Главная              Рефераты - Физика

Реконструкция тепловых сетей котельной ОАО НарьянМарстрой - дипломная работа

Федеральное агентство по образованию

(Рособразование)

Архангельский государственный технический университет

Кафедра электротехники и энергетических сетей

Левашов Алексей Владимирович

Дипломный проект

Реконструкция тепловых сетей котельной ОАО «Нарьян–Марстрой»

Реферат

Данный дипломный проект состоит из: пояснительной записки, которая представлена на 90 листах и включает в себя четыре части, 11 рисунков, 21 таблица; и графической части, которая представлена на трех листах формата А1и одном листе формата А0.

В вводной части проекта рассказывается о предприятии в целом его виде деятельности, и о котельной данного предприятия. Также идет краткий рассказ о планах дипломного проекта и его задачах.

В первой, тепловой, части кратко описывается схема тепловой сети, просчитываются нагрузки отопления, гидравлический и расчёт изоляции трубопроводов, подбор сетевых насосов котельной, подбор основного оборудования тепловых пунктов.

Вторая, электрическая, часть включает в себя подбор кабельных линий.

В третьей части говорится о охране труда и технике безопасности на предприятии при работе с электроустановками и котлоагрегатами.

В четвертой части рассмотрены гражданская оборона и действие населения при возникновении чрезвычайных ситуаций.

В заключении приведены выводы по данному дипломному проекту.


Содержание

Введение

1 Теплоснабжение от котельной ОАО «Нарьян-Марстрой»

1.1. Краткая техническая характеристика оборудования

1.1.1 Техническая характеристика котлов

1.1.2 Устройство и работа котлоагрегата

1.1.3 Устройство и работа автоматики

1.2 Расчёт теплопотерь отапливаемых помещений

1.3 Гидравлический расчёт тепловой сети

1.4 Подбор центробежного насоса

1.5 Выбор схемы присоединения потребителей ГВС микрорайона

1.6 Расчёт тепловой изоляции трубопроводов

1.7 Построение температурного графика

1.8 Выбор теплообменников на нужды ГВС

1.8.1 Тепловой расчёт

1.8.2 Гидравлический расчёт

2.Электроснабжение жилого микрорайона

2.1 Описание схемы электроснабжения жилого микрорайона

2.2 Определение расчетных нагрузок жилого массива

2.3 Определение центра электрических нагрузок

2.4.Выбор числа, сечения и марки кабельных линий

2.5Технико–экономические расчёты

2.6 Выбор числа и мощности трансформаторов

2.7 Компенсация реактивной мощности

2.8 Защита элементов системы электроснабжения на напряжение до 1 кВ

3.Охрана труда и техника безопасности

3.1 Общие требования

3.2 Присоединение электроустановок к энергосистеме

3.3 Передача электроустановок в эксплуатацию

3.4 Заземление и защитные меры электробезопасности

3.5 Указание мер безопасности при работе с котлоагрегатом

3.6 Инструкция по безопасной и эффективной эксплуатации котлов на газовом топливе

4. Гражданская оборона и мероприятия при ЧС

4.1 Действия населения в зоне радиоактивного заражения

4.2 Действие населения в зоне химического заражения

4.3 Действия населения в очаге бактериологического поражения

Заключение

Список используемых источников

Введение

«Нарьян–Марское строительное монтажное управление» создано 20 марта 1967 года приказом №60 «Главархстрой» для промышленного и гражданского строительства в районе крайнего севера. С 1 января 1993 года преобразовано в «Открытое акционерное общество Нарьян-Марстрой». Но, не смотря на все трудности, оно по-прежнему выполняет поставленные задачи. ОАО «Нарьян-Марстрой» одно из важнейших предприятий города Нарьян-Мара, оно единственное предприятие занимающееся строительством, которое имеет в своём руководстве только жителей г. Нарьян-Мара. На предприятии занято более 500 человек, что составляет 1,25% от числа жителей города.

ОАО «Нарьян-Марстрой» подчиняется непосредственно Генеральному директору Савальскому Александру Сергеевичу

В своей работе предприятие руководствуется Трудовым кодексом РФ,СНиПами, и другими не маловажными документами.

Производственные мощности предприятия представлены автомобильной техникой общестроительного назначения, цехами позволяющие производить строительные материалы для нулевого цикла застройки, котельной. Котельная помимо отопления базы ОАО «Нарьян-Марстрой», отапливает жилой микрорайон. Ремонт теплосетей отопления, ГВС и внутридомовой разводки производит ЖЭУ, подразделение ОАО «Нарьян-Марстрой».

Строительная компания в целом выполняет такие наиважнейшие функции как:

- строительство объектов социального значения

- строительство жилых объектов

- обслуживание и ремонт объектов жилого микрорайона

- отопление жилого микрорайона


1 Теплоснабжение ОАО «НАРЬЯН-МАРСТРОЙ»

1.1 Краткая техническая характеристика оборудования

1.1.1 Техническая характеристика котлов

В котельной ОАО «Нарьян-Марстрой» установлены 3 водогрейных котла типа «КВ-4-115ГМ», предназначенных для теплоснабжения жилых, общественных и промышленных зданий с абсолютным давлением воды в системе не выше 1,0 МПа (10 кгс/см2 ) и максимальной температурой нагрева воды 115 о С.

Все котлы на газовом топливе низкого давления (300 – 350 кгс/м2 ), поступаемого от ГРП, расположенного вне помещения котельной. Низшая теплота сгорания газа 7871 ккал/м3 .

