения материалистической точки зрения с позицией современного позитивизма в данном вопросе есть эклектика, есть отрицание объективной диалектики. В. И. Ленин подчеркивал, что «вопрос о причинности имеет особенно важное значение для определения философской линии того или другого новейшего «изма». ..» (т. 18, с. 157). И путь становления квантовых теорий лежит не через отрицание или ограничение, а через утверждение причинности в микромире.

2.4 Описание, объяснение и причинность

Структура научных теорий естествознания и функции научных теорий прямо или косвенно связаны с причинным объяснением явлений материального мира. Если обратиться к структурной модели причинности, то можно выявить два характерных момента, две важные стороны, которые так или иначе связаны с функциями научных теорий.

Первая касается описания причинных связей и отвечает на вопрос: как, в какой последовательности? Ей соответствует любая ветвь частного следствия, связывающая обусловленные состояния. Она дает не только описание перехода объекта из одного состояния в другое, но описывает и охватывает всю причинную цепь как последовательность связанных и обусловленных состояний, не вдаваясь глубоко в сущность, в источник изменения состояний звеньев цепи.

Вторая сторона отвечает на вопрос: почему, по какой причине? Она, напротив, дробит причинно-следственную цепь на отдельные элементарные звенья и дает объяснение изменений состояний, опираясь на взаимодействие. Это объясняющая сторона.

Две эти стороны прямо связаны с двумя важными функциями научной теории: объясняющей и описательной. Поскольку принцип причинности лежал, и будет лежать в основе любой естественнонаучной теории, теория всегда будет выполнять эти две функции: описание и объяснение [14].

Однако не только в этом проявляется методологическая функция принципа причинности. Внутреннее структурирование самой теории также связано с этим принципом. Возьмем, к примеру, классическую механику с ее тремя традиционными разделами: кинематикой, динамикой и статикой. В кинематике силовые взаимодействия не рассматриваются, а идет описание (физическое и математическое) видов движения материальных точек и материальных объектов. Взаимодействие подразумевается, но оно отходит на второй план, оставляя приоритет описанию сложных связанных движений через характеристики их состояний. Разумеется, этот факт не может служить поводом для классификации кинематики как непричинного способа описания, поскольку кинематика отражает эволюционную сторону причинно-следственных отношений, связывающих различные состояния.

Динамика — теоретический раздел, который включает в себя полное причинноследственное описание и объяснение, опираясь на структурную модель причинноследственных отношений. В этом смысле кинематика может считаться подразделом динамики.

Особый интерес с точки зрения причинности представляет статика, в которой следственные цепи вырождены (отсутствуют), и мы имеем дело только со связями и взаимодействиями статического характера. В отличие от явлений объективной реальности, где не существует абсолютно устойчивых систем, статические задачи — идеализация или предельный случай, допустимый в частнонаучных теориях. Но принцип причинности справедлив и здесь, поскольку не только решать статические задачи, но и понять сущность статики без применения «принципа виртуальных перемещений» или родственных ему принципов невозможно. «Виртуальные перемещения» непосредственно связаны с изменением состояний в окрестности состояния равновесия, т. е., в конечном счете, с причинно-следственными отношениями.

Рассмотрим теперь электродинамику. Иногда ее отождествляют только с уравнениями

Максвелла. Это неверно, поскольку уравнения Максвелла описывают поведение волн (излучение, распространение, дифракцию и т. д.) при заданных граничных и начальных условиях. Они не включают в себя описание взаимодействия как взаимного действия. Принцип причинности привносится вместе с граничными и начальными условиями (запаздывающие потенциалы). Это своеобразная «кинематика» волновых процессов, если подобное сравнение позволительно. «Динамику», а с ней и причинность, вносит уравнение движения Лоренца, описывающее силовые стороны взаимодействия. Именно связь уравнений Максвелла и уравнения движения Лоренца обеспечивает достаточно полное причинно-следственное описание явлений электромагнетизма. Подобные примеры можно было бы продолжить. Но и приведенных достаточно, чтобы убедиться, что причинность и ее структурная модель находят отражение в структуре и функциях научных теорий.

2.5 Эволюционная модель причинности

Если в начале нашей работы мы шли от эволюционной модели причинности к структурной, то теперь предстоит обратный путь от структурной модели к эволюционной. Это необходимо, чтобы правильно оценить взаимную связь и отличительные особенности эволюционной модели.

Уже в неразветвленной линейной причинно-следственной цепи мы вынуждены отказаться от полного описания всех причинно-следственных отношений, т. е. не учитываем некоторые частные следствия. Структурная модель позволяет неразветвленные линейные причинно-следственные цепи свести к двум основным типам.

a Объектная причинная цепь. Образуется тогда, когда мы выделяем какой-либо материальный объект и следим за изменением его состояния во времени. Примером могут служить наблюдения за состоянием броуновской частицы, или за эволюциями космического корабля, или за распространением электромагнитной волны от антенны передатчика до антенны приемника.

b Информационная причинная цепь. Появляется, когда мы следим не за состоянием материального объекта, а за некоторым информирующим явлением, которое в процессе взаимодействий различных материальных объектов связано последовательно во времени с различными объектами. Примером может служить передача устной информации с помощью эстафеты и т. п.

Все линейные неразветвленные причинные цепи сводятся к одному из этих двух типов или к их комбинации. Такие цепи описывают с помощью эволюционной модели причинности. При эволюционном описании взаимодействие остается на втором плане, а на первый план выходит материальный объект или индикатор его состояния. В силу этого главное внимание сосредоточивается на описании последовательности событий во времени. Поэтому данная модель получила название эволюционной .

Линейная неразветвленная причинная цепь сравнительно легко поддается анализу с помощью сведения ее к совокупности элементарных звеньев и анализа их посредством структурной модели. Но такой анализ не всегда возможен.

Существуют сложные причинные сети, в которых простые причинно-следственные цепочки пересекаются, ветвятся и вновь пересекаются. Это приводит к тому, что применение структурной модели делает анализ громоздким, а иногда и технически невозможным.

Помимо этого нас часто интересует не сам внутренний процесс и описание внутренних причинно-следственных отношений, а начальное воздействие и его конечный результат.

Подобное положение часто встречается при анализе поведения сложных систем (биологических, кибернетических и др.). В таких случаях детализация внутренних процессов во всей их совокупности оказывается избыточной, ненужной для практических целей, загромождающей анализ. Все это обусловило ряд особенностей при описании причинно-следственных отношений с помощью эволюционных моделей. Перечислим эти особенности.

1. При эволюционном описании причинно-следственной сети полная причинная сеть огрубляется. Выделяются главные цепи, а несущественные отсекаются, игнорируются. Это значительно упрощает описание, но подобное упрощение достигается ценой потери части информации, ценой утраты однозначности описания.

2. Чтобы сохранить однозначность и приблизить описание к объективной реальности, отсеченные ветви и причинные цепи заменяются совокупностью условий . От того, насколько правильно выделена основная причинная цепь и насколько полно учтены условия, компенсирующие огрубление, зависят полнота, однозначность и объективность причинно-следственного описания и анализа.

3. Выбор той или иной причинно-следственной цепи в качестве главной определяется во многом целевыми установками исследователя, т. е. тем, между какими явлениями он хочет проанализировать связь. Именно целевая установка заставляет выискивать главные причинно-следственные цепи, а отсеченные заменять условиями. Это приводит к тому, что при одних установках главную роль выполняют одни цепи, а другие заменяются условиями. При других установках эти цепи могут стать

условиями, а роль главных будут играть те, что раньше были второстепенными. Таким образом, причины и условия меняются ролями.

4. Условия играют важную роль, связывая объективную причину и следствие. При различных условиях, влияющих на главную причинную цепь, следствия будут различными. Условия как бы создают то русло, по которому течет цепь исторических событий или развитие явлений во времени. Поэтому для выявления глубинных, сущностных причинно-следственных отношений необходим тщательный анализ, учет влияния всех внешних и внутренних факторов, всех условий, влияющих на развитие главной причинной цепи, и оценка степени влияния.

5. Эволюционное описание основное внимание уделяет не взаимодействию, а связи событий или явлений во времени. Поэтому содержание понятий «причина» и «следствие» изменяется, и это весьма важно учитывать. Если в структурной модели взаимодействие выступает истинной causa finalis — конечной причиной, то в эволюционной — действующей причиной (causa activa) становится явление или событие.

6. Следствие также меняет свое содержание. Вместо связи состояний материального объекта при его взаимодействии с другим в качестве следствия выступает некоторое событие или явление, замыкающее причинно-следственную цепь. В силу этого причина в эволюционной модели всегда предшествует следствию. В указанном выше смысле причина и следствие в эволюционной модели могут выступать как однокачественные явления, с двух сторон замыкающие причинно-следственную цепь. Следствие одной цепи может явиться причиной и началом другой цепи, следующей за первой во времени. Это обстоятельство обусловливает свойство транзитивности эволюционных моделей причинности.

Мы здесь коснулись только главных особенностей и отличительных признаков эволюционной модели. Структурная модель причинности может успешно использоваться для сравнительно простых причинных цепей и систем. В реальной практике приходится иметь дело и со сложными системами. Вопрос о причинно-следственном описании поведения сложных систем практически всегда опирается на эволюционную модель причинности.

Итак, мы рассмотрели два типа моделей, отражающих причинно-следственные отношения в природе, проанализировали взаимную связь этих моделей, границы их применимости и некоторые особенности. Проявление причинности в природе многообразно и по форме, и по содержанию. Вполне вероятно, что этими моделями не исчерпывается весь арсенал форм причинно-следственных отношений. Но как бы ни были разнообразны эти формы, причинность всегда будет обладать свойствами объективности, всеобщности и универсальности. В силу этого принцип причинности выполнял и всегда будет выполнять важнейшие мировоззренческие и методологические функции в современном естествознании и философии естествознания. Многообразие форм проявления причинноследственных отношений не может служить поводом для отказа от материалистического принципа причинности или утверждений об ограниченной его применимости.

Заканчивая исследование проблемы причинно-следственных отношений, мы можем сказать, что мгновенные взаимодействия не противоречат диалектической (структурной) модели причинности. Мы можем без боязни использовать модели, опирающиеся на мгновенные (контактные) взаимодействия, тем более что вся механика Ньютона уже более 200 лет успешно опирается на них.

2.6 Скорость распространения взаимодействий

В физике широко используется понятие «скорость распространения взаимодействий». Попробуем разобраться в содержании этого понятия. Прежде всего, нам необходимо определиться с понятием «взаимодействие».

Процитируем БСЭ:

«ВЗАИМОДЕЙСТВИЕ в физике , воздействие тел или частиц друг на друга, приводящее к изменению состояния их движения. В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей характеристикой В . является потенциальная энергия. Первоначально в физике утвердилось представление о том, что В. между телами может осуществляться непосредственно через пустое пространство, к-рое не принимает никакого участия в передаче В .; при этом В . перемещается мгновенно…. В этом состояла т.н. концепция дальнодействия ».

