Принцип работы СИЗОД. План-конспект по профессии рабочих, должности служащих «Пожарный» (курсовое обучение) - 2020 год

 

  Главная      МЧС

 

     поиск по сайту           правообладателям           

 

 

 

 

 

 

 

 

 

 

1        2          3       4  

 

 

 

 

Принцип работы СИЗОД. План-конспект по профессии рабочих, должности служащих «Пожарный» (курсовое обучение) - 2020 год

 

 

 

 
Главное управление Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий

 
УЧЕБНЫЙ ПУНКТ
 
 
 
 План-конспект
 
Для проведения занятия по дисциплине «Газодымозащитная служба»  со слушателями профессиональной подготовки по профессии рабочих,  должности служащих «Пожарный» (курсовое обучение).
 
Тема № 7.6: «Принцип работы СИЗОД».
 
 
Цели занятия: обучение слушателя.
 
Вид занятия: лекция.
 
Количество часов: 2 часа.
 
Место проведения: кабинет № 1.
 
Материальное обеспечение: плакаты, наглядное пособие, макет.
 
Используемая литература:
1.  Приказ МСЧ РФ № 3 от 09.01.2013 г. «Об утверждении Правил проведения личным составом ФПС ГПС аварийно – спасательных работ при тушении пожаров с использованием СИЗОД в непригодной для дыхания среде»;
2. Приказ МЧС РФ № 204 от 21.04.2016 г. «О техническом обслуживании, ремонте и хранении СИЗОД».
3. Методические рекомендации по подготовке личного состава ГДЗС ФПС МЧС России от 30.06.2008 г.;
4. Методические указания по проведению расчётов параметров работы в СИЗОД от 19.08.2013 г.
 
 
 
 
 
План – конспект рассмотрен на заседании педагогического
совета
протокол № ___ от «___» _____________ 20__ г.
 
 
 
 
 
Ход занятия и расчет учебного времени
 
1. Вводная часть(рапорт, проверка наличия личного состава, внешнего вида, заполнение журнала. 5 мин.
2. Закрепление ранее изученного материала путем опроса. 5 мин.
3. Подведение итогов опроса. 3 мин.
4. Логический переход к изучению нового материала.
5. Изложение нового материала.
 
 
 
 
 