Таблица 2. Технические характеристики котла

Номинальная тепловая производительность, МВт 4,65
Вид топлива Газ
Рабочее давление воды, МПа 0,6
Температурный режим, єС 70 – 95
Гидравлическое сопротивление, МПа 0,13
Диапозон регулирования теплопроизводительности по отношению к номинальной, % 40….100
Масса металла котла, кг 8100
Длина, мм (без горелочного устройства) 4800
Ширина, мм 3150
Высота, мм (без арматуры) 3665
Расход воды, т/ч 160
Расход топлива (газ), м3 497,2
Расход воздуха, м3 /с (м3 /ч) 1,4 (5020)
Средняя наработка на отказ, ч, не менее 5000
Средний срок службы до списания, лет 10
КПД котла, % не менее, газ 93,3
Удельный выброс оксида азота, мг/м3 230
Температура наружной (изолированной) поверхности нагрева котла, єС 45
Температура уходящих газов, єС 150
Расчетное аэродинамическое сопротивление, Па 59,3
Лучевоспринимающая поверхность нагрева, м2 33,4
Конвективная поверхность нагрева, м2 113

1.1.2 Устройство и работа котлоагрегата

Состав и устройство:

Котлы выполнены в газоплотном исполнении, имеют горизонтальную компоновку, состоят из топочной камеры и конвективного газохода.Топочная камера, имеющая горизонтальную компоновку, экранирована трубами Ш60х3 с шагом 90мм, входящими в коллекторы Ш159х4,5 мм. Конвективная поверхность нагрева состоит из U-образных ширм из труб Ш28х3 с шагом S1=64мм и S2=40 мм. Боковые стены конвективного газохода закрыты трубами Ш83х3,5 мм и являются одновременно стояками конвективных ширм.

Котлы могут быть оборудованы любыми зарубежными и отечественными газовыми горелками соответствующей производительности, имеющими соответствующие технические характеристики и сертификат соответствия Госстандарта РФ.

Несущий каркас у котлов отсутствует. Котлы имеют опоры, приваренные к нижним коллекторам. Изолируются теплоизоляционным материалом и поставляются в обшивке из металлического листа одним транспортабельным блоком . Котлы полностью автоматизированы, могут работать в режимах "большого" и "малого" горения, что позволяет экономить топливо. Рекомендуемый вентилятор для котла «КВ – 4– 115ГМ»

ВЦ 5 – 35 – 8В1 с мощностью 11кВт и частотой вращения 1450 об/мин., дымосос для данного котла не требуется. В комплект поставки котла входят горелки, взрывные клапана, лестницы и площадки, арматура и приборы контроля в пределах котла, воздуховоды, заготовки каркаса и др. Горелка устанавливается на воздушном коробе котла, который крепится на фронтовом экране к щиту. Котлы, работающие на мазуте, оборудуются устройством газоимпульсной очистки (ГИО) для удаления наружных отложений с труб конвективной поверхности нагрева. Газоимпульсная очистка основана на сжигании газовоздушной смеси в высокотурбулентном (взрывном) режиме с определенной частотой.

Принцип работы:

Обратная вода из системы поступает на входной коллектор в задней части котлоагрегата, и, разделяясь на два потока проходит по чугунным пакетам, выходит в перепускной коллектор и из него поступает в нижнюю часть передней водяной топочной камеры.

Из передней водяной топочной камеры по двум боковым стенкам параллельными потоками вода направляется в заднюю водяную камеру. Далее по своду топочной камеры воды проходит в верхнюю часть передней водяной камеры и через выходной патрубок поступает в систему, отопления.

Продукты сгорания, обогнув разделяющую пакеты и топку чугунную плиту, поступают из топочной камеры в пространство между чугунными пакетами и направляются к фронту котлоагрегата, где в поворотной камере разворачиваются на 180 о и двумя потоками входят в газоходы секций чугунных пакетов. Далее продукты сгорания через клапан газохода направляются в сборный боров котельной.

1.1.3 Устройство и работа автоматики

Для управления работой котлоагрегата «КВ-4-115ГМ» применена система автоматики АМКО—1, входящая в комплект газогорелочного блока Л1-Н.

Система автоматики предназначена для эксплуатации в котельной с температурой окружающего воздуха от +5 о С до +50 о С при его относительной влажности до 80 %.

Комплект автоматики АМКО—1 состоит из: блока управления розжига и сигнализации БУРС—1, отсекающих газовых клапанов КГ—40 и КГ—70, работающих параллельно на линии подачи газа к горелке и клапана КГ—10, устанавливаемого на газовой линии запальника; электрогазового запальника ЭЗ; катушки зажигания Б—1; контрольного электрода КЭ для контроля пламени горелки; датчика нижнего и верхнего пределов давления воды на выходе из котлоагрегата — электромагнитного манометра — ЭКМ-1У;

датчика предельной температуры горячей воды в котлоагрегате — термометра электроконтактного ТПГ-СК; электромагнитного ТПГ-СК; электромагнитного исполнительного механизма, устанавливаемого на приводе воздушной заслонки горелки, а также двух датчиков — реле на пора и тяги ДНТ-100 для защиты по понижению разрежения и давления газа.

Кроме того, дополнительно к комплекту автоматики АМКО-К-1 используются приборы: электромагнит — для привода заслонки клапана газохода котлоагрегата; два реле напора ДН-250 — для защиты по понижению давления воздуха и повышению давления газа; пакетный выключатель — для подачи питания на котлоагрегат; магнитный пускатель — для включения вентилятора газогорелочного блока; предохранителя с плавкими вставками для защиты электродвигателя вентилятора от короткого замыкания; реле промежуточное для исключения повторного розжига запальника и усиления контактов.

В связи с тем, что основное количество приборов автоматики АМКО-К-1 и дополнительных приборов используется в газогорелочном блоке Л1-Н, все приборы, включая и те, которые устанавливаются на котлоагрегате, включены в комплект поставки блока Л1-Н.

В комплект поставки газогорелочного блока входят также электрические схемы принципиальная, соединений, функциональная и расположений, описание работы принципиальной схемы с учётом совместной работы блока Л1-Н и котлоагрегата.

Система автоматики обеспечивает автоматический розжиг газогорелочного блока Л1-Н, позиционное регулирование мощности и защиту котлоагрегата при следующих аварийных ситуациях:

1) Повышение температуры воды на выходе из котлоагрегата установленной на термометре ТПГ-СК в соответствии с отопительным графиком;

2) уменьшении разрежения в топке ниже 5...15 Па (0,5—1,5 кгс/м2 );

3) понижении давления воздуха перед газогорелочным блоком ниже 800 Па (80 кгс/м2 );

4) понижении давления воды на выходе из котлоагрегата ниже установленного на манометре ЭКМ-1У;

5) понижении давления газа перед газогорелочным блоком ниже 200 Па (20 кгс/см2 );

6) повышении давления воды выше установленного на манометре ЭКМ-1У;

7) погасании пламени газогорелочного блока;

8) исчезновении в целях автоматики.