Такая интерпретация не полна. В механике Ньютона взаимодействие характеризуется двумя сторонами: силовой и энергетической:

«Сила – это свойство материального объекта (источника данного свойства), которое проявляется при взаимодействии материальных объектов и приводит к изменению состояния взаимодействующих объектов (импульс, траектория и др.) ».

«Работа – объективная количественная характеристика качественного изменения движения материи, характеризующая энергетическую сторону взаимодействия ».

Как было показано в Главе 1, мгновенное взаимодействие относится к контактному типу. Оно, не противоречит принципу причинности. В полевой механике Ньютона такое взаимодействие осуществляется через квазистатические поля, мгновенно действующего характера, окружающие электрические заряды или гравитационные заряды (гравитационные массы). Именно эти поля обеспечивают «контакт».

Тем не менее, концепция мгновенного взаимодействия была незаслуженно отклонена. Причиной послужил предрассудок: для передачи характеристик взаимодействия необходим некий «посредник». Продолжим цитату из БСЭ:

«Было доказано , что В . электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на др.

частицы, не в тот же момент, а лишь спустя конечное время. … Соответственно имеется «посредник », осуществляющий В . между заряженными частицами. Этот посредник был назван электромагнитным полем. …. Возникла новая концепция – концепция близкодействия , к-рая затем была распространена на любые другие В

«Доказательство», о котором говорится, опирается на факт, что уравнения Максвелла в калибровке Лоренца сводятся к волновым уравнениям. Волновое взаимодействие зарядов было нами рассмотрено выше, где показано, что все можно объяснить и без привлечения этого понятия. Несмотря на то, что этими уравнениями пользуются уже более ста лет, надлежащего анализа уравнений не было проведено. Мы в Главе 1 показали, что имеются «вырожденные» решения, отражающие мгновенный характер взаимодействий между зарядами. Далее, в Главе 7 мы покажем, что волновая электродинамика не имеет своим пределом квазистатическую, и не способна дать корректное объяснение квазистатическим явлениям. Более того, мы покажем, что поля зарядов и электромагнитные волны – различные виды материи. По этой причине «доказательство» опирается на укоренившиеся предрассудки. Перенос концепции близкодействия на все без исключения явления материального мира есть неправомерная абсолютизация, превращающая физику в догму.

Итак, взаимодействие есть процесс , который характеризуется взаимным изменением характеристик состояний материальных объектов (переход видов энергии из одного вида в другой и обратно, от одного материального объекта к другому, изменение параметров самих материальных объектов и т.д.). Взаимодействие локализовано в пространстве и может иметь определенную продолжительность во времени.

Но взаимодействие не материальный объект . Оно не имеет своих параметров таких, как, например, «масса» и т. п. По этой причине говорить о «скорости распространения взаимодействия», беспредметно. «Скорость распространения взаимодействия» - бессодержательное понятие. Можно говорить об интенсивности взаимодействия, о скорости течения процесса во времени, но не о «скорости его распространения».

Вернемся к третьему параграфу этой главы. Пусть имеются два заряда. Один из зарядов начал двигаться. От него распространяется возмущение (волна). Второй заряд

«почувствует» это возмущение только тогда, когда возмущение достигнет его.

Существует ли взаимодействие второго заряда с этим возмущением, если это возмущение еще только распространяется и не достигло второго заряда? О какой «скорости распространения взаимодействий» можно говорить, если взаимодействие еще не наступило ? Отождествление процесса распространения волны и «распространения взаимодействия» есть следствие философской несостоятельности (философского невежества) человека, придерживающегося такой терминологии.

Источники информации:

1 См., напр.: Свечников Г. А. Причинность и связь состояний в физике. М., 1971; Он же. Диалектикоматериалистическая концепция причинности // Современный детерминизм: Законы природы / Под ред. Г. А. Свечникова и др. М., 1973. С. 125, и др.

2 См., напр.: Тюхтин В. С. Отражение, системы, кибернетика. М., 1972; Уемов А. И., Остапенко С. В.

Причинность и время // Современный детерминизм: Законы природы. С. 214; Оруджев 3. М., Ахундов М. Д. Временная структура причинной связи // Филос. науки. 1969. № 6. С. 63; Жаров А. М. Временное соотношение причины и следствия и неопределенность // Там же. 1984. № 3. С. 89.

3 Кузнецов И. В. Избранные труды по методологии физики. М., 1. 975.

4 Материалистическая диалектика: В 5 т. Т. 1: Объективная диалектика / Под общ. ред. Ф. В. Константинова и В. Г. Марахова; Отв. ред. Ф. Ф. Вяккерев. М., 1981. С. 212.

5 Кузнецов И. В. Указ. соч. С. 237.

6 О парадоксах «нетранзитивности» см.: Налетов Н. 3. Причинность и теория познания. М., 1975.

7 Гегель Г. В. Ф. Энциклопедия философских наук: В 3 т. Т. 1:Наука логики. М., 1974. С. 335.

8 Под термином «состояние» мы понимаем количественную и качественную определенность самодвижения объекта. Другие определения см.: Старжинский В. П. Понятие «состояние» и его методологическая роль в физике. Минск, 1979.

9 Иванов В. Г. Причинность и детерминизм. Л., 1974.

10 Материалистическая диалектика. Т. 1. С. 213.

11 Бунге М. Философия физики. М., 1975. С. 99.

12 Бом Д. Причинность и случайность в современной физике. М., 1959.

13 Перминов В. Я. Проблема причинности в философии и естествознании. М., 1979. С. 209.

14 См., напр.: Никитин Е. П. Объяснение — функция науки. М., 1970.

Глава 3. Электромагнитная масса

3.1 Проблема электромагнитной массы (проблема «4/3»)

Анализ уравнений Максвелла мы начнем с проблемы электромагнитной массы. Мы покажем, что в рамках уравнений Максвелла решение этой проблемы существует, т.е. электромагнитная масса заряда обладает стандартными свойствами инерциальной массы. Это даст нам возможность далее применить хорошо развитый аппарат теоретической механики (механики Ньютона) к описанию и объяснению квазистатических явлений электромагнетизма.

Решение этой проблемы важно для установления четкой связи и преемственности между электродинамикой и механикой. Механика (при решении этой проблемы) найдет поддержку своих основ в электродинамике, а электродинамика получит свою законную основу в механике, используя ее принципы и методы. Сейчас эта взаимная связь может быть охарактеризована как иллюзия. Не случайно Голдсштейн в своей книге

«Классическая электродинамика» [1] называет электромагнитные поля «аномальными», т.е. весьма плохо вписывающимися не только в классическую, но и даже в релятивистскую механику.

Как известно, инерциальная масса частицы m в механике Ньютона связана со своим импульсом P соотношением P =m v . Точно такое же соотношение должно иметь место для плотности энергии частицы w с плотностью потока S:

S =w v .

Теми же свойствами должна обладать и плотность электромагнитной энергии поля заряда S e = w e v (3.1.1), где w e = (gradφ) 2 (3.1.2) – плотность энергии электромагнитной массы.

В соответствии с формулой Томсона Е = mc 2 (см. Дополнение в конце Главы 3) электромагнитную массу заряженной частицы можно определить двойственным образом: либо через квадрат электрического поля заряда, либо через плотность пространственного заряда и его потенциал

m e dV

2c 2c

где ρ и φ есть, соответственно, плотность пространственного заряда и потенциал этого заряда.

Проблема электромагнитной массы возникла после неудачных попыток связать электромагнитную массу заряженной частицы с ее электромагнитным импульсом и кинетической энергией, подобно тому, как это делается в классической механике. Установление подобной связи могло бы подтвердить электромагнитную природу вещества.

Действительно, электромагнитный импульс поля Р е заряда можно вычислить, опираясь на вектор Пойнтинга S , а кинетическую энергию поля Ке логически можно связать с энергией магнитного поля, поскольку у неподвижного заряда магнитное поле отсутствует. Магнитное поле заряда возникает тогда, когда заряд движется. Казалось бы, что каждый элемент движущегося заряда, имеющий скорость v , должен иметь электромагнитный импульс, направленный вдоль вектора скорости.

Однако исследователи на этом пути столкнулись с трудностями, которые в то время решить не удалось. Вычисления для частицы с равномерным распределением плотности пространственного заряда приводили к следующим не характерным для механики соотношениям

{E ×H ] 4 μH 2 4 v 2

P e = c 2 dV = 3 m e v ; K e = 2c 2 dV = 3 m e 2 (3.1.3)

Как мы видим, в формулах появился странный коэффициент «4/3» вместо единицы. По этой причине проблема электромагнитной массы получила название «проблемы 4/3» [2].

Формулы (3.1.3) дают интегральные соотношения. Проанализируем детальную картину плотности потока, вычисленного с помощью вектора Пойнтинга.

Пример 1. Рассмотрим заряд, движущийся с постоянной скоростью v вдоль оси z . Это означает, что любой элемент заряда имеет одну и ту же скорость v (см. рис. 3.1а ). Для простоты будем считать, что плотность пространственного заряда постоянна. Однако, как показано на этом рисунке (см. рис. 3.1б ), для различных точек заряда векторы Пойнтинга S имеют различные величины и направления. В точках, наиболее удаленных от оси z , плотность вектора S максимальна, а на осевой линии она равна нулю, поскольку здесь нет магнитного поля.

Рис.

3.1 Движущийся заряд: а) распределение скоростей в движущемся заряде; б) распределение вектора Пойнтинга в этом заряде; в) перемещение резинового тора по деревянной палке; МЦС – мгновенный центр скоростей.

Направление вектора Пойнтинга напоминает перемещение резинового тора, надетого на палку. Внутренние слои тора за счет трения о палку не перемещаются, как показано на рис. 3.1в. Поэтому для перемещения тора приходится «закручивать» верхние слои тора. При этом слои поперечного сечения тора (имеющие форму окружности, как показано на рис. 3.1в ) движутся по палке подобно колесу по дороге. Их мгновенный центр скоростей расположен на поверхности палки. Мгновенным центром скоростей для движущегося заряда служит отрезок (см. 3.1б ), где вектор Пойнтинга равен нулю (S = 0).

Вот здесь и возникают вопросы. Почему направление вектора Пойнтинга не совпадает с вектором скорости движения частей заряда? Почему в системе отсчета, где заряд неподвижен , нет кругового потока вектора Пойнтинга, а в движущейся системе существует круговой поток электромагнитного импульса (в соответствии с вектором Пойнтинга)? Почему различные точки заряда, имеющие один и тот же вектор скорости и одинаковую плотность, дают различный вклад в суммарный электромагнитный импульс заряда?

Абсурдность рассмотренной картины подтверждается и теоремой (Л.Д. Ландау), согласно которой движение тела всегда можно представить как сумму двух независимых движений: поступательного и вращательного . Следовательно, если есть вращательное движение в одной инерциальной системе отсчета, то оно должно существовать в любой другой инерциальной системе. Если же вращательного движения нет, то его не должно быть и в других инерциальных системах. Здесь явное несоответствие (расхождение) между механикой и электродинамикой.