В последнее время дыхательные аппараты со сжатым воздухом (ДАСВ) завоевывают все большее признание у работников пожарной охраны.
Дыхательным аппаратом со сжатым воздухом называется изолирующий резервуарный аппарат, в котором запас воздуха хранится в баллонах с избыточном давлении в сжатом состоянии. Дыхательный аппарат работает по открытой, схеме дыхания, при которой на вдох воздух поступает из баллонов, а выдох производится в атмосферу.
Дыхательные аппараты со сжатым воздухом предназначены для защиты органов дыхания и зрения пожарных от вредного воздействия непригодной для дыхания, токсичной и задымленной газовой среды при тушении пожаров и выполнении аварийно-спасательных работ.
Воздухоподающая система обеспечивает работающему в аппарате пожарному импульсную подачу воздуха. Объема каждой порции воздуха зависит от частоты дыхания и величины разряжения на вдохе.
Воздухоподающая система аппарата состоит их легочного автомата и редуктора, может быть одноступенчатой, безредукторной и двухступенчатой. Двухступенчатая воздухоподающая система может быть выполнена из одного конструкционного элемента, объединяющего редуктор и легочный автомат или раздельно.
Дыхательные аппараты в зависимости от климатического исполнения подразделяются на дыхательные аппараты общего назначения, рассчитанные на применение при температуре окружающей среды от -40 до +60°С, относительной влажности до 95% и специального назначения, рассчитанные на применение при температуре окружающей среды от -50 до +60°С, относительной влажности до 95%.
Все дыхательные аппараты применяемые в пожарной охране России, должны соответствовать требованиям предъявляемым к ним НПБ 165-97 "Техника пожарная. Дыхательные аппараты со сжатым воздухом для пожарных. Общие технические требования и методы испытаний".
Дыхательный аппарат должен быть работоспособным в режимах дыхания, характеризующихся выполнением нагрузок: от относительного покоя (легочная вентиляция 12,5 дм3/мин) до очень тяжелой работы (легочная вентиляция 85 дм3/мин), при температуре окружающей среды от -40 до +60°С, обеспечивать работоспособность после пребывания в среде с температурой 200°С в течение 60 с.
Аппараты выпускаются фирмами изготовителями в различных вариантах исполнения.
В комплект дыхательного аппарата входят:
дыхательный аппарат;
спасательное устройство (при его наличии);
комплект ЗИП;
эксплуатационная документация на ДАСВ (руководство по эксплуатации и паспорт);
эксплуатационная документация на баллон (руководство по эксплуатации и паспорт);
инструкция по эксплуатации лицевой части.
Общепринятым рабочим давлением в отечественных и зарубежных ДАСВ, является 29,4 МПа.
Суммарная вместимость баллона (при легочной вентиляции 30 л/ мин), должна обеспечить условное время защитного действия (УВЗД) не менее 60 минут, а масса ДАСВ должна быть не более 16 кг при УВЗД 60 мин и не более 17,5 кг при УВЗД 120 мин.
В состав ДАСВ обычно входят баллон (баллоны) с вентилем (вентилями); редуктор с предохранительным клапаном; лицевая часть с переговорным устройством и клапаном выдоха; легочный автомат с воздуховодным шлангом; манометр со шлангом высокого давления; звуковое сигнальное устройство; устройство дополнительной подачи воздуха (байпас) и подвесная система.
В состав аппарата, входят: рама или спинка с подвесной системой, состоящей из ремней плечевых, концевых и поясного, с пряжками для регулировки и фиксации дыхательного аппарата на теле чело-века, баллон с вентилем, редуктор с предохранительным клапаном, коллектор, разъем, легочный автомат с воздуховодным шлангом, лицевая часть с переговорным устройством и клапаном выдоха, капилляр с звуковым сигнальным устройством и манометр со шлангом высокого давления, проставка, устройство спасательное.
В современных аппаратах кроме того применяются следующие устройства: перекрывное устройство магистрали манометра; спасательное устройство, подключаемое к дыхательному аппарату; штуцер для подключения спасательного устройства или устройства искусственной вентиляции легких; штуцер для быстрой дозаправки баллонов воздухом; предохранительное устройство, располагаемое на вентиле или баллоне для предотвращения повышения давления в баллоне выше 35,0 МПа, световые и вибрационные сигнальные устройства, аварийный редуктор, компьютер.
В комплект дыхательного аппарата входят:
дыхательный аппарат;
спасательное устройство (при его наличии);
комплект ЗИП;
эксплуатационная документация на дыхательный аппарат (руководство по эксплуатации и паспорт);
эксплуатационная документация на баллон руководство по эксплуатации и паспорт);
инструкция по эксплуатации лицевой части.
Дыхательный аппарат выполнен по открытой схеме с выдохом в атмосферу и работает следующим образом:
При открытии вентиля (вентилей) воздух под высоким давлением поступает из баллона (баллонов) в коллектор (при его наличии) и фильтр редуктора, в полость высокого давления и после редуцирования в полость редуцированного давления. Редуктор поддерживает постоянное редуцированное давление в полости независимо от изменения давления на входе.
В случае нарушения работы редуктора и повышения редуцированного давления срабатывает предохранительный клапан 6.
Из полости редуктора воздух поступает в адаптер (при его наличии), по шлангу в легочный автомат, в муфту и через клапан по шлангу в легочный автомат спасательного устройства.
Легочный автомат обеспечивает поддержание заданного избыточного давления в полости. При вдохе воздух из полости легочного автомата подается в полость маски. Воздух, обдувая стекло, препятствует его запотеванию. Далее через клапаны вдоха воздух поступает в полость для дыхания.
При выдохе клапаны вдоха закрываются, препятствуя попаданию выдыхаемого воздуха на стекло. Для выдоха воздуха в атмосферу открывается клапан выдоха, расположенный в клапанной коробке. Клапан выдоха с пружиной позволяет поддерживать в подмасочном пространстве заданное избыточное давление.
Для контроля за запасом воздуха в баллоне воздух из полости высокого давления поступает по капиллярной трубке высокого давления в манометр, а из полости низкого давления по шлангу к свистку сигнального устройства. При исчерпании рабочего запаса воздуха в баллоне включается свисток, предупреждающий звуковым сигналом о необходимости немедленного выхода в безопасную зону.
Аппарат дыхательный со сжатым воздухом АИР-98МИ предназначен для защиты органов дыхания и зрения человека от вредного воздействия непригодной для дыхания, токсичной и задымленной газовой среды при тушении пожаров и выполнении аварийно-спасательных работ в зданиях, сооружениях и на производственных объектах в диапазоне температур окружающей среды от -40 до +60°С и пребывании в среде с температурой 200°С в течение 60 с. Основные технические характеристики аппарата и его модификаций приведены в табл. 5.4.
Аппарат выполнен по открытой схеме (рис. 5.11) с выдохом в атмосферу и работает следующим образом:
При открытии вентиля (вентилей) 1 воздух под высоким давлением поступает из баллона (баллонов) 2 в коллектор 3 (при его наличии) и фильтр 4 редуктора 5, в полость высокого давления А и после редуцирования в полость редуцированного давления Б. Редуктор поддерживает постоянное редуцированное давление в полости Б независимо от изменения давления на входе.
В случае нарушения работы редуктора и повышения редуцированного давления срабатывает предохранительный клапан 6.
Из полости Б редуктора воздух поступает по шлангу 7 в легочный автомат 11 или в адаптер 8 (при его наличии) и далее по шлангу 10 в легочный автомат 11. Через клапан 9 подсоединяется спасательное устройство.
Легочный автомат обеспечивает поддержание заданного избыточного давления в полости Д. При вдохе воздух из полости Д легочного автомата подается в полость В маски 13. Воздух, обдувая стекло 14, препятствует его запотеванию. Далее через клапаны вдоха 15 воздух поступает в полость Г для дыхания.
При выдохе клапаны вдоха закрываются, препятствуя попаданию выдыхаемого воздуха на стекло. Для выдоха воздуха в атмосферу открывается клапан выдоха 16, расположенный в клапанной коробке 17. Клапан выдоха с пружиной позволяет поддерживать в подмасочном пространстве заданное избыточное давление.
Для контроля за запасом воздуха в баллоне воздух из полости высокого давления А поступает по капиллярной трубке высокого давления 18 в манометр 19, а из полости низкого давления Б по шлангу 20 к свистку 21 сигнального устройства 22. При исчерпании рабочего запаса воздуха в баллоне включается свисток, предупреждающий звуковым сигналом о необходимости немедленного выхода в безопасную зону.
Прототипом всех современных кислородных изолирующих противогазов является дыхательный аппарат "Аэрофор" со сжатым кислородом, созданный в 1853 г. в Бельгии в Льежском университете. С того времени многократно менялись тенденции развития КИП и улучшались их технические данные. Однако принципиальная схема аппарата "Аэрофор" сохранилась до настоящего времени.
Применяемые для работы в подразделениях ГПС МЧС России КИПы, должны соответствовать по своим характеристикам, требованиям, предъявляемым к ним в соответствии с Нормами пожарной безопасности (НПБ) "Техника пожарная. Кислородные изолирующие противогазы (респираторы) для пожарных. Общие технические требования и методы испытаний".
Кислородный изолирующий противогаз (далее - аппарат) - регенеративный противогаз, в котором атмосфера создается за счет регенерации выдыхаемого воздуха путем поглощения из него двуокиси углерода и добавления кислорода из имеющегося в противогазе запаса, после чего регенерированный воздух поступает на вдох.
Противогаз должен быть работоспособным в режимах дыхания, характеризующихся выполнением нагрузок: от относительного покоя (легочная вентиляция 12,5 дм3/мин) до очень тяжелой работы (легочная вентиляция 85 дм3/мин) при температуре окружающей среды от -40 до +60°С, а также оставаться работоспособным после пребывания в среде с температурой 200°С в течение 60 с.