Повторного автоматического запуска котлоагрегата при исчезновении аварийной ситуации не происходит. Повторный пуск, после выяснения причины аварии, производится обслуживающим персоналом.

В системе автоматики предусмотрена световая сигнализация, элементы которой сосредоточены на лицевой панели блока управления, розжига и сигнализации — БУРС-1. При нормальной работе котлоагрегата горят сигнальные лампочки «Напряжение» и «Нормальная работа».

При отключении котлоагрегата, вследствие возникновения аварийной ситуации, гаснет лампочка сигнализации нормальной работы и зажигается соответствующее табло, указывающее причину отключения.

Табло остается включенным, даже если параметр, отклонение от нормы которого послужило причиной аварии, достигает заданной величины. Кроме того на панели БУРС-1 загорается табло «Факела нет».

Регулирование мощности осуществляется общекотельным регулятором ПРП (позиционным регулирующим прибором).

Принцип регулирования, принятый в системе — трехпозиционный.

Регулятор ПРП рассчитан на работу с четырьмя котлоагрегатами, но может быть использован и в котельной с меньшим числом котлов. При этом порядок регулирования в котельной при снижении нагрузки следующий:

1) отключается 60 % топлива на первом котлоагрегате;

2) отключается 60 % топлива на втором котлоагрегате;

3) отключается 100 % топлива на первом котлоагрегате;

4) отключается 100 % топлива на втором котлоагрегате;

5) отключается 60 % топлива на третьем котлоагрегате;

6) отключается 100 % топлива на третьем котлоагрегате.

При увеличении нагрузки котельной любой котлоагрегат автоматически включается на полную мощность, если перед этим он работал на сниженной нагрузке.

Если тот или иной котлоагрегат в процессе регулирования общекотельного параметра был отключен, то автоматического его включения не происходит. Включать котлоагрегат в этом случае должен обслуживающий персонал.

1.2 Расчёт теплопотерь отапливаемых помещений

Основное назначение любой системы теплоснабжения состоит в обеспечении потребителей необходимым количеством теплоты требуемых параметров.

В системе централизованного теплоснабжения источник теплоты и теплоприёмники потребителей размещены раздельно, на значительном расстоянии, поэтому передача теплоты от источника до потребителей производится по тепловым сетям.

Тепловой режим в зависимости от назначения помещений может быть как постоянным, так и переменным.

Постоянный тепловой режим должен поддерживаться круглосуточно в течение всего отопительного периода в зданиях: жилых, производственных с непрерывным режимом работы, детских и лечебных учреждений, гостиниц и т.п. Для решения вопроса о необходимости устройства и мощности системы отопления сопоставляют величины теплопотерь (расхода теплоты) и теплопоступления в расчётном режиме (при максимальном дефиците теплоты).

Потери теплоты помещениями через ограждающие конструкции, учитываемые при проектировании систем отопления, разделяются условно на основные и добавочные. Их можно определить двумя способами: суммированием потерь теплоты через отдельные ограждающие конструкции и расчётом теплопотерь ограждающей конструкции всего здания в целом (по объёму).

Основные потери рассчитываются по формуле:

(1.1)

Потери теплоты через ограждающие конструкции котельной

Вт

где: q– удельная отопительная характеристика здания

β= 0.93 – коэффициент, учитывающий отличие температуры окружающего воздуха от температуры равной -300 С.

tв – расчётная температура внутреннего воздуха, принимаемая согласно ГОСТ 12.1.005-88 и нормам проектирования соответствующих зданий.

tнар – расчётная зимняя температура наружного воздуха, принимаемая в соответствии со СНиП 2.01.01-82

V– расчётный объём здания

Все расчёты сведены в таблицу 2.