Пример 2 . Теперь мы рассмотрим бесконечную заряженную плоскость, которая изображена на рис. 3.2. Если плоскость движется вдоль оси y , то плотность потока вновь в 2 раза больше, чем требуется.

S y = [E ×H ] =ε(gradφ)2 v

Если же плоскость перемещается вдоль оси x , то S x равно нулю, поскольку магнитное поле благодаря симметрии будет отсутствовать.

S x = [E ×H ] = 0

Рис. 3.2

Как известно, в природе масса есть скалярная величина. Теперь мы, следуя логике, должны признать, что скалярная инерциальная масса должна иметь тензорные свойства? Это абсурд! Не только в классическом (ньютоновском), но и в релятивистском случае мы сталкиваемся с проблемой «4/3».

3.2 Вектор Умова

Очевидно, что вектор Пойнтинга не приемлем для вычисления плотности потока поля заряда. Запишем уравнения для квазистатического поля заряда в квазистатическом приближении.

Δφ = ρ (3.2.1) ΔA = −μj (3.2.2) divA + 1 2 ∂φ = 0 (3.2.3) ε c t

При этом векторный потенциал А связан со скалярным φ так же, как плотность тока связана с плотностью заряда. φv

A = 2 (3.2.4) j = ρv (3.2.5) c

Эти дополнительные уравнения (3.2.4) и (3.2.5) будут необходимы нам для последующего анализа.

Нам необходимо показать, что уравнения (3.2.1), (3.2.2) и (3.2.3) соответствуют классической механике. Для реализации этой цели мы выразим векторный потенциал A в уравнении (3.2.1) через скалярный потенциал φ , используя уравнения (3.2.4) и (3.2.5).

1 ∂

ΔA j = 2 {rot[−gradφ×v ]+ (−gradφ) + v div(−gradφ) = 0 (3.2.6) c t

В механике сплошных сред существует уравнение сохраняемости вектора а и интенсивности его векторных трубок [3], которое записано ниже:

rot[a ×v ] v diva = 0

t

Если в нем мы заменим вектор а вектором Е = –gradφ/c 2 , тогда мы получим уравнение (3.2.6) для свободного заряда. Подобным образом из уравнения (3.2.3) мы получаем уравнение непрерывности, использующееся в механике сплошных сред [3].

∂φ

divv φ+ = 0 (3.2.7) ∂t

Уравнение (3.2.8) определяет потенциал φ , который создается источником с обильностью ρ/ε.

Δφ = − (3.2.8)

Мы видим, что квазистатическая электродинамика и механика сплошных сред имеют общие уравнения. Это рождает надежду найти решение первого аспекта проблемы электромагнитной массы. Теперь мы можем приступить к доказательству существования электромагнитной массы у заряда.

Доказательство.

Пусть потенциал φ создается источником ρ/ε (3.2.8). Запишем интеграл I.

1 ∂φ ε ∂φ

I = ∫ρ ∂t dV = − 2 ∫Δφ ∂t dV (3.2.9) 2 где dV – элемент объема.

Используя теорему Гаусса, преобразуем интеграл I .

ε ∂φ 0 ε ∂ 2

I = − t gradφn d σ + 4 t (gradφ) dV (3.2.10) 2

где: d σ – элемент поверхности; n о – единичная нормаль к поверхности.

С другой стороны, используя уравнения (3.2.6) и (3.2.7), мы можем представить уравнение (3.2.9) в следующей форме.

ε 0 ε ∂ 2

I = −∫[gradφ×[v ×gradφ]]n d σ − 4 t (gradφ) dV (3.2.11) 2

Сравнивая уравнение (3.2.10) с (3.2.11), получим:

0 ∂w e

S u n d σ + ∫ t dV = 0 (3.2.12) где: S u – плотность потока вектора Умова

ε ∂φ

S u = {− gradφ +[gradφ×[v ×gradφ]} = w e v (3.2.13)

2 ∂t

w e e с 2 (3.2.14) – плотность энергии поля заряда: μe - плотность электромагнитной массы.

Уравнение (3.2.12) есть интегральная форма закона сохранения энергии Умова , который был опубликован им [4] еще в 1874 для механики сплошных сред.

Очевидно уравнения (3.2.13) и (3.2.14) прекрасно соответствуют соотношениям механики Ньютона (3.1.1) и (3.1.2). Используя этот результат, мы можем дать корректное вычисление электромагнитной массы, которое устраняет трудности в рассмотренных ранее примерах. Полученные соотношения справедливы для зарядов произвольной формы.

m e S e dV ; P e = m e v c c

Что касается вектора Пойнтинга, то его неприменимость для подобных задач очевидна.

3.3 Уравнение баланса кинетической энергии

Теперь мы докажем другой важный результат. Мы получим уравнение баланса кинетической энергии для поля заряда. Вряд ли вызовет сомнение факт, что электромагнитное поле обладает кинетической энергией. Однако мы приведем доказательство, чтобы дать полную картину явлений.

Сначала мы рассмотрим физическую модель кинетической энергии поля заряда. Если на заряд воздействуют внешние силы, заряд ускоряется, и кинетическая энергия поля заряда изменяется. Это изменение связано с изменением плотности тока j и векторного потенциала А .

Ускоренное движение заряда мы можем рассматривать как скачок заряда из одной сопутствующей инерциальной системы отсчета в другую. Сопутствующая и ускоренная системы отсчета имеют равные скорости в бесконечно малом интервале времени.

Электрическое поле E = –gradφ в сопутствующей системе не зависит от времени и векторный потенциал A равен в ней нулю. Ускоренное движение заряда возбуждает добавочное электрическое поле E' , которое обусловлено изменением векторного потенциала А во времени (см. Приложение 1). Это поле мы не можем рассматривать как пренебрежимо малую величину. В сопутствующей системе отсчета оно равно:

1 ∂A φ ∂v

E '= − = − 2 (3.3.1)

2 ∂t 2c t

Плотность мощности, которая ускоряет заряд, равна:

jA v 2

p k = ρvE = ( ) = μe (3.3.2)

t 4 ∂t 2

где μе – плотность электромагнитной массы.

Эта мощность не зависит от выбора инерциальной системы отсчета в механике Ньютона. Теперь мы должны описать эту модель математически.

Доказательство.

Для доказательства уравнения баланса кинетической энергии воспользуемся формулой Грина для векторного потенциала.

E ΔM dV =∫(E divM + E ×rotM )n 0 d σ − ∫(divE divM + rotE rotM )dV

где: E и M –вектора двух некоторых полей.

A

Пусть E = − будет полем, которое создается ускоренным зарядом, а M = A /μ. В этом 2∂t

случае мы автоматически получаем уравнение баланса кинетической энергии в стандартной форме:

w k

divS k + + p k = 0 (3.3.3)

t

где:

1 ∂A jA

а) p k = − j = (3.3.4)

2 ∂t t 4

это плотность мощности, которая изменяет кинетическую энергию заряда;

б) divA )2 + (rotA )2 ] (3.3.5)

Выражение (3.3.5) есть плотность кинетической энергии поля заряда: v 2 ε 2 w e v 2 v 2

w k = 2 (gradφ) = 2 = μe ;

2c 2 2c 2

1 ∂A A

в) S k = − [ divA + ×rotA ] (3.3.6)

2μ ∂t t

это плотность потока кинетической энергии.

Приложение 1

Запишем интеграл действия частицы, на которую воздействуют потенциальные силы. Все точки заряда движутся с одинаковыми скоростями.

S dt (П.3.1)

где: μ* = μe + μn ; μe – плотность электромагнитной массы; μn – плотность неэлектромагнитной массы.

Из уравнения (П.1) следует уравнение движения.

* * * 2

v ) + v ×rot(μ v ) − grad(μ c ) + gradΛ = 0 (П.3.2)

t

a) Пусть внешние силы отсутствуют (Λ = 0). Частица будет устойчива, если выполняется следующее условие:

gradμ* = gradμe + gradμn = 0 (П.3.3)

б) Если же внешние силы существуют (Λ ≠ 0). Мы можем предположить, что частица тоже устойчива (внешние силы пренебрежимо мало деформируют частицу) и выражение (П.3.3) применимо к ней.

Умножим выражение (П.3.2) на скорость v . Используя тождество (П.3.3), запишем произведение.

∂ ∂

v e v ) − v n v ) + v gradΛ = 0 (П.3.4)

t t

Первый член в выражении (П.3.4) есть электромагнитная плотность мощности ускоренной частицы (см. (3.3.4)).

∂ 1 ∂A jA

p k = −v μe v = − j = − ( ) (П.3.5)

t 2 ∂t t 4

Напомним, что ρ и φ не зависят от времени в собственной системе отсчета. Частица устойчива. Выражение (П.3.5) есть производная по времени от плотности кинетической энергии электромагнитной массы μe .

3.4 Баланс энергии элемента тока

Теперь предстоит проиллюстрировать выражение для баланса кинетической энергии на примере. В квазистатической электродинамике векторный потенциал элемента тока определяется выражением:

I (t )d l d A = μ (3.4.1)

r

Подставляя выражение (3.4.1) в уравнения (3.3.6) и (3.3.8), мы можем записать такие результаты.

1. Плотность кинетической энергии равна:

2 μ I (t )d l 2

d w k = ( 2 ) (3.4.2) 2 4πr

Распределение энергии обладает радиальной симметрией.

2. Плотность потока кинетической энергии равна:

2 2

d S k = r d w k (3.4.3)

t

Теперь нам следует обсудить характерные особенности плотности потока кинетической энергии d 2 S k .

a. Изменение плотности кинетической энергии d 2 wk , окружающей элемент тока, связано с плотностью потока кинетической энергии d 2 S k . Плотность потока d 2 S k , в свою очередь, зависит от изменения квадрата силы тока I во времени. Если величина тока (независимо от его направления) увеличивается, плотность потока кинетической энергии d 2 S k положительна и d 2 S k направлена вдоль радиуса. Она увеличивает энергию поля векторного потенциала, окружающего элемент тока. Если же ток уменьшается, тогда поток направлен к этому элементу тока. Он стремится поддержать и сохранить величину тока в этом элементе. При любом изменении величины тока потери на излучение отсутствуют. Это по существу напоминает математическую формулировку закона Ленца .

b. Заметим, что плотность потока d 2 S k уменьшается в пространстве по мере удаления от элемента тока как 1/r 3 .

c. Когда изменение тока имеет место, плотность потока кинетической энергии возникает одновременно во всех точках пространства безо всякого запаздывания, т.е. мгновенно.

d. В противовес вектору Умова , который описывает конвективный перенос энергии зарядом, движущимся со скоростью v , плотность потока кинетической энергии существует только при ускоренном движении заряда (при изменении тока).

e. Электрическое поле, равное E ' t , определяет инерцию, т.е. величину

силового противодействия ускорению заряда. Мы можем рассматривать его также как напряженность поля, которая создает ЭДС самоиндукции .