В состав противогаза должны входить:
корпус закрытого типа с подвесной и амортизирующей системой;
баллон с вентилем;
редуктор с предохранительным клапаном;
легочный автомат;
устройство дополнительной подачи кислорода (байпас);
манометр со шлангом высокого давления;
дыхательный мешок;
избыточный клапан;
регенеративный патрон;
холодильник;
сигнальное устройство;
шланги вдоха и выдоха;
клапаны вдоха и выдоха;
влагосборник и (или) насос для удаления влаги;
лицевая часть с переговорным устройством;
сумка для лицевой части.
В состав противогаза рекомендуется включать перекрывное устройство магистрали манометра и продувочное устройство.
Условное время защитного действия - период, в течение которого сохраняется защитная способность противогаза при испытании на стенде-имитаторе внешнего дыхания человека, в режиме выполнения работы средней тяжести (легочная вентиляция 30 дм3/мин) при температуре окружающей среды (25±1)°С (далее - ВЗД) противогаза для пожарных должно составлять не менее 4 ч.
Фактическое ВЗД противогаза - период, в течение которого сохраняется защитная способность противогаза при испытании на стенде-имитаторе внешнего дыхания человека в режиме от относительного покоя до очень тяжелой работы при температуре окружающей среды от -40 до +60°С., Лицевая часть, в качестве которой используется маска, служит для присоединения воздуховодной системы аппарата к органам дыхания человека. Воздуховодная система совместно с легкими составляет единую замкнутую систему, изолированную от окружающей среды. В этой замкнутой системе при дыхании, определенный объем воздуха совершает переменное по направлению движение между двумя эластичными элементами: самими легкими и дыхательным мешком. Благодаря клапанам указанное движение происходит в замкнутом циркуляционном контуре: выдыхаемый из легких воздух проходит в дыхательный мешок по ветви выдоха (лицевая часть, шланг выдоха, клапан выдоха, регенеративный патрон), а вдыхаемый воздух возвращается в легкие по ветви вдоха (холодильник, клапан вдоха, шланг вдоха, лицевая часть). Такая схема движения воздуха получила название круговой.
В воздуховодной системе происходит регенерация выдыхаемого воздуха, т.е. восстановление газового состава, который имел вдыхаемый воздух до поступления в легкие. Процесс регенерации состоит из двух фаз: очистки выдыхаемого воздуха от избытка углекислого газа и добавления к нему кислорода.
Первая фаза регенерации воздуха происходит в регенеративном патроне. Выдыхаемый воздух очищается в регенеративном патроне в результате реакции хемосорбции от избытка углекислого газа сорбентом. Реакция поглощения углекислого газа экзотермическая, поэтому из патрона в дыхательный мешок поступает нагретый воздух. В зависимости от вида сорбента проходящий по регенеративному патрону воздух также либо осушается, либо увлажняется. В последнем случае при дальнейшем его движении в элементах воздуховодной системы выпадает конденсат.
Вторая фаза регенерации воздуха происходит в дыхательном мешке, куда из кислородоподающей системы поступает кислород в объеме, несколько большем, чем потребляет его человек, и определяемом способом кислородопитания данного типа КИП.
В воздуховодной системе КИП происходит также кондиционирование регенерированного воздуха, которое заключается в приведении его температурно-влажностных параметров к уровню, пригодному для вдыхания воздуха человеком. Обычно кондиционирование воздуха сводится к его охлаждению.
Дыхательный мешок выполняет ряд функций и представляет собой эластичную емкость для приема выдыхаемого из легких воздуха, поступающего затем на вдох. Он изготовляется из резины или газонепроницаемой прорезиненной ткани. Для того, чтобы обеспечить глубокое дыхание при тяжелой физической нагрузке и отдельные глубокие выдохи, мешок имеет полезную вместимость не менее 4,5 л. В дыхательном мешке к выходящему из регенеративного патрона воздуху добавляется кислород. Дыхательный мешок является также сборником конденсата (при его наличии), в нем также задерживается пыль сорбента, которая в небольшом количестве может проникать из регенеративного патрона, происходит первичное охлаждение горячего воздуха, поступающего из патрона, за счет теплоотдачи через стенки мешка в окружающую среду. Дыхательный мешок управляет работой избыточного клапана и легочного автомата. Это управление может быть прямым и косвенным. При прямом управлении стенка дыхательного мешка посредственно или через механическую передачу воздействует на избыточный клапан или клапан легочного автомата. При косвенном управлении указанные клапаны открываются от воздействия на их собственные воспринимающие элементы (например, мембраны) давления или разрежения, создающихся в дыхательном мешке при его заполнении или при опорожнении.
Избыточный клапан служит для удаления из воздуховодной системы избытка газовоздушной смеси и действует в конце выдохов. В случае, если работа избыточного клапана управляется косвенным способом, возникает опасность потери части газовоздушной смеси из дыхательный аппарата через клапан в результате случайного нажатия на стенку дыхательного мешка. Для предотвращения этого мешок размещают в жестком корпусе.
Холодильник служит для снижения температуры вдыхаемого воздуха. Известны воздушные холодильники, действие которых основано на отдаче тепла через их стенки в окружающую среду. Более эффективны холодильники с хладагентом, действие которых основано на использовании скрытой теплоты фазового превращения. В качестве плавящегося хладагента используют водяной лед, фосфорнокислый натрий и другие вещества. В качестве испаряющегося в атмосферу - аммиак, фреон и др. Используется также углекислотный (сухой) лед, превращающийся сразу из твердого состояния в газообразное. Существуют холодильники, снаряжаемые хладагентом только при работе в условиях повышенной температуры окружающей среды.
Принципиальная схема является обобщающей для всех групп и разновидностей современных КИПов. Рассмотрим различные ее варианты и модификации.
В различных моделях КИП применяются три схемы циркуляции воз духа в воздуховодной системе: круговая, маятниковая и полумаятниковая. Главное достоинство круговой схемы - минимальный объем вредного пространства, в который входит помимо объема лицевой части лишь небольшой объем воздуховодов в месте соединения ветвей вдоха и выдоха.
Маятниковая схема отличается от круговой тем, что в ней ветви вдоха и выдоха объединены и воздух по одному и тому же каналу движется попеременно (как маятник) из легких в дыхательный мешок, а затем в обратном направлении. Применительно к круговой схеме это означает, что в ней отсутствуют дыхательные клапаны, шланг и холодильник (в некоторых аппаратах холодильник помещают между регенеративным патроном и лицевой частью). Маятниковую схему циркуляции применяют преимущественно в КИП с небольшим временем защитного действия (в самоспасателях) с целью упрощения конструкции аппарата. Второй причиной использования такой схемы является улучшение сорбции углекислого газа в регенеративном патроне и использовании для этого дополнительного его поглощения при вторичном прохождении воздуха через патрон.
Маятниковая схема циркуляции воздуха отличается увеличенным объемом вредного пространства, в которое помимо лицевой части входят дыхательный шланг, верхняя воздушная полость регенеративного патрона (над сорбентом), а также воздушное пространство между отработавшими зернами сорбента в верхнем (лобовом) его слое. С возрастанием высоты отработанного слоя сорбента объем указанной части вредного пространства увеличивается. Поэтому для КИП с маятниковой циркуляцией характерно повышенное содержание углекислого газа во вдыхаемом воздухе по сравнению с круговой схемой. С целью уменьшения объема вредного пространства до минимума сокращают длину дыхательного шланга, что возможно лишь для КИП, расположенных в рабочем положении на груди человека.
Полумаятниковая схема отличается от круговой отсутствием клапана выдоха. При выдохе воздух движется через шланг выдоха и регенеративный патрон в дыхательный мешок так же, как в круговой схеме. При вдохе основная часть воздуха поступает в лицевую часть через холодильник, клапан вдоха и шланг вдоха, а некоторый его объем проходит через регенеративный патрон и шланг в обратном направлении. Поскольку сопротивление ветви выдоха, содержащей регенеративный патрон с сорбентом, больше, чем ветви вдоха, по ней в обратном направлении проходит меньший объем воздуха, чем по ветви вдоха.
Известны КИП с круговой схемой циркуляции воздуха, в которых кроме основного дыхательного мешка, имеется дополнительный мешок, расположенный между клапаном выдоха и регенеративным патроном. Этот мешок служит для уменьшения сопротивления выдоху за счет "сглаживания" пикового значения объемного расхода воздуха.
В начале прошлого столетия были широко распространены аппараты с принудительной циркуляцией воздуха через регенеративный патрон. Они имели два дыхательных мешка и инжектор, питавшийся сжатым кислородом из баллона и просасывавшим воздух через регенеративный патрон из первого мешка во второй. Такое техническое решение было вызвано тем, что в то время регенеративные патроны имели высокое сопротивление потоку воздуха. Принудительная же циркуляция позволяла существенно снизить сопротивление выдоху. В дальнейшем инжекторные аппараты не получили распространения из-за следующих недостатков: сложность конструкции, создание в воздуховодной системе зоны разрежения, способствующей засасыванию в аппарат наружного воздуха. Решающим доводом в отказе от использования инжекторных аппаратов явилось создание более совершенных регенеративных патронов с низким сопротивлением. В период применения инжекторных аппаратов и после отказа от них все другие КИП называли устаревшим термином "легочно-силовые дыхательные аппараты".