Таблица 2. Теплопотери объектов теплосетей

Объект β V, мі q, т/(мі∙К) tвн, єС tнарС Q, Вт
1 Котельная ОАО "Нарьян-Марстрой" 0,93 1728 0,12 16 -37 9345
2 Столярные мастерские 0,93 1727 0,81 16 -37 65380
3 АБК №1 0,93 3888 0,50 20 -37 97650
4 Гараж №1 0,93 7744 0,58 10 -37 184277
5 Аккумуляторная 0,93 1996 0,81 16 -37 75563
6 ЗАО "Север ТЭК" 0,93 298 0,43 20 -37 6440
7 Ремонтный бокс 0,93 5726 0,58 16 -37 154837
8 Склад №2 0,93 612 0,81 16 -37 23169
9 Арматурно-бетонный цех 0,93 52506 0,65 16 -37 1244922
10 АБК №2 0,93 6520 0,44 18 -37 139354
11 Сторожка №2 0,93 53 0,70 16 -37 1720
12 АЗС 0,93 75 1,22 16 -37 4259
13 Сторожка №1 0,93 53 0,70 16 -37 1720
14 Склад №1 0,93 700 0,44 16 -37 14386
15 Гараж №2 0,93 790 0,81 10 -37 26319
16 ул. Рыбникова д. 55а 0,93 2073 0,62 20 -37 64173
№ п/п Объект β V, мі q, Вт/(мі∙К) tвн, єС tнар, єС Q, Вт
17 ул. Ленина д 56а 0,93 1835 0,63 20 -37 57877
18 ул. Ленина д 54а 0,93 1920 0,62 20 -37 59437
19 ул. Ленина д 52а 0,93 1944 0,62 20 -37 60180
20 ул. Ленина д 50а 0,93 1144 0,72 20 -37 41428
21 МДС №3 "Ромашка" корп. 1 0,93 1314 0,44 20 -37 29165
22 МДС №3 "Ромашка" корп. 2 0,93 1314 0,44 20 -37 29165
23 ул. Меньшикова д. 8 0,93 1951 0,62 20 -37 60396
24 ул. Меньшикова д. 6а 0,93 1877 0,70 20 -37 65780
25 ул. Ленина д. 52б 0,93 1904 0,62 20 -34 58941
26 ул. Меньшикова д. 8б 0,93 1951 0,62 20 -37 60396
27 ул. Меньшикова д. 10б 0,93 1410 0,67 20 -37 47767
28 Промежуточная перекачивающая станция 0,93 53 1,22 10 -37 2649
29 КНС 0,93 189 1,22 16 -37 10733
30 ул. Меньшикова д. 11 0,93 12333 0,44 20 -37 273734
31 ул. Меньшикова д. 11а 0,93 1832 0,62 20 -37 56712
32 ул. Меньшикова д. 13 0,93 11557 0,44 20 -37 256511
33 ул. Меньшикова д. 15 0,93 12596 0,44 20 -37 279572
34 ул. Меньшикова д. 15а 0,93 1832 0,62 20 -37 56712
35 ул. Меньшикова д. 20 0,93 8708 0,48 20 -37 208535
36 Спорткомплекс ОАО "Нарьян-Марстрой" 0,93 5243 0,64 20 -37 168430
37 Тепловой пункт №1 0,93 80 1,22 10 -37 3998
38 ул. Меньшикова д. 14 0,93 3656 0,56 20 -37 102500
39 ул. Меньшикова д. 12 0,93 3169 0,58 20 -37 92549
40 ул. Меньшикова д. 12а 0,93 3218 0,58 20 -37 93980
41 ул. Меньшикова д. 10а 0,93 11220 0,43 20 -37 242478
42 Тепловой пункт №2 0,93 1250 1,22 10 -37 62465
43 ул. 60лет СССР д. 1 0,93 4512 0,54 20 -37 121228
44 ул. 60лет СССР д. 3 0,93 4469 0,54 20 -37 120073
45 ул. 60лет СССР д. 5 0,93 2815 0,58 20 -37 82210
46 МДС №48 "Сказка" 0,93 6298 0,44 20 -37 134594
47 ул. 60лет СССР д. 9 0,93 15567 0,47 20 -37 363699
48 Магазин МУП "Нарьян-Марский хлебзавод" 0,93 156 0,44 20 -37 3462
49 ул. Ленина д 48 0,93 2462 0,62 20 -37 76215
50 ул. Ленина д 46 0,93 7000 0,52 20 -37 193829
51 ул. Ленина д 44 0,93 2164 0,64 20 -37 66405
52 База МУП "Нарьян-Марское А" 0,93 3669 0,58 16 -37 99214

1.3 Гидравлическийрасчёттепловойсети

Гидравлический расчёт является одним из важнейших разделов проектирования и эксплуатации тепловой сети.

В задачу гидравлического расчета входит определение диаметров трубопроводов и падение давления (напора). Для проведения гидравлического расчёта должны быть заданы схема и профиль тепловой сети, указаны размещение станции и потребителей и расчётные нагрузки. Схема тепловой сети определяется размещением источников теплоты по отношению к району теплового потребления, характером тепловой нагрузки потребителей и видом теплоносителя. Основные принципы, которыми следует руководствоваться при выборе схемы тепловой сети, - это надёжность и экономичность. При выборе конфигурации тепловых сетей следует стремиться к получению наиболее простых решений и наименьшей длины теплопроводов. Необходимо иметь в виду, что дублирование сетей приводит к значительному возрастанию их стоимости и расхода материалов и в первую очередь стальных трубопроводов.

На первом этапе гидравлического расчёта сети, при одинаковом падении давления между станцией и любым потребителем, необходимо выбрать линию, соединяющую станцию с наиболее удалённым потребителем. Она будет являться расчётной магистралью.

Расчет состоит из двух этапов: предварительного и поверочного.

Расчёт начинается с наиболее удалённого от источника теплоты участка.

Расход сетевой воды в магистралях и отводах:

(1.2)

где: Q– расчетная тепловая нагрузка, кВт;

c= 4187 Дж/кг°С – теплоемкость воды;

τ1 – температура воды в подающем трубопроводе, τ1 =95°С;

τ2 – температура сетевой воды в обратном трубопроводе, τ2 =70°С;

Для расчёта диаметра необходимо знать расход сетевой воды на участке G, и удельное линейное падение давления Rл . Для расчета магистрали принимаем Rл =80 Па/м. При расчете ответвлений следует учитывать, что Па/м. Расчет ведем по равенству потерь давления в ответвлениях и соответствующих участках магистрального трубопровода.

Предварительный расчёт диаметров производится по формуле 5.16[1]

; (1.3)

где: - постоянный коэффициент, зависящий от абсолютной шероховатости, при kэ =0,0005 м, по табл.5.1[1]

В проверочном расчете предварительно рассчитанный диаметр округляется до ближайшего стандартного. По принятому стандартному диаметру определяем удельное линейное падение давления. Рассчитываем долю местных потерь, а затем полное падение давления на расчетном участке

(1.4)где: - постоянный коэффициент, зависящий от абсолютной шероховатости, по табл.5.1[1]

dст – стандартный диаметр трубопровода.

Падение давления на расчётном участке в подающей или обратной магистрали определяется по формуле:


(1.5)

где: ΔР – падение давления на участке трубопровода, Па;

l– длина участка трубопровода, м.

– коэффициент местных сопротивлений

Для построения пьезометрического графика находим потери напора:

(1.6)

где: ρ =970,18 – плотность воды, кг/м3 при tср =82,5єС;

Величина Σ∆Н показывает суммарные потери от источника до данного участка.

Результаты расчета приведены в таблице 3.