3.5 Поток Умова и поток Пойнтинга

Чтобы уяснить принципиальное различие векторов Умова и Пойнтинга, рассмотрим пример. Пусть вдоль идеального проводника течет ток. В середине провода имеется тонкий разрыв, образующий емкость между торцевыми концами проводов. Будем для простоты считать, что краевые эффекты малы, а поле в зазоре однородно. Каким образом через эту емкость переносится энергия?

Вектор Умова.

Рассмотрим этот процесс в рамках квазистатических представлений. Пусть ток увеличивается во времени. Это означает, что на левой части проводника нарастает избыток положительных зарядов. На правой части торца, образующего емкость, накапливаются отрицательные заряды. Разность потенциалов между левой и правой частями увеличивается.

4. Рис. 3.3

В соответствии с этим через емкостный зазор протекает ток смещения, с плотностью тока равной j =ε∂E t . В левой и правой частях проводника протекает поток основных носителей с плотностью j = ρv . Эти плотности токов равны.

С точки зрения теоремы Умова через емкостной зазор проходит поток энергии с плотностью, определяемой формулой (3.2.13). В частности, между пластинами проводника существует плотность потока (вектор Умова), которая направлена вдоль

ε ∂φ ε 2

проводника и равна S u = − gradφ = (gradφ) v = w v .

2 ∂t 2

Заметим, что ток в любом сечении цепи (в левом проводнике, в правом проводнике или в зазоре) один и тот же. Благодаря этому свойству «работают» известные законы Кирхгофа для электрических цепей. В любом сечении неразветвленного участка цепи протекает один и тот же ток.

Вектор Пойнтинга.

Рассмотрим ту же задачу с точки зрения волновых процессов (запаздывающие потенциалы). Она рассмотрена в [5].

Рис. 3.4

Р. Фейнман проводит расчеты и пишет следующее ([5], стр. 295 - 298):

«Рассмотрим поток энергии в медленно заряжающемся конденсаторе. (Мы не хотим сейчас иметь дело со столь высокими частотами, при которых конденсатор становится похожим на резонансную полость, но нам не нужен и постоянный ток. ) Возьмем конденсатор с круглыми параллельными пластинами. Между ними создается однородное электрическое поле, которое изменяется с течением времени. …

… Когда конденсатор заряжается, внутренний объем приобретает энергию со скоростью

U = ε0πa 2hEE &

t

Так, что должен существовать поток энергии, направленный откуда-то со стороны внутрь объема. ….

Таким образом, на краях конденсатора, как видно из рисунка, возникает поток энергии, пропорциональный E × B . …

…Удивительная вещь ! Оказывается при зарядке конденсатора энергия идет туда не через провода, а через зазор между краями пластин. Вот что говорит нам эта теория !

Как это может быть ? Вопрос не из легких… »

Действительно, почему ток заряжает конденсатор, а энергия поступает «контрабандным» путем не с зарядами, а «извне» «через зазор между краями пластин »?

«… Наконец, чтобы убедить вас в том, что это явно ненормальная теория, возьмем еще один пример.... » и т.д.

Дадим объяснение, добавив то, что именно Р. Фейнман упустил из виду. Дело в том, что, используя вектор Пойнтинга, Фейнман заведомо рассматривает волновые , а не квазистатические процессы.

При анализе волновых процессов конденсатор в линии (проводе) является неоднородностью, от которой происходит отражение части энергии волны.


Рис. 3.5

Электромагнитная волна распространяется над поверхностью идеального проводника, не проникая вглубь. Когда конденсатор заряжается, происходит увеличение энергии между пластинами конденсатора.

Поток, который подсчитывал Фейнман, фактически складывается из потоков трех волн: падающей, отраженной и прошедшей. В такой цепи (в отличие от классической кирхгофовской) ток не будет одинаков в различных сечениях неразветвленной цепи. То, что энергия «втекает» в объем между пластинами конденсатора извне, есть реальный волновой процесс.

Мы вовсе не хотим противопоставлять вектор Умова вектору Пойнтинга. Заметим, что волновой вариант связан с так называемыми безинерциальными зарядами и токами, которые будут рассмотрены позднее. Оба вектора применимы каждый в своей области и описывают свои явления. В последующих главах мы подробно рассмотрим эти вопросы. Здесь мы хотим отметить, что волновые решения уравнений Максвелла и «вырожденные решения» этих уравнений описывают разные явления, присущие классической электродинамике. И те, и другие решения отвечают физической реальности. Нельзя в угоду предрассудкам пытаться описать и объяснять квазистатические процессы, опираясь на волновые представления. Нельзя отождествлять поля электромагнитной волны и поля зарядов. Не случайно Р. Фейнман вынужден был сказать о современной электродинамике: «это явно ненормальная теория ».

3.6 Релятивистский случай

Теперь остается показать, что электромагнитная масса имеет место и в релятивистском случае. Запишем уравнения Максвелла в калибровке Лоренца

2 A A j


2 i = −μj i ; (3.6.1) i =

x l x i


0; i = 0 (3.6.2) ∂x i


где: u i = dx i /ds ; j i = c ρu i ; A i связанной с зарядом (v = 0).


= φu i /c , величины ρ и φ берутся в системе отсчета,


Покажем, что для уравнения (3.6.2) существует закон сохранения Умова. Но сначала сделаем важные предварительные замечания.

1. Величины ρ и φ берутся в системе отсчета, связанной с зарядом (v = 0).

2. Выражение (3.6.1) по форме является уравнением гиперболического типа. Однако, как было показано в Главе 1, наличие уравнения непрерывности для 4-потенциала (3.6.2) «превращает» уравнение (3.6.1) в уравнение эллиптического типа.

Для доказательства закона Умова умножим выражение (3.6.2) на − с 2μ⋅∂A k x i и преобразуем полученный результат.

Правая часть.

с A k 1 2 A k c 2 ρ ∂φu k c 2 du k

j i = c ρu i = u i = ρφ = 0

2 ∂x i 2 ∂x i 2 ∂x i 2 ds

Итак, правая часть обращается в нуль, поскольку потенциал φ берется в собственной системе отсчета, где он не зависит от времени, а на заряд не действуют внешние силы, и он не испытывает ускорения.

Левая часть

с A k 2 A i с ∂ ∂ 2 A i с ∂ ∂ ρφ

2 = − (A k 2 ) = (A k j i ) = с ( u k u i ) = 0 (3.6.3)

2μ ∂x i x l 2μ ∂x i x l 2 ∂x i x i 2

Итак, мы получили в левой части выражение для дивергенции тензора плотности энергии-потока для поля заряда. Если компоненты этого тензора разделить на квадрат скорости света и проинтегрировать по пространственному объему, то получим выражение для тензора энергии-импульса релятивистской частицы с электромагнитной массой me [1], дивергенция которого определяется выражением:

∂ ∂

(T ik ) = (m e cu i u k ) = 0 (3.6.4)

x i x i

Из полученного выражения следует, что релятивистский импульс электромагнитной массы постоянен. Это очевидно, поскольку заряд перемещается с постоянной скоростью. Из (3.6.3) вытекает закон сохранения Умова , который мы запишем ниже

w v ρφ

divS u + w = 0, где S u = ; w = - плотность потока и

t 1− (v /c ) 2 1− (v /c ) 2 плотность энергии поля заряда.

Нетрудно видеть, что релятивистское выражение соответствует классическому с точностью до релятивистского множителя.

Обсуждение

1. При решении проблемы электромагнитной массы мы не использовали гипотез о строении зарядов и показали, что электромагнитная масса имеет стандартные свойства механической инерциальной массы. Это положение справедливо как для малых, так и релятивистских скоростей.

2. При доказательстве мы опирались на мгновенно действующие потенциалы как в классическом, так и в релятивистском варианте (условие (3.5.2)).

3. Как известно, масса покоя заряда m 0 складывается из электромагнитной массы me и массы неэлектромагнитного происхождения mn : m 0 = me + mn . Последняя, противодействуя кулоновским силам расталкивания, обеспечивает устойчивость заряженных частиц. Сейчас мы ничего не можем сказать о неэлектромагнитной массе (о ее величине и знаке). Однако если эта масса обладает инерциальными свойствами, то неизбежен следующий вывод: неэлектромагнитная масса также должна обладать стандартными свойствами механической инерциальной массы независимо от ее природы.

4. Мы бы хотели обратить внимание на тензор энергии-импульса поля заряда. Этот тензор отвечает только мгновенно действующим полям движущегося заряда. Действительно, при доказательстве мы использовали уравнение непрерывности и запись векторного потенциала через скалярный потенциал и скорость заряда. А эти выражения, как было показано в Главе 1, превращают волновое уравнение в уравнение эллиптического типа с мгновенно действующими потенциалами. Такие поля имеют свои законы сохранения. Конечно, мгновенное распространение этих полей противоречит постулатам СТО. Позже мы обсудим эту теорию и покажем ее несовместимость с уравнениями Максвелла.

5. Вернемся к вопросу о двойственном характере выражений для электромагнитной массы и, соответственно, для кинетической энергии и электромагнитного импульса

заряда. m e dV . Возникает вопрос: какое выражение для массы

2c 2c

отвечает физической реальности? Наша точка зрения сводится к следующему. Электромагнитную массу заряда определяет плотность пространственного заряда. Инерция там, где эта плотность отлична от нуля. В свою очередь электромагнитные поля заряда не обладают инерциальными свойствами (не связаны с массой). Такой подход позволяет «снять» ограничения на скорость перемещения и распространения полей заряда в пространстве.

6. Закон сохранения энергии Умова (в классическом и релятивистском вариантах) отличается от закона сохранения Пойнтинга и не сводится к нему. Этот факт и факт функционального различия решений для полей зарядов и полей электромагнитных волн свидетельствуют о том, что эти поля принципиально различны. Например, плотность массы покоя поля заряда отлична от нуля, в то время, как плотность массы покоя электромагнитной волны всегда равна нулю и т.д. Соответственно, использовать вектор Пойнтинга для полей зарядов нельзя.

Итак, использование мгновенного взаимодействия оказалось плодотворным при решении проблемы электромагнитной массы. Ранее эти вопросы были рассмотрены в [6], а также в[7].

Дополнение.

В Интернете на сайте С.Н Артехи: http://www.antidogma.ru/ под заголовком: «ПРОЕКТ "ВСЕХ НАСТОЯЩИХ ПЕРВЫХ ПОМЯНУТЬ "» представлена следующая справка:

«Так называемая "эквивалентность массы и энергии " E = mc ².

Формула впервые появилась за 33 года до А. Эйнштейна в работе "Die allgemeine Bewegung der Materie als Grundursache aller Naturerscheinungen", Heinrich Schramm, 1872, Wilhelm Braumüller, k.k.Hof- und-Universitäts-Buchhändler.

Обсуждалась в работах Н.А. Умова в 1873 году.

Получена Томсоном в статье "Об электрическом и магнитном эффекте, обусловленном движением наэлектризованных тел", опубликованной в 1881 г. (см. Кудрявцев П.С. Курс истории физики, М.: Просвещение, 1974).

Получена, исходя из теории Максвелла, в работе О. Хевисайда в 1890 году.

В качестве примера содержится в работе А. Пуанкаре в 1900 году.