Холодильник является обязательным элементом КИП. Многие модели устаревших КИП не имеют его, а охлаждение нагретого в регенеративном патроне воздуха происходит в дыхательном мешке и шланге вдоха. Известны воздушные (или иные) холодильники, расположенные после регенеративного патрона, в дыхательном мешке или составляющие с ним единое конструктивное целое. К последней модификации относится и так называемый "железный мешок", или "мешок наизнанку", представляющий собой герметичный металлический резервуар, являющийся корпусом КИП, внутри которого находится эластичный (резиновый) мешок с горловиной, сообщающийся с атмосферой. Эластичной емкостью в которую поступает воздух из регенеративного патрона, в этом случае является пространство между стенками резервуара и внутреннего мешка. Такое техническое решение отличается большой поверхностью резервуара, служащего воздушным холодильником, и значительной эффективностью охлаждения. Известен также комбинированный дыхательный мешок, одна из стенок которого одновременно является крышкой ранца КИПа - воздушным холодильником. Дыхательные мешки, объединенные с воздушными холодильниками, из-за сложности конструкции, не компенсируемой достаточным охлаждающим эффектом, в настоящее время распространения не имеют.
Избыточный клапан может быть установлен в любом месте воздуховодной системы за исключением зоны, в которую непосредственно поступает кислород. Однако управление открыванием клапана (прямое или косвенное) должно осуществляться дыхательным мешком. В случае, если поступление кислорода в воздуховодную систему значительно превышает его потребление человеком через избыточный клапан в атмосферу выходит большой объем газа, поэтому целесообразно устанавливать указанный клапан до регенеративного патрона, чтобы уменьшить нагрузку на патрон по углекислому газу. Место установки избыточного и дыхательных клапанов в конкретной модели аппарата выбирается из конструктивных соображений. Имеются КИП, в которых дыхательные клапаны установлены в верхней части шлангов у соединительной коробки. В этом случае несколько увеличивается масса элементов аппарата, приходящаяся на лицо человека.
Варианты и модификации принципиальной схемы кислородоподающей системы КИП предопределяются в первую очередь способом резервирования кислорода, реализованным в данном аппарате.
Кислородный изолирующий противогаз КИП-8 до последнего времени являлся основным СИЗОД в пожарной охране России, а до этого в СССР, он представляет собой аппарат с замкнутым циклом дыхания, регенерацией газовой смеси с использованием газообразного кислорода.
Противогаз КИП-8 состоит из следующих основных узлов:
лицевая часть;
клапанная коробка;
дыхательный мешок;
регенеративный патрон:
кислородный баллон с вентилем;
блок легочного автомата и редуктора;
звукового сигнала;
предохранительного клапана дыхательного мешка;
манометра выносного;
гофрированных трубок вдоха и выдоха;
корпуса с крышкой и ремнями.
Все узлы противогаза, за исключением клапанной коробки со шлем-маской, гофрированных трубок и манометра, размещены в жестком металлическом корпусе с открывающейся крышкой.
Для работы противогаз закрепляется на спине работающего с помощью двух плечевых и поясного ремня.
Противогаз KИП-8 работает по замкнутой (круговой) схеме дыхания. При выдохе газовая смесь проходит через клапан выдоха клапанной коробки 2, гофрированную трубку выдоха 3, регенеративный патрон 4, наполненный ХП-И, в дыхательный мешок 5.
Выдыхаемая газовая смесь в регенеративном патроне 4 очищается от углекислого газа, а в дыхательном мешке 5 обогащается кислородом, поступающим через дюзу 12 легочного автомата 10, из кислородного баллона 7. При вдохе обогащенная кислородом газовая смесь из дыхательного мешка 5, через звуковой сигнал 15, гофрированную трубку 23 и клапан вдоха клапанной коробки 2 поступает в легкие человека.
В случае если кислорода, подаваемого через дюзу 12, не хватает на вдох, то подача недостающего количества кислорода осуществляется через клапан 11 легочного автомата.
Открытие клапана 11 легочного автомата происходит при достижении разряжения в дыхательном мешке 20...35 мм вод. ст.
При возникновении разрежения в полости дыхательного мешка, мембрана 9 легочного автомата прогибается и через систему рычагов и открывает клапан 11, обеспечивая поступление кислорода через редуктор 13 из кислородного баллона в дыхательный мешок 5. Кислород через легочный автомат будет подаваться в дыхательный мешок до тех пор, пока разрежение, в дыхательном мошке не достигнет величины меньшей, чем 20...35ммвод.ст.
Если в полости дыхательного мешка окажется избыточное количество газовой смеси, то последняя стравливается через предохранительный клапан 23 в атмосферу.
В аварийных случаях, подача кислорода в дыхательный мешок производится ручным байпасом 8. При нажатии на кнопку байпаса 8 клапан 11 легочного автомата 1), отходит от седла, и кислород через открытый клапан 11 из баллона через редуктор поступает в дыхательный мешок 5.
Для редуцирования давления кислорода в противогазе имеется редуктор 13, с помощью которого давление кислорода с 200+30 кгс/см2 понижается до 5,8...4,0 кгс/см2.
По выносному манометру 19 контролируется запас кислорода в баллоне.
В противогазе имеется звуковой сигнал (типа свисток), который сигнализирует при включении в противогаз с закрытым вентилем кислородного баллона, а также в случае, когда давление в кислородном баллоне будет меньше 35...20 кгс/см2.
Работа звукового сигнализатора заключается в следующем. В случае, если вентиль кислородного баллона закрыт, или давление в кислородном баллоне будет менее 35...20 кгс/см2, клапан 18 под действием пружины 14 плотно перекроет отверстие 20 и при вдохе газовая смесь, проходя через щели 16 корпуса клапана 18, приводит в колебание металлические пластинки 17, в результате чего возникает звучание.
Если вентиль кислородного баллона будет открыт, а давление кис-лорода в баллоне будет более 20-35 кгс/см2, то усилие, развиваемое давлением кислорода на манжету 21 звукового сигнала, окажется больше установочного усилия пружины 14. Клапан 18 под действием этого усилия отойдет от отверстия 20, обеспечив свободный проход газа при вдохе через зазор между клапаном 18 и камерой звукового сигнала к отверстиям 20. Звучание в этом случае возникать не будет.
В линии, подводящей высокое давление к манжете звукового сигнала, имеются две дюзы 25 (малые отверстия), которые предназначены для предотвращения кислородного удара на манжету 21.
Вывод по вопросу: принцип действия и техническая характеристика ДАСК – сведения, необходимые для подготовки газодымозащитника.
Кислородные изолирующие противогазы, хотя и отличаются надежностью, относительно небольшой массой и значительным условным временем защитного действия, имеют существенные недостатки, которые исключают дальнейшее применение их в качестве основного СИЗОД в пожарной охране.
При передвижении и выполнении различных видов работ такие физиологические показатели человека, как частота сердечных сокращений, легочная вентиляция, частота дыхания, артериальное давление, возрастают. При работе в КИП, кроме того появляется дополнительная нагрузка на организм, вызываемая:
дополнительным сопротивлением дыханию;
дополнительным вредным ("мертвым") пространством;
накоплением в тканях и крови, при продолжительной работе кислых продуктов обмена веществ (С02), раздражающих дыхательный центр и влекущих за собой рост величины легочной вентиляции;
выделение смесей с высокой температурой (+45°С) и относительной влажностью до (100%);
повышение концентрации кислорода.
Все эти факторы действуют на организм человека в виде единого комплекса, ухудшая физиологическое состояние человека, вызывая патологические отклонения в организме.
Исследования показали, что человек, выполняющий работу в КИП-8, тратит на 30% энергии больше, чем при выполнении той же работы без противогаза.. Т.е. третья часть энергии человека тратится на преодоление неблагоприятных факторов, создаваемых КИП.
Работа пожарных связана с непрерывным нервно-психическим напряжением, вызываемым воздействием опасных факторов пожара и отрицательным эмоциональным воздействиями, связанными с постоянным пребыванием в состоянии тревоги. Пожарным постоянно приходится сталкиваться с горем людей пострадавших от пожара, они работают с травмированными людьми и обгоревшими трупами. Работа проходит под постоянной угрозой жизни и здоровью и связана с ожиданием возможного обрушения конструкций, взрывов паров и газов.
Для выполнения большинства работ на пожарах требуется значительное физическое напряжение, связанное с демонтажем конструкций, эвакуацией людей или имущества, прокладкой рукавных линий при максимально высоком темпе работ.
При тушении пожаров возникают трудности, обусловленные необходимостью работ, при отсутствии видимости, в замкнутом ограниченном пространстве (работа в подвалах, туннелях, подземных галереях), что нарушает привычные способы передвижения, рабочие позы (передвижение ползком, работа лежа и т.д.) и может вызвать тревожное клаустрофобическое состояние у пожарного.
Работы, связанные с разборкой конструкций, вскрытием металлических дверей и т.п. в основном проводятся на отрытом воздухе. Применение СИЗОД является необходимым при разливе горючих жидкостей, в задымленной среде, возможности выброса пламени из открывшейся двери, необходимости проведения дальнейшей разведки в задымленном помещении и ликвидация различных аварий.
Влияние температуры окружающей среды на работу аппаратов является одним из решающих факторов. Воздействие окружающей среды с высокой температурой или контакт пламени с аппаратом может вызвать отказы в работе СИЗОД. Вследствие чего возможно травмирование или даже гибель пожарного.
Необходимо также учитывать и резкое различие в климатических зонах нашей страны. Жесткие температурные рамки, заданные нам природой, диктуют жесткие требования к аппаратам. Крайний Север, где температура окружающей среды может опускаться до -50°С. Все эти факторы должны повлиять как на подготовку пожарных, так и на техническое исполнение и надежность СИЗОД.