Таблица 3.Гидравлический расчёт

№ участка Q ,кВт G, кг/с dвн, m d`в, mm d`о, mm d`н, mm Rл` Па/м L, m Σξ ΔP,кПа ΔН, м ΣΔH, м
Магистральный трубопровод жилого микрорайона
1 99,21 0,95 0,050 51 50 57 74,63 249 0,034 19,215 2,019 10,154
2 372,72 3,56 0,082 82 80 89 87,04 30 0,066 2,784 0,292 8,135
3 439,13 4,20 0,088 82 80 89 120,82 51 0,072 6,604 0,694 7,843
4 806,90 7,71 0,111 125 125 133 44,60 151 0,097 7,389 0,776 7,149
5 1150,70 10,99 0,127 125 125 133 90,71 19 0,116 1,923 0,202 6,373
6 1527,77 14,60 0,141 150 150 159 61,39 16 0,134 1,114 0,117 6,170
7 1609,98 15,38 0,144 150 150 159 68,18 73 0,137 5,660 0,595 6,053
8 1720,27 16,43 0,147 150 150 159 77,84 42 0,142 3,733 0,392 5,459
9 1906,80 18,22 0,153 150 150 159 95,64 65 0,149 7,145 0,751 5,066
10 3397,12 32,45 0,191 207 200 219 55,96 225 0,199 15,101 1,587 4,316
11 3654,62 34,91 0,196 207 200 219 64,76 239 0,207 18,680 1,963 2,729
12 4076,12 38,94 0,205 207 200 219 80,56 65 0,218 6,380 0,670 0,766
13 4141,51 39,57 0,206 207 200 219 83,17 9 0,220 0,913 0,096 0,096
Ответвление А
14 47,77 0,46 0,038 40 40 45 61,93 66 0,024 4,184 0,440 5,669
15 106,10 1,01 0,051 51 50 57 85,34 7 0,035 0,618 0,065 5,229
16 147,52 1,41 0,058 51 50 57 165,00 80 0,042 13,748 1,445 5,164
№ участка Q ,кВт G, кг/с dвн, m d`в, mm d`о, mm d`н, mm Rл` Па/м L, m Σξ ΔP,кПа ΔН, м ΣΔH, м
17 210,73 2,01 0,066 70 70 76 63,85 54 0,050 3,619 0,380 3,719
18 273,77 2,62 0,073 70 70 76 107,77 54 0,057 6,149 0,646 3,339
19 335,25 3,20 0,079 82 80 89 70,42 59 0,063 4,415 0,464 2,693
20 403,03 3,85 0,085 82 80 89 101,78 128 0,069 13,922 1,463 2,229
Ответвление Б
21 208,65 1,99 0,066 70 70 76 62,60 153 0,049 10,051 1,056 7,879
22 488,22 4,66 0,091 100 100 108 52,69 63 0,076 3,570 0,375 6,823
23 744,73 7,11 0,107 100 100 108 122,60 40 0,093 5,362 0,563 6,448
24 1479,58 14,13 0,139 125 125 133 149,97 88 0,132 14,933 1,569 5,885
Ответвление В
25 64,00 0,61 0,042 40 40 45 111,19 45 0,027 5,140 0,540 4,771
26 126,55 1,21 0,055 51 50 57 121,41 47 0,038 5,926 0,623 4,231
27 195,82 1,87 0,065 70 70 76 55,14 74 0,048 4,275 0,449 3,608
28 259,70 2,48 0,072 70 70 76 96,98 40 0,055 4,093 0,430 3,159
Ответвление В1
29 56,71 0,54 0,040 40 40 45 87,30 40 0,026 3,582 0,376 6,753
30 225,14 2,15 0,068 70 70 76 72,89 6 0,051 0,460 0,048 6,376
№ участка Q ,кВт G, кг/с dвн, m d`в, mm d`о, mm d`н, mm Rл` Па/м L, m Σξ ΔP,кПа ΔН, м ΣΔH, м
31 281,86 2,69 0,074 70 70 76 114,23 16 0,057 1,933 0,203 6,328
32 555,59 5,31 0,096 100 100 108 68,23 31 0,081 2,286 0,240 6,125
Ответвление Г
33 92,55 0,88 0,049 51 50 57 64,94 54 0,033 3,622 0,381 5,678
34 186,53 1,78 0,063 70 70 76 50,03 42 0,047 2,199 0,231 5,298
Ответвление Д
35 102,50 0,98 0,050 51 50 57 79,65 47 0,035 3,873 0,407 7,399
36 223,73 2,14 0,068 70 70 76 71,97 53 0,051 4,010 0,421 6,992
37 343,80 3,28 0,080 82 80 89 74,06 24 0,063 1,890 0,199 6,571
Ответвление Е
38 29,16 0,28 0,031 40 40 45 23,09 17 0,018 0,400 0,042 5,560
39 58,33 0,56 0,041 40 40 45 92,35 29 0,026 2,748 0,289 5,518
Магистральный трубопровод базы ОАО "Нарьян-Марстрой"
40 4,27 0,04 0,015 14 15 18 122,71 112 0,007 13,841 1,454 3,891
41 1249,24 11,93 0,131 125 125 133 106,91 78 0,121 9,347 0,982 2,436
42 1671,48 15,97 0,146 150 150 159 73,49 8 0,140 0,670 0,070 1,266
43 1694,66 16,19 0,147 150 150 159 75,54 28 0,141 2,413 0,254 1,196
44 1835,97 17,54 0,151 150 150 159 88,66 61 0,147 6,201 0,652 0,942
№ участка Q ,кВт G, кг/с dвн, m d`в, mm d`о, mm d`н, mm Rл` Па/м L, m Σξ ΔP,кПа ΔН, м ΣΔH, м
45 1837,70 17,56 0,151 150 150 159 88,83 11 0,147 1,120 0,118 0,290
46 1968,65 18,81 0,155 150 150 159 101,94 14 0,152 1,644 0,173 0,173
Ответвление Ж
47 75,58 0,72 0,045 40 40 45 155,05 62 0,030 9,899 1,040 2,914
48 82,72 0,79 0,047 70 70 76 9,84 23 0,031 0,233 0,025 1,874
49 237,60 2,27 0,069 70 70 76 81,17 44 0,053 3,760 0,395 1,849
50 422,24 4,03 0,086 82 80 89 111,71 15 0,070 1,793 0,188 1,454
Ответвление З
51 1,73 0,02 0,011 14 15 18 20,21 26 0,005 0,528 0,055 1,731
52 141,31 1,35 0,057 51 50 57 151,38 29 0,041 4,569 0,480 1,676
Ответвление И
53 104,26 1,00 0,051 51 50 57 82,42 32 0,035 2,730 0,287 1,950
54 130,95 1,25 0,055 51 50 57 130,00 105 0,039 14,184 1,490 1,663
Отдельные участки
55 29,16 0,28 0,031 40 40 45 23,09 23 0,018 0,541 0,057 5,574
56 45,50 0,43 0,037 40 40 45 56,19 2 0,023 0,115 0,012 5,176
57 63,20 0,60 0,042 40 40 45 108,43 3 0,027 0,334 0,035 3,755
58 63,04 0,60 0,042 40 40 45 107,88 3 0,027 0,332 0,035 3,374
59 61,48 0,59 0,042 40 40 45 102,61 3 0,027 0,316 0,033 2,726
60 67,78 0,65 0,043 40 40 45 124,70 22 0,028 2,821 0,296 2,526
61 62,55 0,60 0,042 40 40 45 106,19 5 0,027 0,545 0,057 4,288
62 14,40 0,14 0,024 27 25 32 44,32 20 0,013 0,898 0,094 0,861
63 65,39 0,62 0,043 40 40 45 116,08 3 0,028 0,358 0,038 0,134
64 1,73 0,02 0,011 14 15 18 20,21 3 0,005 0,061 0,006 0,297
65 1244,97 11,89 0,130 125 125 133 106,18 5 0,121 0,595 0,063 2,499
66 139,57 1,33 0,057 51 50 57 147,69 3 0,040 0,461 0,048 1,724
67 23,18 0,22 0,029 33 32 38 40,05 3 0,016 0,122 0,013 1,208
68 154,84 1,48 0,059 51 50 57 181,76 5 0,043 0,947 0,100 1,949
69 7,14 0,07 0,018 21 20 25 40,74 5 0,009 0,206 0,022 1,896
70 184,64 1,76 0,063 70 70 76 49,02 5 0,046 0,256 0,027 1,481
71 26,68 0,25 0,030 33 32 38 53,06 3 0,018 0,162 0,017 1,680
72 70,66 0,68 0,044 40 40 45 135,54 3 0,029 0,418 0,044 3,652
73 63,89 0,61 0,042 40 40 45 110,78 3 0,027 0,341 0,036 3,195
74 242,48 2,32 0,070 70 70 76 84,54 124 0,053 11,042 1,160 7,331
75 92,55 0,88 0,049 51 50 57 64,94 3 0,033 0,201 0,021 5,319
76 10,75 0,10 0,021 21 20 25 92,35 26 0,011 2,428 0,255 4,571
77 279,57 2,67 0,074 70 70 76 112,39 54 0,057 6,416 0,674 6,799
78 56,71 0,54 0,040 40 40 45 87,30 17 0,026 1,522 0,160 6,488
79 66,40 0,63 0,043 40 40 45 119,69 15 0,028 1,845 0,194 8,037
80 193,83 1,85 0,064 70 70 76 54,02 17 0,048 0,962 0,101 8,236
81 3,46 0,03 0,014 14 15 18 80,55 10 0,006 0,811 0,085 8,220
82 364,40 3,48 0,082 82 80 89 83,20 4 0,065 0,355 0,037 7,186
83 76,22 0,73 0,045 40 40 45 157,67 98 0,030 15,913 1,672 9,807
84 134,59 1,29 0,056 51 50 57 137,34 62 0,040 8,853 0,930 7,101
85 120,07 1,15 0,054 51 50 57 109,30 3 0,037 0,340 0,036 6,607
86 82,21 0,79 0,046 51 50 57 51,24 25 0,031 1,321 0,139 6,192
87 121,23 1,16 0,054 51 50 57 111,42 3 0,038 0,347 0,036 7,029
88 110,29 1,05 0,052 51 50 57 92,22 3 0,036 0,287 0,030 5,489
89 256,51 2,45 0,072 70 70 76 94,61 3 0,055 0,299 0,031 6,480
90 279,57 2,67 0,074 70 70 76 112,39 30 0,057 3,564 0,375 7,198
91 179,26 1,71 0,062 70 70 76 46,20 2 0,046 0,097 0,010 5,895
92 168,43 1,61 0,061 70 70 76 40,79 17 0,044 0,724 0,076 6,452