Рассмотрена в работе Ф. Газенёрля в 1904 году : Zur Theorie der Strahlung in bewegten Korpern F. Hasenöhrl, Ann. Phys., Band 15, Seite 344-370, (1904); 16, 589 (1905).» Источники информации:

1 Голдстейн Г. Классическая электродинамика. – М: Наука, 1975.

2 Фейнман Р.Ф. , Лейтон Р.Б. , Сандс М. Фейнмановские лекции по физике. Т. 6, Электродинамика. – М.: Мир. 1975.

3 Кочин Н.Е. . Векторное исчисление и начала тензорного исчисления. – М.: Наука 1965.

4 Umoff (Umov) N.A. Beweg – Gleich. d. Energie in contin. Korpern, Zeitschriff d. Math. and Phys. V. XIX, Schlomilch. 1874.

5 Фейнман Р., Лейтон Р., Сэндс Ь. Фейнмановские лекции по физике. Т. 6. Электродинамика. М.:Мир., 1977.

6 Кулигин В.А., кулигина Г.А. Механика квазинейтральных систем заряженных частиц и законы сохранения нерелятивистской электродинамики. – Деп. в ВИНИТИ 04.09.86 № 6451 – В86. Воронеж. Ун-т. – Воронеж, 1986. http://www.sciteclibrary.ru/rus/catalog/pages/9219.html

7 Кулигин В.А., Кулигина Г.А., Корнева М.В. Кризис релятивистских теорий. Часть 5. Электромагнитная масса. http://kuligin.mylivepage.ru/file/index/

8 Первая десятка "Русского переплета" (Научный форум; Шаляпин А.Л. http://s6767.narod.ru/- СВЯЗЬ ЭНЕРГИИ С МАССОЙ ПО УМОВУ) http://www.pereplet.ru/Discussion/index.html?book=sci

Глава 4. Лагранжиан взаимодействия двух зарядов

4.1 Классический принцип относительности

Классическая механика построена на принципе относительности Галилея, который гласит:

«Прямолинейное и равномерное движение системы отсчета не влияет на ход механических процессов в системе ». Этот принцип был обобщен А.Пуанкаре: «Все физические процессы при одинаковых условиях протекают одинаково во всех инерциальных системах отсчета ». Вторую формулировку можно рассматривать как оправданное философское обобщение принципа относительности Галилея на любые процессы в природе.

Мы говорим «можно» по той причине, что правильность обобщения зависит не только от правильности формулировки, но и от правильности реализации этого обобщения. Примером может служить правильное утверждение о наличии у заряда электромагнитной массы и неправильная реализация , опиравшаяся на использование вектора Пойнтинга за границами его применимости.

В классической механике реализация принципа относительности очевидна (например, закон Всемирного тяготения, закон Кулона и т.д.). В приведенных выше законах взаимодействие определяется через относительное расстояние между двумя взаимодействующими объектами R 12 = R 1 – R 2 . Переход наблюдателя в новую инерциальную систему сохраняет относительное расстояние между первым и вторым взаимодействующими объектами неизменным.

Можно обобщить это положение на случай, когда взаимодействие зависит не только от расстояния, но и от скоростей взаимодействующих объектов. Характер описания взаимодействия не зависит от выбора инерциальной системы отсчета, если взаимодействие двух объектов зависит от их относительной скорости V 12 = V 1 V 2 . Для классической механики нет необходимости распространять этот принцип на взаимодействия, зависящие от ускорения, поскольку дифференциал скорости не зависит от выбора инерциальной системы отсчета.

Мы уже выразили сомнение относительно применимости СТО к явлениям квазистатической электродинамики, тем не менее, мы иногда будем использовать математический формализм этой теории. В работе [1] приводится следующий интеграл действия для взаимодействия заряда с полем (например, с полем другого заряда):

S = ∫(−mcds + eA i dx i ) =∫(−mc + eA i u i )ds

Сначала рассмотрим действие для свободного заряда. Действие для электромагнитной массы, выраженное через объемную плотность пространственного заряда, равно

ρA i

S = ∫∫ 2 dx i dV

Пользуясь тем, что Ai = φui /c и dxi = ui ds , получим

ρφu i ρφ ρφ 2

∫∫ 2c 2 u i dsdV =−∫∫ 2c 2 dsdV =−∫mcds , где: m = 2c 2 dV ; u i = −1

Пусть теперь тот же заряд образован двумя заряженными частицами. Плотности их пространственного заряда ρ1 и ρ2 , 4-потенциал этих зарядов соответственно Ai 1 и Ai 2 , а 4дифференциалы координат dxi 1 и dxi 2

Подставляя эти результаты в интеграл действия для одной частицы, получим

S

dV

Интегрируя по объемам, содержащим заряды, найдем

2 2 1 1 2 2

S = ∫(−m 1c 1− v 1 / c dt + 2 e 1 A i 2dx i 1 + 2 e 2 A i 1dx i 2 − m 2c 1− v 2 / c dt )

Для малых скоростей мы получим следующее «красивое» соотношение для лагранжиана взаимодействия.

2 e 1φ2 ⎡ (v 1 − v 2 ) ⎤

e 1u i 1 A ≈ −e 1φ2 ⎢1+ 2 ⎥ =

⎣ 2c

e e e e v 12 2

= − 1+ 2 ⎥ = − ⎢1+ 2 ⎥ = e 2 u i 2 A i 1 4πεr 12 ⎣ 2c ⎦ 4πεr 12 ⎣ 2c

где v 12 относительная скорость, определяемая формулами Эйнштейна для сложения скоростей.

Как следует из формулы, взаимодействие «магнитного» характера определяется относительным движением зарядов. Следует заметить, что никаких «запаздываний» в полученном результате нет. Относительная скорость не «запаздывает», да и относительное расстояние, являясь истинным скаляром, сохраняется неизменным в любой инерциальной системе отсчета. Но релятивистский математический формализм формально сохраняется.

Теперь мы можем записать интеграл действия зарядов для малых относительных скоростей движения зарядов.

v 2 e e v 2 v 2

S = ∫(m 1 2 4πεr 12 ⎣ 2c m 1 21 )dt =

(4.1.1)

e e v 2 e e 2 e e v 2

= dt

4πε 12 12

Как видно из полученного результата массы заряженных частиц получают «добавки», которые по величине весьма малы по отношению к массам частиц. Пренебрегая ими, мы получаем известный интеграл действия для нерелятивистского (классического) случая

v 2 v 2 2

S + ]dt =

(4.1.2) 2 2

v v

dt

из которого следуют известные уравнения движения

d v 1 A 2

m 1 = −e 1 gradφ2 e 1 + e 1 [v 1 ×rotA 2 ] dt t

(4.1.3) d v 2 A 1

m 2 = −e 2 gradφ1 e 2 + e 2 [v 2 ×rotA 1 ] dt t

Правая часть в этих выражениях есть сила Лоренца.

В стандартных учебниках выражение (4.1.2) также выводится небрежно. Доказательство приводится как простое и «очевидное». Функцию Лагранжа, отвечающую за взаимодействие, записывают следующим образом [1]

L int = e 1u i (1) A i (2) = −e 1φ2 + e 1v 1A 2 (4.1.4)

Конечно, выражения для функции Лагранжа в (4.1.2) и (4.1.4) совпадают. Но в этих выражениях отсутствуют некоторые члены пропорциональные квадратам скоростей, т.е. «добавки» к массам. Можно ли пренебрегать «добавками» к массам, поскольку соответствующие выражения становятся неинвариантными относительно преобразования Галилея? К чему это приводит, мы покажем в следующем параграфе.

4.2 Эксперимент Траутона и Нобла

Рассмотрим два заряда + q и - q , находящиеся на концах стержня длиной L . Кулоновские силы притяжения уравновешены упругими силами стержня. Опираясь на формулы (4.1.3) легко показать, что наблюдатель, движущийся относительно стержня со скоростью v , обнаружит вращающий момент, действующий на этот стержень. Процитируем работу [2] (параграф 14.2):

«… два заряда + q и – q, находящиеся на концах отрезка, движущегося со скоростью v, будут взаимодействовать как два элемента тока величиной Id l = q v . Силы, действующие на эти элементы тока, будут равны и направлены в противоположные стороны, и в общем случае они не коллинеарны Рассчитаем величину этого эффектаСила

1 q 2 v 2

F = 2 2 sinθ направлена перпендикулярно к v в плоскости векторов L и v.

4πε L c

Рис. 4.1

В цитате оговорка. Силы параллельны и равны, но не лежат на одной прямой линии. Этот «вращающий момент» до настоящего времени так и не нашел своего объяснения в рамках классических теорий. А появился он благодаря тому, что были отброшены «добавки» к массам частиц в выражении (4.1.2). Читаем далее в параграфе 18.4 из [2]:

«Траутон и Нобл пытались наблюдать этот момент на опыте. Парадокс, вызванный отрицательным результатом опыта, показал трудности в интерпретации скорости движущихся зарядов, существовавшие в дорелятивистской электродинамике ».

«Виновной » сразу же объявили механику Ньютона и классические представления.

Опишем суть эксперимента Траутона и Нобла. Эти исследователи для наблюдения вращающего эффекта использовали заряженный плоский конденсатор, который был укреплен на упругом подвесе. Экспериментаторы долго и томительно ожидали вращение конденсатора, но так ничего и не обнаружили.

Они и не должны были ничего обнаружить, даже если бы крутящий момент действительно существовал. Вращающий момент должен наблюдаться (согласно (4.2.1)), если конденсатор движется мимо экспериментаторов с постоянной скоростью. Но обратите внимание, что этот конденсатор покоился в их системе отсчета.

Чтобы как-то оправдать отрицательный результат эксперимента, было высказано предположение, что вращающий момент создается «эфирным ветром» (!) вследствие движения Земли. Отрицательный результат эксперимента «оправдал» исследователей, поскольку было «доказано», что «эфирного ветра (равно как и эфира) не существует».

Если же исходить из выражения (4.1.1), то никакого вращательного момента на заряды не должно действовать, какую бы инерциальную систему отсчета мы не выбрали. Вращающий момент это результат некорректного устранения «добавок» к массам.

Взаимодействие зарядов зависит от относительных скоростей и относительных расстояний. Если бы даже эфир существовал, его скорость «выпала» бы из интеграла действия. Как следствие, с помощью подобного эксперимента принципиально невозможно было бы обнаружить движение относительно эфира.

4.3 «Конвективный потенциал»

Выше мы рассмотрели, так называемое, “классическое” объяснение появления вращающего момента для зарядов, движущихся с нерелятивистскими скоростями. Теперь рассмотрим тот же вариант в рамках “релятивистских” представлений. Как мы установили, там источником «парадокса» явилось пренебрежение «добавками» к массам. Теперь мы будем анализировать эту же проблему, опираясь на строгие соотношения (безо всяких приближений). Теория изложена в параграфе 18.4 «Конвективный потенциал» в работе [2], которую мы будем цитировать ниже. Цитаты будем давать курсивом.