 

Аппарат дыхательный со сжатым воздухом для пожарных ПТС «Профи» предназначен для индивидуальной защиты органов дыхания и зрения человека от вредного воздействия непригодной для дыхания, токсичной и задымленной газовых сред при тушении пожаров в зданиях, сооружениях и на производственных объектах различных отраслей промышленности в диапазоне температур окружающей Среды от -40 град С до +60градС.

 

        ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА.

1. Время защитного действия (без смены баллона) при расходе воздуха 30 л\мин. И температуре окружающей Среды:

- +25 С не менее                                                          - 60 мин.

- -40  С не менее                                                          - 40 мин.

2. Вместимость баллона для сжатого воздуха          - 7 л.

3. Рабочее давление сжатого воздуха в баллоне      - 300 атм

4. Габаритные размеры:

 - длина                                                                         - 790 мм.

 - ширина                                                                      - 320 мм.

 - высота                                                                        - 220 мм.

5. Масса аппарата (без спасательного устройства)  - 15,8 кг                                                      6. Масса спасательного устройства                           - 1 кг. 

 

Принцип работы дыхательного аппарата со сжатым воздухом ПТС «Профи».

    При открытом вентиле воздушного баллона  воздух поступает в газовый редуктор, где давление воздуха понижается с первичного 300-20 атм до 7 – 8,5 атм. И через разъем, к которому подсоединяются спасательное устройство и легочный автомат, поступает в легочный автомат, который автоматический подает воздух для дыхания человека.

    Выдыхаемый воздух из под маски выходит через клапан выдоха в окружающую атмосферу.

    При недостатке воздуха для вдоха в легочном автомате имеется кнопка, при нажатии которой принудительно открывается клапан и воздух поступает на вдох.

    Для предупреждения, работающего в аппарате, о том, что заканчивается рабочий запас воздуха, установлено сигнальное устройство. Оно должно срабатывать при давлении в баллоне 60 +\- 10 атм.

Визуально контролировать давление воздуха необходимо по манометру.

Общее устройство аппарата ПТС «Профи»:

1. Рама.

2. Подвесная система, состоящая из ремней левого и правого, концевых и поясного.

3. Баллон с запорным вентилем.

4. Газовый редуктор.

5. Разъем.

6. Легочный автомат.

7. Маска.

8. Капилляр с сигнальным устройством.

 

Рама предназначена для крепления всех узлов  и систем аппарата и состоит из V-образного каркаса из дюралюминиевой трубки и стяжек. Торцевые концы каркаса закрыты заглушками и закреплены винтами. На стяжке шарнирно с помощью осей закреплен поясок с замком для фиксации баллона на раме и опора с проушиной для плечевых ремней. На стяжке с помощью осей установлены кронштейны для крепления концевых ремней, а также поясного и плечевых ремней.

Баллон с запорным вентилем предназначен для хранения рабочего запаса сжатого воздуха. На цилиндрической части баллона,  на стороне противоположной штуцеру вентиля, нанесены надписи “ВОЗДУХ” и “29,4 Мпа”. В комплект аппарата входят один рабочий и один запасной баллоны.