Рис. 1 Схема тепловой сети котельной ОАО «Нарьян-Марстрой»

1. 4 Подбор центробежного насоса

С точки зрения создания циркуляции воды в замкнутом контуре, местоположение насоса безразлично. Однако циркуляционный насос рекомендуется включать в общую обратную магистраль системы отопления, что увеличивает срок службы насоса. В системе водяного отопления, как правило, устанавливается два циркуляционных насоса, включаемых поочерёдно. Таким образом, один насос всегда является резервным. Оба насоса снабжаются обводной линией с задвижкой для регулирования их работы и в случае выключения электроэнергии – для поддержания в системе естественной циркуляции воды.

Для подбора циркуляционного насоса необходимо знать требуемую его подачу и расчётное давление. Требуемая подача насоса , м3 /ч, определяется тепловой нагрузкой обслуживаемой системы отопления , Вт

Формула производительности центробежного насоса:

м3 /ч (1.7) м3


где: – расчетная тепловая нагрузка всего предприятия, Вт

Δt= 25 °С – разность охлажденной и горячей воды,

= 970,18 – плотность воды, кг/м3 при tср =82,5єС

Ср = 4,19 кДж/(кг К) – удельная теплоёмкость воды

3,6 – коэффициент перевода Вт в кДж/ч.

Проектная подача рабочих сетевых насосов, устанавливаемых на станции, должна соответствовать максимальному расходу воды в сети.

По Таблице V.14[1] выбираем 4 центробежных насоса «К 100-65-250 а (К)». Для удовлетворения нагрузки горячего водоснабжения в летний период целесообразно при закрытых системах теплоснабжения устанавливать на станции специальный насосный агрегат малой мощности.