Итак,

Два электрона, движущихся параллельно друг другу с одинаковой скоростью u, взаимодействуют между собой. Сила взаимодействия определяется выражением для силы Лоренца…

F = e (E + u ×B )

…после преобразования…

e 2 ⎛1−u 2 /c 2

F = − 4πε∇⎜⎜⎝ s ⎟⎟⎠= −∇ψ

… Функция e 2 (1−u 2 /c 2 ) ψ = называется конвективным потенциалом»….

4πεs

Обращаем ваше внимание на то, что конвективный потенциал является мгновенно действующим, а не запаздывающим в соответствии с Главой 1.

Рис. 4.2

«Сила F 2 , с которой электрон е1 , находящийся в точке (x1 , y1 , z1 ), действует на электрон е2 , находящийся в точке (x2 , y2 , z2 ), должна быть перпендикулярна поверхности эллипсоида

s =

ибо последняя является эквипотенциальной поверхностью…

…Таким образом, за исключением случаев, когда линия, соединяющая электроны, параллельна или перпендикулярна к направлению движения, силы действия и противодействия не коллинеарны”.

Здесь, видимо, также опечатка, поскольку силы коллинеарны, но не лежат на одной прямой. Естественно, что появляется вращающий момент. Заметим, что:

“…для наблюдателя, движущегося с зарядами, заряды не представляют собой элементов тока. Поэтому взаимодействие между ними будет чисто кулоновским ”.

Итак:

«Вращательный момент, предсказываемый теорией, реально существует для наблюдателя, движущегося относительно зарядов со скоростью u. Он мог бы быть измерен, если бы не нужно было учитывать механические соображения. Мы уже указывали, что представление о «жестком» стержне несовместимо с теорий относительности . Положение полностью аналогично тому, которое было при рассмотрении равновесия рычага – вращательный момент компенсируется приростом момента импульса. Во всяком случае, равновесие есть свойство, инвариантное относительно преобразований Лоренца ».

Ясно, что здесь мы имеем дело не с объяснением физического явления, предсказываемого СТО, а с декларацией об «инвариантности» равновесия в любой инерциальной системе отсчета («Во всяком случае, равновесие есть свойство, инвариантное относительно преобразований Лоренца »).

Обратимся к парадоксу рычага. Может быть там изложена «сермяжная» правда?

4.4 Парадокс рычага

Описание этого парадокса можно встретить в некоторых книгах, посвященных вопросам специальной теории относительности. Обратимся к работе [3], чтобы напомнить суть парадокса.

Пусть в системе К ° имеется рычаг с плечами L o x и L o y , изображенный на рис. 4.3, на которые действуют силы F o x и F o y соответственно. Рычаг уравновешен, т.е. M = F y 0 L 0x F x 0 L 0y = 0

Рис. 4.3 В системе К будем иметь:

L x = L 0 x 1− (v /c ) 2 ; L y = L 0 y ;

F y = F y 0 1− (v /c ) 2 ; F x = F x 0

Таким образом, в системе К на рычаг будет действовать не скомпенсированный момент сил, равный:

v 2 0 0

M = F x L y F y L x = 2 F x L y

c

Возникает вопрос: должен ли в согласии с законами механики рычаг повернуться под действием момента сил М ?

Обратимся к [3], сопроводив объяснение комментариями. Цитаты будем приводить как обычно курсивом.

«...На первый взгляд мы приходим к странным выводам. Однако более тщательное рассмотрение показывает, что полученные выводы правильны и имеют непринужденное объяснение. Сначала приведем элементарное объяснение...

...Рассмотрим работу сил Fx и Fy в системе К. В системе К рычаг движется и в единицу времени сила Fх совершает работу – Fх v. Сила Fy не совершает работы, т.к. она направлена нормально к скорости рычага. Следовательно, на конце рычага в точке приложения силы Fx совершается работа и в единицу времени энергия в точке возрастает на величину -Fх v »

Комментарий . Итак, энергия изменяется. Очевидно, речь идет о потенциальной энергии. К сожалению, автор не поясняет: что именно означает “энергия рычага в точке”. Разве энергия передается не всему рычагу, а только одной его точке? Читаем далее:

«..Но это означает, что масса рычага в точке приложения силы в единицу времени возрастает на – Fх v/c2. Умножив эту величину на скорость рычага v, найдем приращение импульса -Fx v 2 /c 2 . А момент импульса возрастает на величину -Fx Ly v 2 /c 2 »

Комментарий . " По мнению автора работы, это возрастание как раз и “компенсирует” вращающий момент М. Следовательно, масса рычага будет ежесекундно убывать на величину -Fх v/c 2 . Пройдет время и от массы рычага ничего не останется. Она станет равной нулю. Что же тогда будет поддерживать равновесие? Затем она станет отрицательной. Во-первых, как это следует понимать? Во вторых, для объяснения парадокса жертвуется масса. Она становится зависимой от времени. Однако вновь возникает вопрос: “почему”? Почему в системе К ° масса постоянна, а в системе К она зависит от времени?

Центр тяжести объяснения парадокса передвинут с “нескомпенсированного момента сил” на “массу, зависящую от времени”. Но объяснений этой зависимости не дано. Что это: софистика или паралогизм? Автор и сам, видимо чувствует порочность “элементарного” объяснения. Далее он пишет:

«... Но в этом элементарном объяснении есть свои слабости. В СТО нет абсолютно жестких тел, и мы обязаны учитывать деформацию рычага, в предыдущем рассуждении полагалось, что рычаг не меняет свою форму... »

Комментарий. Вот и вытаскивается гипотеза ad hos об отсутствии в СТО абсолютно жестких тел. Это и есть современные аналоги средневековых “слонов” и “черепах”. Далее автор утверждает, что в рычаге возникают «натяжения».

«... Изменение этих натяжений должно как раз скомпенсировать момент сил. В принципе эта задача может быть решена, т.к. изгиб балки, закрепленной на одном конце (кем закрепленный, ведь рычаг может вращаться? – вопрос наш), может быть найден. Однако расчет провести затруднительно ».

Вот и все непринужденное объяснение, которое посулил нам автор в начале своего объяснения. Что же получается? Теория относительности предсказывает появление не скомпенсированного момента сил М , который действует на рычаг. Однако автор пытается доказать, что рычаг не должен вращаться. Неизбежен вопрос, что ошибочно: законы механики, утверждающие, что из-за момента сил должно быть вращение, или же СТО, которая предсказывает появление момента сил, не существующего в действительности? Ответ очевиден.

4.5 Определение напряженности поля

Итак, при объяснении парадокса рычага мы сталкиваемся с той же путаницей и несостоятельностью объяснений, как и при объяснении «конвективного потенциала», Но теперь источник противоречия не в математических некорректностях, а в наличии гносеологической ошибки. Гносеологические ошибки в основном обусловлены неправомерными (ошибочными) интерпретациями явлений.

Для упрощения объяснения «конвективного потенциала» будем полагать, что мы имеем дело с единичными зарядами. В этом случае силы, действующие на заряды, будут численно равны напряженностям электрических полей и совпадать по направлению с векторами напряженности.

В релятивистской электродинамике, как мы знаем, «конвективный потенциал» учитывает зависимость скалярного потенциала от скорости. Дадим определение напряженности электрического поля Е.

Определение. Напряженность электрического поля (в данной точке пространства и в данный момент времени) есть силовая характеристика этого поля, численно равная силе, действующей на единичный, положительный, точечный заряд (т.е. пробный заряд ), покоящийся в этой точке, и имеющая направление, совпадающее с направлением вектора силы.

Мы надеемся, что это определение корректно. Отметим его особенности.

a. Во-первых, философская сторона определения - «силовая характеристика » - позволяет нам не воспринимать напряженность как самостоятельный вид материи.

Она отражает одно из свойств такого явления как электромагнитное поле. Заметим, что «энергетической характеристикой » электрического поля является потенциал (в том числе и конвективный), поскольку он определяется через понятие «работа ». Сила есть одно из свойств волны или материального тела. Без введения подобных уточнений возможна путаница. Например, некоторые исследователи ошибочно пытаются рассматривать силу, как некий самостоятельный

«материальный объект», существующий как бы независимо от источника, который создает эту силу. Взаимодействуют заряды, а силы, возникающие между ними, это свойства зарядов (источников этих сил).

b. Во вторых, мы хотим обратить внимание на появление в определении понятия «напряженность» слова «покоящийся ». Дело в том, что в данный момент времени в данной точке пространства мы можем «поместить» в исследуемое поле движущийся единичный заряд. Конечно, на него со стороны поля будет действовать уже другая сила (= будет измерена другая напряженность поля), отличная от той, которая действовала бы на покоящийся заряд.

Приведем пример . Пусть мы имеем однородное магнитное поле магнита, покоящегося в нашей системе отсчета. Если пробный заряд покоится , то на него магнитное поле не будет воздействовать, т.е. напряженность электрического поля, действующего на пробный единичный заряд, равна нулю. Но если заряд движется со скоростью v , то в соответствии с формулой Лоренца на него будет действовать сила и существовать, пропорциональная ей напряженность электрического поля

E =F /e =v ×B

Рассмотрим теперь случай, когда этот магнит со своим полем перемещается с постоянной скоростью u в нашей системе отсчета. Иногда можно встретить утверждения, что и в данном случае на покоящийся заряд магнитное поле не будет воздействовать. При этом сторонники такой точки зрения «кивают» на приведенную выше формулу Лоренца. Действительно, если скорость заряда равна нулю, то и сила (= напряженность электрического поля) должна быть равной нулю. Но это ошибочная точка зрения.

В соответствии с преобразованиями Лоренца движущееся магнитное поле порождает напряженность электрического поля, равную

E ' = −u ×B

Эта напряженность создает силу, которая будет воздействовать на покоящийся в нашей инерциальной системе отсчета пробный заряд. Под ее воздействием свободный заряд начнет двигаться ускоренно.

Теперь, опираясь на определение напряженности электрического поля, мы можем дать непротиворечивое объяснение «конвективному потенциалу».

Итак, обратимся к рис. 4.2 и рассмотрим напряженность поля, создаваемую первым зарядом е 1 , которая существует в той точке пространства, где в данный момент находится движущийся заряд е 2 . Для этой цели (в соответствии с определением понятия «напряженность электрического поля») мы поместим в данную точку пространства в момент времени, соответствующий пролету второго заряда, неподвижный пробный заряд.

Естественно, что на этот неподвижный заряд будет действовать сила, определяемая формулой Лоренца. Но будет ли действовать та же самая сила на движущийся заряд? Ответ на этот вопрос должен быть в общем случае отрицательным . На движущийся заряд будет действовать другая сила, отличная от той, которую мы измерили с помощью неподвижного пробного заряда.

Но вернемся к рассматриваемому парадоксу. Что же мы имеем? А имеем мы подмену сил, если говорить с точки зрения физики. Мы незаконно подменяем силу, которая воздействует на движущийся заряд, другой силой, которая действует на неподвижный в нашей системе отсчета заряд. Если бы мы вычисленные для неподвижного заряда силы заменили реальными силами, то никакого парадокса, связанного с появлением вращающего момента, мы бы не обнаружили.