Запорный вентиль с помощью конической резьбы ввинчен в горловину баллона.

Вентиль состоит из:   Корпуса 15, Штуцера 13 для подсоединения к редуктору, клапана 11 со вставкой 16, шточка 9 с пером 10, гайки сальниковой 7, маховичка состоящего из обоймы 3 и облицовки 2.

При вращении маховичка по часовой стрелке  клапан 11, перемещаясь по резьбе в корпусе вентиля 15, прижимается вставкой 16 к седлу и перекрывает канал, по которому воздух поступает из баллона в редуктор. При вращении маховичка против часовой стрелки  клапан отходит от седла и обеспечивает поступление воздуха из баллона в редуктор.

Редуктор предназначен для преобразования высокого (первичного) давления воздуха в баллоне в диапазоне от 300 до 20 атм. До постоянно низкого (вторичного) давления в диапазоне от 7 до 8,5 атм. В аппарате применен поршневой редуктор обратного действия с уравновешенным редукционным клапаном, что позволяет стабилизировать вторичное давление  при изменяющемся в большом диапазоне первичном давлении.

Редуктор выполнен в одном блоке с автоматическим перекрывателем капилляра манометра.

Редуктор состоит из  корпуса 7 с проушиной 19 для крепления редуктора к раме аппарата, вставки 4 с кольцами уплотнительными 3 и 5, седла редукционного клапана, включающего корпус 1 и вставку 2, шточка 6, на котором с помощью гайки 31 и шайбы 28  закреплен поршень 30 с манжетой 29, рабочих пружин 39 и 40, Регулировочной гайки 41, положение которой в корпусе фиксируется винтом 32.     На корпус редуктора для предупреждения загрязнения его полости надета облицовка 42, удерживаемая на корпусе обоймой 43. В корпусе редуктора имеется штуцер 10 для подсоединения капилляра манометра  и воздуховода сигнального устройства с кольцом уплотнительным 8 и винтом 9, и штуцер 44 для подсоединения разъема. В корпус редуктора ввинчен штуцер для подсоединения баллона, который состоит из непосредственно штуцера 21, гайки 22, фильтра 23, зафиксированного в штуцере винтом 24. Герметичность соединения штуцера 21 с корпусом 7 обеспечивается кольцом уплотнительным 20. Герметичность соединения баллона с редуктором обеспечивается кольцом уплотнительным 25.

В конструкции редуктора предусмотрен предохранительный клапан. Корпус клапана 34 ввинчен в поршень 30 редуктора.  Герметичность соединения обеспечивается кольцом уплотнительным 33. Предохранительный клапан состоит из корпуса 34, шточка 35, пружины 36, направляющей 37 и гайки 38, фиксирующей положение направляющей в корпусе клапана.

Автоматический перекрыватель капилляра манометра состоит из     заглушки 11, гайки 12, шточка 26, поршня 15, гайки 17, колец уплотнительных 13, 14, 16, 18 и кольца стопорного 27.

Редуктор работает следующим образом.  При отсутствии давления воздуха в системе редуктора поршень 30  под действием пружин 39 и 40 перемещается  вместе со штоком 6, отводя его коническую часть от вставки 2. При открытом вентиле баллона сжатый воздух под высоким давлением поступает через фильтр 23 по штуцеру 21

в полость редуктора и создаёт под поршнем 30 давление, величина которого зависит от степени сжатия пружин 39 и 40. При этом поршень вместе со шточком 6 переместиться, сжимая пружины 39 и 40 до тех пор, пока не установиться равновесие между давлением воздуха на поршень и усилием сжатия пружин и не перекроется зазор между вставкой 2 и конической частью шточка 6.

При вдохе воздуха через лёгочный автомат давление под поршнем уменьшается, поршень со шточком под действием пружин перемещается, создавая зазор между вставкой и конической частью шточка и обеспечивая поступление воздуха под поршень и далее в лёгочный автомат. Вращением гайки 41 можно изменить степень сжатия пружин 39 и 40, а следовательно, и давление в полости редуктора, при котором наступает равновесие между усилием сжатия пружин и давлением воздуха на поршень.

Предохранительный клапан работает следующим образом.   При нормальной работе редуктора и вторичном давлении в его полости в установленных пределах вставка шточка 35 усилием пружины 36 прижата к седлу в корпусе 34. Когда вторичное давление в полости редуктора в результате нарушения его работы возрастает шточок, преодолевая усилие пружины, отходит от седла, и воздух из полости редуктора выходит в атмосферу. Вращением направляющей 37 можно изменить степень сжатия пружины 36, а следовательно и давление, при котором откроется предохранительный клапан.

Автоматический перекрыватель капилляра манометра работает следующим образом.  При открытии вентиля баллона, когда сжатый воздух под высоким  давлением поступает в полость редуктора,  он через дюзы в торце и боковой стенке шточка 26 поступает в полость, сообщающуюся с капилляром.

Между поршнем 15 и гайкой 17, и в полость между заглушкой 11 и поршнем 15. Так как диаметр дюзы в боковой стенке несколько больше, чем диаметр торцевой дюзы, давление под поршнем 15 больше давления в полости между заглушкой 11 и поршнем 15. При этом поршень перемещается в крайнее положение до упора в заглушку. При нарушении герметичности капилляра или манометра давление воздуха в полости между поршнем 15 и гайкой 17 уменьшается, а в полости между заглушкой 11 и поршнем 15 не  изменяется. При этом поршень 15 отходит от заглушки 11, уплотнительное кольцо 16  прижимается к гайке 17, в результате чего прекращается поступление сжатого воздуха в капилляр

Сигнальное устройство предназначено для визуального контроля по манометру давления сжатого воздуха в баллонах и для звуковой сигнализации о полном расходе рабочего запаса воздуха.          

Сигнальное устройство состоит из  корпуса 10, манометра 11 с облицовкой 12 и прокладкой 9, втулки 8 с втулкой 1 и кольцом уплотнительным 7, свистка 6 с контрогайкой 4, кожуха 2, кольца уплотнительного 3, шточка 5, втулки 14 с кольцом уплотнительным 13, гайки 17 с контрогайкой 15, пружины 16, заглушки 19 с кольцом уплотнительным 18, кольца уплотнительного 20 и гайки 21.

В шточке 5 просверлено на проход косое отверстие.