После проведения всех расчётов приступаем к построению пьезометрического графика, на котором в определённом масштабе нанесены рельеф местности, высота присоединённых зданий, напор в сети; по нему легко определить напор (давление) и располагаемый напор (перепад давлений) в любой точке сети.

Рис. 2. Пьезометрический график магистрали жилого микрорайона с ответвлениями

Рис. 3 Пьезометрический график магистрали базы ОАО «Нарьян-Марстрой» с ответвлениями

1.5 Выбор схемы присоединения потребителей ГВС микрорайона.

В закрытых системах теплоснабжения установки горячего водоснабжения присоединяют к тепловой сети только через водо-водяные подогреватели, т.е. по независимой схеме. Преимуществом такого присоединения является то, что давление в местной системе горячего водоснабжения не зависит от давления в тепловой сети, а явным недостатком то, что оборудование абонентского ввода при зависимой схеме присоединения проще и дешевле.

Кроме того, при независимой схеме снижаются утечки сетевой воды и легче обнаружить возникающие в процессе эксплуатации повреждения в системе теплоснабжения.

Для современных жилых домов, характерно сочетание двух видов нагрузки – отопления и горячего водоснабжения. Принимаем к установке схему с зависимым присоединением отопительных приборов и с независимым (параллельным) присоединением абонентских установок ГВС.

На рис. № 2 показано параллельное присоединение на одном абонентском вводе горячего водоснабжения и отопительной установки. При такой схеме расход сетевой воды определяется арифметической суммой расходов воды на отопление и горячее водоснабжение.

Расход сетевой воды на отопление поддерживается постоянно на расчетном уровне регулятором расхода (1). Расход сетевой воды на горячее водоснабжение является резкопеременной величиной. Регулятор температуры (2) изменяет этот расход в зависимости от нагрузки ГВС.

Расчетный расход сетевой воды на горячее водоснабжение определяется по максимальному значению этой нагрузки и при минимальной температуре воды в подающем трубопроводе теплосети, поэтому суммарный расход сетевой воды получается несколько завышенным. Однако в нашем случае это наиболее удобный случай подключения абонентов ГВС с устройством индивидуального теплового пункта в подвальном помещении каждого дома.

1.6 Расчёт тепловой изоляции трубопроводов

Изоляция трубопровода предназначена для защиты наружной поверхности стального трубопровода от коррозии и теплопровода в целом от тепловых потерь. В зависимости от используемых материалов изоляционная конструкция теплопровода может выполняться как в виде одного элемента, так и в виде нескольких последовательно соединённых элементов, например нескольких наложенных друг на друга слоёв изоляции, каждый из которых выполняет отдельную задачу (антикоррозионную защиту, тепловую защиту, защиту изоляции от влаги).

Высокое теплосопротивление изоляционной конструкции, что практически означает низкий коэффициент теплопроводности изоляционного слоя, необходимо для снижения тепловых потерь теплопровода. Наиболее распространёнными теплопроводами являются подземные теплопроводы, которые можно разделить на две группы: канальные и бесканальные.

В канальных теплопроводах изоляционная конструкция и сам трубопровод разгружены от внешних нагрузок и воздействия грунта стенками канала, что обуславливает их широкое применение. Каналы для теплопроводов сооружаются из сборных железобетонных элементов, заранее изготовленных на заводах. Эти элементы укладываются в заранее подготовленные в грунте траншеи.

В общей изоляционной конструкции теплопровода важное место занимает тепловая изоляция. От качества изоляционной конструкции теплопровода зависят не только тепловые потери, но и его долговечность. При соответствующих качествах материала тепловая изоляция может выполнять роль антикоррозийной защиты наружной поверхности трубы. Так, основными требованиями для теплоизоляционных материалов являются низкий коэффициент теплопроводности и высокая температуроустойчивость. Такие материалы обычно характеризуются большим содержанием воздушных пор и малой объёмной плотностью.

Выбор теплоизоляционного материала и его размеров зависит от типа теплопровода и располагаемых исходных материалов и производится на основе технико-экономических расчётов.

Толщина изоляционного слоя определяется по формуле:

(1.8)где: dтр – наружный диаметр трубопровода

(1.9) (1.10)

где: – для канальной прокладки

– для надземной прокладки

– коэффициент теплопроводности ППУ

rw – термическое сопротивление трубы, если трубы металлические, rw =0

rtot – сопротивление теплопередачи на 1м длины изоляции при нормируемой плотности теплового потока

(1.11)

где: tw – температура теплоносителя

tl = 4,5 – температура окружающей среды(среднегодовая температура грунта)

tl = 1,5 – температура окружающей среды(среднегодовая температура воздуха)

ql – нормированный тепловой поток, берётся по СНиП 2 4.14 – 88

k1 = 0,85 – коэффициент, учитывающий район строительства, для непроходных каналов

k1 = 0,9 – для надземной прокладки каналов

rгр – термическое сопротивление грунта, для канальной прокладки

(1.12)где: h= 0,705м – высота канала

b= 1,32м – ширина канала

=1 Вт/м о С – коэффициент теплопроводности грунта

Н =1,8м – глубина залегания оси трубопровода

- термическое сопротивление воздуха в канале


где:

(1.13)

Расчёты сведены в таблицу 4.