Мы считаем, что взаимодействие в релятивистской механике должно иметь объективный характер, как это имеет место в механике Ньютона. Оно не может зависеть от выбора наблюдателем инерциальной системы отсчета. Наблюдатели любой инерциальной системы отсчета должны описывать процесс взаимодействия одинаково (объективно).

4.6 К теории тяготения

Поскольку прослеживается аналогия между квазистатическими явлениями электродинамики и законом Всемирного тяготения, выскажем несколько соображений по этому поводу.

a. Об эквивалентности инерциальной и тяготеющей масс. Наше отношение к этой гипотезе отрицательное. Инерциальная масса отражает способность материального объекта сохранять свое состояние и «противостоять» действию внешней силы. Гравитационная масса (гравитационный заряд) отражает способность материальных тел к взаимодействию между собой (к взаимному притяжению). Отождествление столь разных свойств есть эклектика. С тем же успехом можно было бы «отождествить» красное и сладкое, поскольку красные ягоды и плоды, как правило, являются сладкими.

b. Между квазистатическими явлениями электродинамики и квазистатическими явлениями гравитации имеет место аналогия. По этой причине интеграл действия для двух взаимодействующих гравитационных зарядов (масс) можно записать в следующем виде

v 1 2 m g 1m g 2 ⎡ v 122 ⎤ v 2

S = ∫(m 1 −γ ⎢1+ 2 ⎥+ m 1 dt , где m – инерциальная

2 r 12 ⎣ 2c

масса; mg – гравитационный заряд; v 12 - относительная скорость тел; γ - постоянная тяготения. Мы не будем приводить расчетов, которые предсказывают смещение перигелия Меркурия такое же, какое следует из эйнштейновских представлений Специальной теории относительности (20” за столетие).

c. Следует отметить, что на смещение перигелия влияют и другие факторы.

Например, солнце испускает большое число нейтральных и заряженных

частиц. Вокруг него на большом расстоянии существует положительный пространственный заряд, сквозь который пролетают Земля и другие планеты. Естественно, что и они в результате столкновений с заряженными частицами приобретают заряд. При этом электрическое поле, где движутся планеты, уже не подчиняется закону R -2 . Мы также не знаем величину заряда самого солнца. Если, например, этот заряд составляет десятки кулон, то поправка к смещению перигелия может составить величину того же порядка, что и указанная ранее.

d. Обратимся к задаче трех тел. Интересный подход к ее решению предложен в [4]. Мы не собираемся предлагать новое решение, а хотим высказать одно предположение. Дело в том, что при взаимодействии двух гравитационных масс (тел) имеет место закон сохранения энергии. Следовательно, полная масса этой замкнутой консервативной системы (сумма потенциальной и кинетической энергий, деленная на с 2 ) в соответствии с формулой Томсона (E = mc 2 ) должна сохраняться. Иными словами, энергия взаимодействия также должна обладать массой. Если это предположение справедливо, то при гравитационном взаимодействии этой системы с третьим телом система должна вести себя как инерциальное тело с постоянной инерциальной массой. Это предположение нуждается в экспериментальной проверке. Напомним, что взаимодействие материальных тел обусловлено гравитационными зарядами, как было сказано выше. Аналогичное допущение можно высказать и по отношению к взаимодействию заряженных частиц.

e. Нетрудно видеть, что тензор напряжений, описывающий взаимодействие

V 2

двух зарядов равен T ik = e 1 φ2 [V i V k +V k V i ]− δik e 1 φ2 (1+ 2 ) 2c

где: V – относительная скорость движения зарядов; δik = 1 при i = k и δik = 0 при ik ; Vi –проекция относительной скорости на ось i (i= 1,2,3,4).

Обращаем внимание, что приведенный тензор напряжений симметричен.

4.7 Как проверить закон Кулона?

Рассмотрим движение заряда в поле плоского конденсатора. Будем считать потенциал отрицательной пластины и начальную скорость электрона равным нулю.

Обозначим величину mc 2 /e = U 0 . Величина U 0 = 0,512⋅106 вольт. В известном классическом случае, когда взаимодействие не зависит от относительной скорости, мы имеем следующее известное выражение для скорости заряда v к /c = 2eU / mc 2 = 2U /U 0 (4.7.1)

Если потенциал зависит от относительной скорости движения (см. (4.1.1)), мы имеем следующий результат

2eU 2U /U 0 2U /U 0 (1+ U /U 0 )

v / c = 2 = = (4.7.2) mc + eU 1+ U /U 0 1+ U /U 0

Рис. 4.4

Остается рассмотреть этот вопрос с релятивистских позиций. Скорость в релятивистской теории следующим образом зависит от потенциала

U /U 0 (2 +U /U 0 )

v р /c = (4.7.3) 1+U /U 0

Заметим близость результатов (4.7.2) и (4.7.3), которая ставит под сомнение интерпретацию опытов Кауфмана. Именно их, в первую очередь, «приспособили» для подтверждения справедливости СТО.

На рис. 4.5 представлены графики зависимостей скоростей от потенциалов, вычисленные по обозначенным формулам. Следует обратить внимание на тот факт, что при малых значениях U / U 0 асимптотические выражения для (4.7.2) и (4.7.3)

Рис. 4.5 1 – классическая формула Кулона (4.7.1): 2 – формула (4.7.2): 3 – релятивистская формула (4.7.3) совпадают с формулой (4.7.1). Однако при очень больших значениях отношения U / U 0 эти формулы имеют различную асимптотику. Результаты приведены в Таблице 1.

Таблица 1

Формула (4.7.1)

Формула (4.7.2)

Формула (4.7.3)

Уравнение

v /c =

2U /U 0

2U /U v / c = 0

1+U /U 0

U /U 0 (2 +U /U 0 )

v р /c =

1+U /U 0

Асимптотика

U / U 0 << 1

v /c

2U /U 0

v /c ⇒ 2U /U 0

v г /c ⇒ 2U /U 0

U / U 0 → ∞

v /c

2U /U 0

v / c ⇒ 2

v г /c ⇒1

Современная техника эксперимента позволяет измерять скорости при величинах ускоряющих потенциалов U / U 0 порядка 0,7 – 1,5. Возможно, что зависимость скорости от величины ускоряющих потенциалов окажется отличной от записанных закономерностей. Подробно эта проблема изложена в [5], а также в [6].

Заключение

И вновь, как и в предыдущей Главе, мы использовали релятивистский математический формализм для мгновенно действующих потенциалов. Только опираясь на эти потенциалы, удается дать правильное непротиворечивое объяснение квазистатическим явлениям электродинамики.

Важность проверки закона Кулона в том, что его проверка даст ответ на вопросы: как зависит от скорости движения магнитного поля величина, создаваемого им электрического поля, и, соответственно, как зависит от скорости движения заряда (его электрического поля) величина, создаваемого им магнитного поля?

Источники информации:

1 Ландау Л.Д., Лифшиц Е.М. Теория поля. - М.: «ФИЗМАТГИЗ», 1963.

2 Пановски В., Филипс М. Классическая электродинамика. М., ГИФФМЛ, 1968.

3 Угаров В.А.. Специальная теория относительности. - М.: Наука, 1969.

4 Ершков С.В. Задача трех тел (новое точное решение) http://www.chronos.msu.ru/RREPORTS/yershkov_zada4a.pdf.

5 Кулигин В.А., кулигина Г.А. Механика квазинейтральных систем заряженных частиц и законы сохранения нерелятивистской электродинамики. – Деп. в ВИНИТИ 04.09.86 № 6451 – В86. Воронеж. Ун-т. – Воронеж, 1986. http://www.sciteclibrary.ru/rus/catalog/pages/9219.html

6 Кулигин В.А., Кулигина Г.А., Корнева М.В. Кризис релятивистских теорий. Часть 6. Магнитные взаимодействия. http://kuligin.mylivepage.ru/file/index/

Глава 5. Вариационные основы квазистатических явлений

5.1 Квазинейтральные системы

Итак, в предыдущих главах мы показали, что решение волнового уравнения зависит от начальных условий. Одним из важных результатов является появление решений с мгновенно действующими потенциалами. Это позволяет, опираясь на них, дать не только решение проблемы электромагнитной массы, но и объяснить ряд парадоксов современной электродинамики.

Наличие мгновенно действующих потенциалов в решении волнового уравнения противоречит постулатам теории относительности А. Эйнштейна. Мы обсудим эти постулаты позже.

В Главе 3 мы обсудили нерелятивистскую функцию Лагранжа для взаимодействующих зарядов. Там же мы поставили вопрос об экспериментальной проверке закона Кулона. При малых скоростях зависимость от относительной скорости зарядов известна. Она пропорциональна (v 1 - v 2 )2 . Но какова она при больших относительных скоростях?

Вариантов много: 1+ v 12 2 /c 2 ; 1/ 1− v 12 2 /c 2 ; и так далее . Здесь важно экспериментально выявить зависимость лагранжиана взаимодействия от скорости.

В этой Главе нашей задачей будет анализ магнитных явлений для малых скоростей. Релятивисты утверждают, что классическая механика оказалась неспособной объяснить магнитные явления, и только теория относительности это сделала. Как она это «сделала», мы уже видели. Подобные декларации «процветают» на фоне парадоксов, так и не разрешенных релятивистами.

Рассмотрим замкнутую систему, состоящую из большого числа заряженных частиц, взаимодействующих между собой. Пусть эти частицы локализованы в некотором объеме V 0 . Обозначим положительный суммарный заряд всех положительно заряженных частиц через Q + , а отрицательно заряженных – через Q - . Необходимым условием квазинейтральности системы служит условие:

Q + + Q << Q +

Суммарный заряд квазинейтральной системы должен быть значительно меньше по абсолютной величине суммарного заряда всех положительно заряженных частиц.

Мы используем для построения функции Лагранжа квазинейтральной системы выражение

(3.1.1). Однако мы обобщим это выражение, взяв общую форму лагранжиана взаимодействия. Для i и k частиц запишем следующую функцию Лагранжа

v i 2 v k 2

L = m i + L ik (R ik ;v ik ) + m k ; L ik = L ki ; L ii = 0

2 2

Общий вид функции действия для квазинейтральной замкнутой консервативной системы можно записать в следующем виде [1], [3]:

N m iv i 2

S = ∫∑i =1 [ 2 + k i > L ik (R ik ;v ik )]dt (5.1.1)

Изучим свойства системы, описываемойдействием (5.1.1). Прежде всего, найдем уравнение движения для i -той частицы. Для этого найдем вариацию действия δS и обратим ее в нуль. Варьировать подынтегральное выражение мы будем при следующих условиях: мы будем менять координату i -той частицы Ri , полагая t и координаты других частиц фиксированными (постоянными). В результате мы получим следующую систему уравнений движения:

dm i v i N ⎛⎜ ∂L ik d L ik ⎟⎞⎟=∑N F ki (5.1.2)

=∑⎜∂R ik dt v ik k =1 dt k =1 ⎝

где: δR ik = δR i - δR k = δR i поскольку δR k постоянна; δv ik = δv i - δv k = δv i , поскольку δR k постоянна;

L ik d L ik

F ki = − =−F ik

R ik dt v ik

Из (5.1.2) видно, что третий принцип Ньютона выполняется, т.е. действие всегда равно противодействию. Более того, сила F ki оказывается инвариантной относительно преобразования Галилея, поскольку зависит от относительных величин v ik и R ik . Ниже мы обсудим содержание понятий «сила» и «работа», а сейчас найдем работу, совершаемую, i – частицей.