Работает сигнальное устройство следующим образом.   При открытом вентиле баллона воздух под высоким давлением через капилляр непосредственно поступает в манометр 11. Манометр показывает величину давления воздуха в баллоне. Кроме того, воздух с высоким давлением через радиальное отверстие во втулке 14  поступает в камеру между гайкой 17 и хвостовиком шточка 5. Шточок 5 под действием высокого давления воздуха перемещается до упора во втулке 8, сжимая пружину 16. Оба выхода косого отверстия в шточке 5 при этом находятся  за уплотнительным кольцом 7. По мере уменьшения давления в баллоне аппарата в процессе его эксплуатации и, соответственно, давления на хвостовик шточка 5 пружина 16 перемещает шточок 5 к гайке 17. Когда ближний к уплотнительному  кольцу выход косого отверстия в шточке 5 переместится за уплотнительное кольцо 7, воздух под редуцированным давлением поступает в свисток 6 через отверстия во втулке 8, косое отверстие в шточке 5, канал в корпусе 10, и боковое отверстие в гайке 21.  При дальнейшем снижении давления воздуха в баллоне оба оба выхода косого отверстия в шточке 5 переместятся за уплотнительное кольцо 7 и подача воздуха в свисток прекратится.

Регулировка давления срабатывания звукового сигнала производится за счёт перемещения свистка 6 по резбе в корпусе 10. При этом перемещается и втулка 8 с втулкой 1 и уплотнительным кольцом.

Капилляр предназначен для подсоединения к газовому редуктору сигнального устройства.

Капилляр состоит из  двух штуцеров 2, впаянной в них свитой в спираль трубки высокого давления 3, двух штуцеров 6, соединённых шлангом 7. Штуцеры 2 соединены между собой гибким тросом 1. Шланг 7 закреплён на штуцерах 6 облицовками 8. Штуцеры 2 зафиксированы внутри штуцеров 6 штифтами 4. Кольца уплотнительные 5 обеспечивают герметичность соединения штуцеров 6 с редуктором и  сигнальным устройством. Капилляр имеет симметричную конструкцию, одним из концов подсоединяется к редуктору, вторым – к сигнальному устройству. Штуцеры 6 фиксируются в этих соединениях винтами, входящими в кольцевые проточки штуцеров.

По трубке высокого давления 3 воздух под давлением из баллона поступает в манометр и на звуковой указатель исчерпания рабочего запаса воздуха, по шлангу 7 воздух под редуцированным давлением передаётся на звуковой указатель.

Разъём предназначен для подсоединения к газовому редуктору лёгочного автомата и спасательного устройства.

Разъём состоит из корпуса 13 со штуцером 14 и 17

для соединения разъёма с газовым редуктором. Штуцера соединены шлангом 15, который зафиксирован на них кольцами 16. Герметичность соединения разъёма с редуктором обеспечивается кольцом уплотнительным 18. В корпус разъёма ввинчены два штуцера для подсоединения лёгочного автомата и спасательного устройства. Каждый штуцер состоит из корпуса 4, узла фиксации штуцера подсоединения лёгочного автомата и спасательного устройства с корпусом 13 разъёма обеспечивается прокладками 10. Герметичность соединения штуцеров лёгочного автомата и спасательного устройства с разъёмом обеспечивается манжетами 8.

Штуцер для подсоединения спасательного устройства снабжён защитным колпаком 19. Этот штуцер может быть использован для подключения магистрали шланговой подачи воздуха или устройства поддува защитного костюма.

При соединении с разъёмом штуцера лёгочного автомата его торцевой конец, упирается в манжету 8 и преодолевая сопротивление пружины 2, отводит клапан 12 с уплотнительным кольцом 11 от седла 1 и обеспечивает  подачу воздуха из редуктора в лёгочный автомат. Кольцевой выступ штуцера лёгочного автомата  при этом смещает внутрь разъёма втулку 7, шарики 6 выходя из соприкосновения со втулкой 7, входят в кольцевую проточку штуцера лёгочного

автомата. Обойма 5 под воздействием пружины 9смещается и фиксирует шарики 6 в кольцевой проточке штуцера лёгочного автомата. Для отсоединения лёгочного автомата достаточно прижать штуцер и сдвинуть обойму 5. При этом штуцер лёгочного автомата вытолкнется из разъёма усилием пружины

Аналогично осуществляется подсоединение к разъёму спасательного устройства.

В состав аппарата ПТС «Профи» входят:  спасательное устройство состоящее из лёгочного автомата, лицевой части промышленного противогаза, поясного и прицепного ремней и контрольного манометра.

Лёгочный автомат спасательного устройства по конструкции не отличается от лёгочного автомата основного пользователя, но снабжён более длинным соединительным  рукавом.

Лицевая часть надевается на голову пострадавшего, в результате чего последний получает возможность дышать воздухом из аппарата ПТС «Профи".

Поясной ремень застёгивается  на талии пострадавшего, Пострадавший пристёгивается к пожарному с помощью прицепного ремня.

Лёгочный автомат предназначен для автоматической подачи воздуха для дыхания человека.

Лёгочный автомат состоит из корпуса 9, мембраны 13, закреплённой в корпусе прижимной гайкой 10, штуцера 3, гайки 4  с облицовкой 6, заслонки 2 и щитка 1, прикреплённого к корпусу винтами 5, обоймы 11, пружины 12, клапана лёгочного автомата  состоящего из штока 7, втулок 8 и 17, корпуса клапана 18, пружины 19, седла 15 и уплотнительного кольца 14, соединения лёгочного автомата с разъёмом, состоящего из корпуса 20, рукава соединительного 21 и штуцера 23. Корпус 20 соединён с седлом 15 штифтом, герметичность соединения обеспечивается кольцом уплотнительным 16. Соединительный рукав надет на корпус 20 и штуцер 23 и закреплён на каждом из них кольцами 22. Прорезь в щитке 1, по которой движется шток 7 при работе лёгочного автомата, закрыта надетой на шток 7 скользящей заслонкой 2. Лёгочный автомат гайкой 4 присоединяется к маске штуцером  23 к разъёму.

Работает лёгочный автомат следующим образом.     

При вдохе в корпусе 9 создаётся вакуумметрическое давление под воздействием которого мембрана 13 прогибается внутрь, нажимает на втулку 8 и перекашивает шток 7. При этом в образовавшийся зазор между седлом 15 и корпусом клапана 18 поступает воздух. При выдохе мембрана возвращается в исходное положение, клапан закрывается  подача воздуха прекращается.

Для дополнительной подачи воздуха на вдох в центре обоймы 11 имеется кнопка, между кнопкой и мембраной 13 установлена пружина 12. При нажатии пальцем на кнопку мембрана прогибается, клапан перекашивается и воздух поступает на вдох.

Маска предназначена для соединения дыхательных путей человека с лёгочным автоматом аппарата, а также для защиты  органов дыхания и зрения от токсичной и задымлённой окружающей среды.

В аппарате ПТС «Профи»  применена панорамная маска ПМ-88.

Вывод по вопросу: преимущество ДАСВ – простота его устройства.

Кислородный изолирующий противогаз КИП-8 до последнего времени являлся основным СИЗОД в пожарной охране России, а до этого в СССР, он представляет собой аппарат с замкнутым циклом дыхания, регенерацией газовой смеси с использованием газообразного кислорода.