На основании технических расчётов определяют предельную минимальную толщину тепловой изоляции. Вопрос о целесообразности увеличения толщины и повышения эффективности тепловой изоляции решается дополнительными технико-экономическими расчётами


Таблица 4 Расчёт тепловой изоляции

№ участка dвн, мм dн, мм d0 , мм Способ прокладки подающая линия обратная линия
ql rtot , (м∙о С)/Вт В δ, мм ql rtot , (м∙о С)/Вт В δ, мм
Магистральный трубопровод жилого микрорайона
1 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
2 82 89 80 в непроходном канале 21 3,67 1,97 43,22 14 4,10 2,17 52,00
3 82 89 80 в непроходном канале 21 3,67 1,97 43,22 14 4,10 2,17 52,00
4 125 133 125 в непроходном канале 26 2,96 1,70 46,87 18 3,19 1,79 52,69
5 125 133 125 в непроходном канале 26 2,96 1,70 46,87 18 3,19 1,79 52,69
6 150 159 150 в непроходном канале 27 2,85 1,67 53,33 19 3,02 1,73 58,37
7 150 159 150 в непроходном канале 27 2,85 1,67 53,33 19 3,02 1,73 58,37
8 150 159 150 в непроходном канале 27 2,85 1,67 53,33 19 3,02 1,73 58,37
9 150 159 150 в непроходном канале 27 2,85 1,67 53,33 19 3,02 1,73 58,37
10 207 219 200 надземная 37 2,06 1,55 60,74 30 1,92 1,51 55,67
11 207 219 200 надземная 37 2,06 1,55 60,74 30 1,92 1,51 55,67
12 207 219 200 в непроходном канале 33 2,34 1,50 54,78 23 2,50 1,55 60,76
13 207 219 200 в непроходном канале 33 2,34 1,50 54,78 23 2,50 1,55 60,76
Ответвление А
14 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
15 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
№ участка dвн, мм dн, мм d0 , мм Способ прокладки подающая линия обратная линия
ql rtot , (м∙о С)/Вт В δ, мм ql rtot , (м∙о С)/Вт В δ, мм
16 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
17 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
18 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
19 82 89 80 в непроходном канале 21 3,67 1,97 43,22 14 4,10 2,17 52,00
20 82 89 80 в непроходном канале 21 3,67 1,97 43,22 14 4,10 2,17 52,00
Ответвление Б
21 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
22 100 108 100 в непроходном канале 24 3,21 1,79 42,67 16 3,59 1,95 51,09
23 100 108 100 в непроходном канале 24 3,21 1,79 42,67 16 3,59 1,95 51,09
24 125 133 125 в непроходном канале 26 2,96 1,70 46,87 18 3,19 1,79 52,69
Ответвление В
25 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
26 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
27 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
28 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
Ответвление В1
29 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
№ участка dвн, мм dн, мм d0 , мм Способ прокладки подающая линия обратная линия
ql rtot , (м∙о С)/Вт В δ, мм ql rtot , (м∙о С)/Вт В δ, мм
30 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
31 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
32 100 108 100 в непроходном канале 24 3,21 1,79 42,67 16 3,59 1,95 51,09
Ответвление Г
33 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
34 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
Ответвление Д
35 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
36 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
37 82 89 80 в непроходном канале 21 3,67 1,97 43,22 14 4,10 2,17 52,00
Ответвление Е
38 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
39 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
Магистральный трубопровод базы ОАО "Нарьян-Марстрой"
40 14 18 15 в непроходном канале 12 6,42 3,47 22,27 7 8,21 5,14 37,30
41 125 133 125 надземная 27 2,82 1,83 55,36 22 2,62 1,75 50,09
42 150 159 150 надземная 30 2,54 1,72 57,60 24 2,40 1,67 53,52
№ участка dвн, мм dн, мм d0 , мм Способ прокладки подающая линия обратная линия
ql rtot , (м∙о С)/Вт В δ, мм ql rtot , (м∙о С)/Вт В δ, мм
43 150 159 150 надземная 30 2,54 1,72 57,60 24 2,40 1,67 53,52
44 150 159 150 надземная 30 2,54 1,72 57,60 24 2,40 1,67 53,52
45 150 159 150 надземная 30 2,54 1,72 57,60 24 2,40 1,67 53,52
46 150 159 150 надземная 30 2,54 1,72 57,60 24 2,40 1,67 53,52
Ответвление Ж
47 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
48 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
49 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
50 82 89 80 надземная 22 3,46 2,10 49,04 17 3,39 2,07 47,57
Ответвление З
51 14 18 15 в непроходном канале 12 6,42 3,47 22,27 7 8,21 5,14 37,30
52 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
Ответвление И
53 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
54 51 57 50 надземная 18 4,23 2,48 42,13 14 4,11 2,42 40,37
Отдельные участки
55 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
№ участка dвн, мм dн, мм d0 , мм Способ прокладки подающая линия обратная линия
ql rtot , (м∙о С)/Вт В δ, мм ql rtot , (м∙о С)/Вт В δ, мм
56 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
57 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
58 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
59 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
60 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
61 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
62 27 32 25 в непроходном канале 14 5,50 2,88 30,03 9 6,38 3,49 39,84
63 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
64 14 18 15 в непроходном канале 12 6,42 3,47 22,27 7 8,21 5,14 37,30
65 125 133 125 в непроходном канале 26 2,96 1,70 46,87 18 3,19 1,79 52,69
66 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
67 33 38 32 в непроходном канале 15 5,14 2,67 31,66 10 5,74 3,05 38,90
68 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
69 21 25 20 в непроходном канале 13 5,93 3,14 26,81 8 7,18 4,14 39,28
70 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
71 33 38 32 в непроходном канале 15 5,14 2,67 31,66 10 5,74 3,05 38,90
72 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90

№ участка dвн, мм dн, мм d0 , мм Способ прокладки подающая линия обратная линия
ql rtot , (м∙о С)/Вт В δ, мм ql rtot , (м∙о С)/Вт В δ, мм
73 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
74 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
75 51 57 50 в непроходном канале 17 4,53 2,36 38,66 11 5,22 2,74 49,66
76 21 25 20 в непроходном канале 13 5,93 3,14 26,81 8 7,18 4,14 39,28
77 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
78 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
79 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
80 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
81 14 18 15 в непроходном канале 12 6,42 3,47 22,27 7 8,21 5,14 37,30
82 82 89 80 в непроходном канале 21 3,67 1,97 43,22 14 4,10 2,17 52,00
83 40 45 40 в непроходном канале 16 4,82 2,50 33,65 11 5,22 2,73 38,90
84 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
85 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
86 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
87 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
88 51 57 50 в непроходном канале 17 4,53 2,36 38,66 12 4,79 2,49 42,53
89 70 76 70 в непроходном канале 20 3,85 2,05 39,72 13 4,42 2,32 50,02
90 70