Умножим (2.2) на скорость i – частицы.

m i v i 2 N

dK i = d 2 =∑k =1 F ki v i dt i =1,2,..,N (5.1.3)

Это дифференциал кинетической энергии частицы при ее взаимодействии с другими частицами при условии, что все остальные частицы покоятся. Просуммируем (5.1.3) по индексу i .

N N N N N N N

dK = ∑dK i =∑∑F ki v i dt =∑∑F ki (v i v k )dt =∑∑F ki d R ik dt (5.1.4)

i =1 i =1 k =1 i =1 k >i i =1 k >i

Соотношение (5.1.4) показывает, что изменение кинетической энергии всех взаимодействующих частиц системы равно работе всех сил. Величина dK инвариантна относительно преобразования Галилея, т.е. не зависит от выбора инерциальной системы отсчета.

Время t можно рассматривать как четвертую координату частиц. Мы можем варьировать и эту координату. Наложим условие при варьировании t : положение i - частицы фиксировано (R i – const; v i = 0), а все остальные частицы перемещаются, но взаимодействуют только с i - частицей. Такое взаимодействие описывается следующей частной функцией Лагранжа

m iv i 2 N

L i = + L ik (R ik ;v ik ) L ii = 0 (5.1.5)

2 k =1

Найдем вариацию этой функции Лагранжа

dL i m iv i 2 N d N

δL i = δt =δ[ +∑L ik (R ik ;v ik )] = dt k =1 L ik δt dt 2 k =1

При выводе последнего выражения мы учли, что i – частица покоится. Продолжим преобразование, воспользовавшись уравнением движения для k - частицы (5.1.2) δL i =[∑k N =1 ⎛⎜⎜⎝ ∂∂R L ikki v + ∂∂v L ikki d v k t = k dt

d N L ik ⎫ ⎧ N ⎡ ∂L ik d L ik ⎤⎫

⎨⎩ ∑ ∂v ki v k ⎬⎭δt + ⎨⎩∑k =1 ⎣⎢∂R ki dt v ki ⎥⎦⎬⎭v k δt dt k =1

Перенесем полную производную в левую часть

d N L ik L ik N

L i −∑v ki v ki v k L i ⎬⎭=−∑k =1 F ik v k dt (5.1.6) dt k =1

Выражение (5.1.6) – это изменение потенциальной энергии i – частицы при ее взаимодействии с другими частицами, при условии что i – частица покоится, а остальные частицы перемещаются и взаимодействуют только с ней. Суммируя (5.1.6) по индексу i , получим полное изменение потенциальной энергии всех взаимодействующих частиц.

N N N N N N N

dE = ∑dE i = −∑∑F ik v k dt = −∑∑F ik (v k v i )dt = −∑∑F ik d R ki dt (5.1.7)

i =1 i =1 k =1 i =1 k >i i =1 k >i

Как и (5.1.4) соотношение (5.1.7) инвариантно относительно преобразования Галилея. Оно выражается через работу всех сил, действующих на заряды замкнутой квазинейтральной системы. Поэтому величину dA , равную dA =dK =−dE , мы назовем дифференциалом работы, а саму величину A – работой.

5.2 Работа и сила

Выясним теперь содержание понятий «сила» и «работа». Понятию «сила» можно дать в классической механике следующее определение:

«Сила – это свойство материального объекта (источника данного свойства), которое проявляется при взаимодействии материальных объектов и приводит к изменению состояния взаимодействующих объектов (импульс, траектория и др.) ».

• Отметим, что сила это свойство объекта, а не некий материальный объект. «Голой» силы, т.е. силы без источника, как свойства без объекта не бывает. Сила всегда имеет свой источник. Источниками сил могут быть самые разнообразные материальные объекты: заряд со своим полем, электромагнитная волна, которая несет с собой свое свойство – силовую характеристику, т.е. напряженность своего поля и т.д.

• Сила проявляется только во взаимодействии , т.е. во взаимном действии. Взаимность действия в классической механике отражается третьим принципом Ньютона. Для проявления силы необходимы, по крайней мере, два объекта, которые должны взаимодействовать.

• Очень важно, что сила зависит только от относительных величин: скоростей и расстояний. Положение субъекта-наблюдателя не влияет на силу взаимодействия. Как нами ранее было установлено, сила инвариантна относительно преобразования Галилея.

Работа является второй стороной (характеристикой) взаимодействия. Дадим следующее определение:

«Работа – объективная количественная характеристика качественного изменения движения материи, характеризующая энергетическую сторону взаимодействия ».

• Отметим, что работа связана не с движением объекта относительно наблюдателя, т.е. не с самим движением в системе отсчета наблюдателя, а с качественным измерением движения, рассматриваемым в любой фиксированной инерциальной системе отсчета.

Качественное изменение движенияв широком смысле есть переход одного вида энергии в другой, от одного материального объекта к другому.

• Работа – объективное понятие. Работа определяется в механике относительным движением материальных объектов, а также движение не зависит от положения наблюдателя. Это определяет инвариантность работы относительно преобразования Галилея, т.е. независимость работы от волевого выбора наблюдателем инерциальной системы отсчета.

Если сопоставить эти понятия с соответствующими понятиями в теории относительности

Эйнштейна, заметно принципиальное концептуальное различие. Интерпретация понятий

«работа» и «сила» в этой теории не соответствует содержанию этих понятий в ньютоновской механике.

Ниже мы рассмотрим примеры, чтобы объяснить характерные гносеологические ошибки, которыми насыщена современная физика.

Первый пример. Рассмотрим два взаимодействующих тела. Уравнения движения этих тел имеют вид:

d v 1 d v 2

m 1 = F 12 и m 2 = F 21 (5.2.1) dt dt

Вычислим дифференциал работы.

dA =F 12 (v 1 v 2 )dt =F 12 d R 12 =F 21 d R 21 (5.2.2)

Работа, которую совершает каждая частица, равна

m 2 m 1

dA 1 = F 12 d R 12 и dA 2 = F 12 d R 12 (5.2.3) m 1 + m 2 m 1 + m 2

Часто в учебниках можно встретить следующее выражение для работы, совершаемой телами:

~ ~

dA = F v dt и dA = F v dt (5.2.4)

12 1 21 2

Выражение (5.2.4) может считаться правильным, если источники сил F 12 и F 21 покоятся в системе отсчета наблюдателя одновременно (δR 1 = 0; δR 2 = 0). Однако это невозможно.

Выражение (5.2.4) можно рассматривать как стандартную гносеологическую ошибку. Сила всегда является свойством взаимодействующего тела. Это свойство ошибочно отрывают от частицы и превращают в некую самостоятельную субстанцию, которая покоится в системе отсчета наблюдателя. В результате такого подхода появляется «работа», которая зависит от субъективного выбора наблюдателем инерциальной системы отсчета (см. Парадокс рычага в Главе 3). Ее нельзя рассматривать как реальную, действительную работу [3].

В научной литературе [4] можно прочитать, что

mv 2 dA = d = e vE dt (5.2.5)

2

Выражение (5.2.5) справедливо только при условии, что источник поля E покоится в системе отсчета наблюдателя. В общем случае это выражение неверно, поскольку движение источника электрического поля не учитывается. К сожалению, до настоящего времени эта кажущаяся работа фигурирует в физике как объективное понятие (см. Приложение 3).

Второй пример. Здесь мы рассмотрим функцию Гамильтона, используемую в современной физике [4]. В классической механике малых скоростей (v << c ) функция Лагранжа для заряда в электромагнитном поле равна:

m v 2

L = + e vA e φ (5.2.6)

2

В этом приближении импульс частицы равен p = m v = P e A (5.2.7) и функцию Гамильтона записывают в следующей форме

1 2

H = (P e A ) + e φ (5.2.8)

2m

Такой гамильтониан широко используется в современной физике. Из уравнения (5.2.7) следует, что фактически функция H равна

m v 2

H = + e φ (5.2.9)

2

Векторный потенциал A исчез из выражения (5.2.8). Таким образом, выражение (5.2.8) есть фикция (подлог, если хотите).

Обычно молчаливо предполагается, что в (5.2.8) векторный потенциал A не зависит от движения заряда. Однако это неверно. Мы вычисляем A в точке, где движущийся заряд находится в данный момент. Движущийся заряд проходит поочередно точки с различными значениями A . Следовательно, потенциал A в точках нахождения заряда может меняться и зависеть от положения заряда и скорости его движения в поле. Обобщенный импульс должен быть равен

L A

P = = m v + e A + e ( v ) (5.2.10)

v v

Соответственно, и функция Гамильтона должна иметь вид:

m v 2 A

H = + e φ+ e v ( v ) (5.2.11)

2 ∂v

Например, функция Гамильтона для квазинейтральной системы QS равна

φ (v i v k )2

H =2 ]} (5.2.12)

k =1 2 ik 2 2c

Она также инвариантна относительно преобразования Галилея. Относительные скорости используется в физике, ошибочно.движения зарядов (и, как следствие, магнитные взаимодействия) сохраняются в выражении (5.2.12). Можно утверждать, что выражение (5.2.8), которое широко

5.3 Законы сохранения

Запишем теперь законы сохранения, вытекающие из (5.1.1). Мы не будем воспроизводить промежуточные результаты, поскольку существуют стандартные способы получения законов сохранения (первых интегралов), изложенные в любом учебнике по теоретической механике.

1 В силутого, что функция Лагранжане зависит явно от времени (инвариантна относительно преобразования t = t ‘ + t 0 , где t 0 - const) имеет место закон сохранения

N m iv i 2 N N L ik

энергии E = ∑ +∑∑( v ik L ik ) = const (5.3.1)

i =1 2 i =1 k >i v ik

2 Закон сохранения импульса вытекает из инвариантности функции Лагранжа относительно преобразования R = R’ + R 0 , где R 0 – const.

N L N N L ik N

P = i =1 v i =( i =1 m i v i + k =1 v i ) = i =1 m i v i = const (5.3.2)

3 Из инвариантности функции Лагранжа относительно вращений пространственных координат R = R 0 +[R 0 ×d ϕ], где R 0 – постоянен, а d ϕ - угол поворота, следует закон сохранения момента импульса M =∑i N =1 ⎛⎜ ⎝[m i R i ×v i ]+∑k N >i [R ik × v L ik ik = const (5.3.3)

4 Из инвариантности функции Лагранжа относительно преобразования Галилея следует, что центр инерции замкнутой системы, определяемый выражением

N N

R c = ∑m i R i /∑m i движется относительно наблюдателя с постоянной скоростью

i