Противогаз КИП-8  состоит из следующих основных узлов:

1. лицевая часть;

2. клапанная коробка;

3. дыхательный мешок;

4. регенеративный патрон:

5. кислородный баллон с вентилем;

6. блок легочного автомата и редуктора;

7. звукового сигнала;

8. предохранительного клапана дыхательного мешка;

9. манометра выносного;

10. гофрированных трубок вдоха и выдоха;

11. корпуса с крышкой и ремнями.

Все узлы противогаза, за исключением клапанной коробки со шлем - маской, гофрированных трубок и манометра, размещены в жестком металлическом корпусе с открывающейся крышкой.

Для работы противогаз закрепляется на спине работающего с помощью двух плечевых и поясного ремня.

Корпус предназначен для размещения в нем всех узлов противогаза и для защиты их от механических повреждений при эксплуатации.

   В корпусе смонтированы хомуты для крепления регенеративного патрона и баллона. В передней стенке корпуса имеются два отверстия, через которые проходят гофрированные трубки вдоха и выдоха, и две пружинящие пластинки для крепления дыхательного мешка.

   Поясной ремень проходит через отверстие: плечевые ремни пристегиваются к кольцам.

   Корпус закрывается крышкой. В крышке вмонтирована мембрана, нажатием на которую осуществляется подача кислорода в дыхательный мешок в аварийных условиях, и цветное отражательное стекло.

    Кислородный баллон служит для хранения запаса газообразного кислорода. Емкость баллона – 1 литр, рабочее давление – 200 кгс/см2

    На баллоне смонтирован запорный вентиль типа КВМ-200А с малым крутящим моментом.

    Не следует прилагать больших усилий для открытия и закрытия вентиля (более 30 кгсм).

    Для того, чтобы открыть вентиль, его маховичок  достаточно повернуть на 1 – 1,5 оборота. При повороте маховичка шпиндель вращает сухарь, который, в свою очередь, вращая по резьбе клапан, открывает или закрывает проход газа через седло вентиля.

    Легочный автомат служит для автоматической подачи кислорода в дыхательный мешок, при недостатке газа в дыхательном мешке на вдох.

    На вдохе при возникновении разрежения в подмембранной полости легочного автомата мембрана, преодолевая усилие пружины, прогибается и через рычажную систему открывает клапан, обеспечивая проход кислорода из-под седла в полость дыхательного мешка.

    Разрежение в дыхательном мешке, при котором происходит открытие легочного автомата, регулируется винтом и устанавливается на величину 20 – 35 мм. вод. ст.

     В корпусе блока имеется дюза, через которую осуществляется непрерывная подача кислорода (1,4 +-0,2 л/мин.) в дыхательный мешок.

    В аварийных случаях подачу кислорода в дыхательный мешок производят нажатием на кнопку байпаса.

    Кнопкой аварийной подачи также пользуются при промывке дыхательного мешка.

    Редуктор служит для понижения давления кислорода, поступающего из баллона с 200 – 30 кгс/см2. до 5,8 – 4,0 кгс/см2.

    При закрытом вентиле баллона мембрана редуктора под действием усилия пружины, прогибаясь вверх, отводит правое плечо рычага и толкателя клапана. Клапан при этом находится в свободном состоянии. 

Дыхательный мешок служит резервуаром газовой смеси для вдоха.

    В дыхательном мешке происходит пополнение газовой смеси, поступающим из баллона, кислородом.

    На дыхательном мешке смонтированы: предохранительный клапан, ниппель с накидной гайкой для соединения дыхательного мешка с легочным автоматом, ниппель с накидной гайкой и фильтром для соединения с звуковым сигналом, и угольник для соединения с регенеративным патроном. Крепление дыхательного мешка к корпусу противогаза осуществляется с помощью двух полуколец.

    Предохранительный клапан предназначен для автоматического вытравливания избытка газовой смеси из дыхательного мешка.

    Он представляет собой клапан мембранного типа избыточного действия, в корпусе которого размещен дополнительный обратный клапан тарельчатого типа. Одновременно он предохраняет дыхательный мешок от проникновения в него окружающей атмосферы.

    Сопротивление открытия предохранительного клапана устанавливается регулировочным винтом на величину 15 – 30 мм. вод. ст.

    Звуковой сигнал предназначен для того, чтобы предупредить пользующегося противогазом, если он включился в аппарат с закрытым вентилем кислородного баллона, а также в случае, если в кислородном баллоне давление кислорода 35 – 20 кгс/см2.

    Он представляет из себя звуковой сигнал типа «свисток» с тонкими металлическими пластинами в качестве элементов, вызывающих звуковые колебания.

    Конструктивно свисток размещен на поршне, связанном через толкатели с манжетой, выполняющей функции датчика механизма включения звукового сигнала. Манжета может свободно перемещаться по оси камеры под действием усилия пружины и под действием усилия, развиваемого давлением кислорода, подводимого в камеру манжеты из кислородного баллона через штуцер корпуса.

    В корпусе поршня смонтирован разгрузочный клапан, снижающий сопротивление на вдохе, создаваемое свистком, до величины, обеспечивающей минимально возможный газовый поток через щели свистка, при котором возникают звуковые колебания. Величина давления кислорода в баллоне, при котором срабатывает звуковой сигнал, устанавливается регулировочным винтом. Трубопровод высокого давления, соединяющий штуцер корпуса звукового сигнала с выходным штуцером вентиля кислородного баллона, задюзирован с обеих сторон отверстиями диаметром 0,5 мм (сверлениями  в ниппелях) с целью предотвращения кислородного удара при открытии вентиля.

    Если вентиль кислородного баллона открыт, а давление кислорода в баллоне более 20 – 35 кгс/см2, то усилие, развиваемое давлением кислорода на манжету, будет больше, чем установочное усилие пружины. Под действием этого усилия поршень переместился в сторону пружины, открывая тем самым, свободный проход газа на вдохе от отвода корпуса к отверстию вдоль зазора между клапаном и внутренним диаметром камеры корпуса звукового сигнала. Одновременно часть газового потока будет проходить через щель свистка и далее через отверстия клапана к отверстию, но этот поток будет очень малой величины и не будет вызывать звуковых колебаний пластин.

    При давлении кислорода в баллоне менее 20 – 35 кгс/см2 (и естественно при закрытом вентиле), установочное усилие пружины оказывается больше, чем усилие, развиваемое давлением кислорода на манжету. Поэтому клапан под действием этого усилия перекроет отверстие, и газовый поток при вдохе в этом случае будет проходить через щели свистка и далее через отверстия клапана к отверстиям, вызывая звуковые колебания пластин, если легочная вентиляция при этом  будет более величины срабатывания звукового сигнала.. Однако при достаточно больших легочных вентиляциях перепад давления перед щелями и за щелями свистка оказывается больше величины давления, при котором открывается разгрузочный клапан, последний открывается, и часть газового потока при вдохе в этом случае будет проходить через клапан, снижая, таким образом, сопротивление на вдохе. Величина же давления открытия клапана подобрана такой, что он открывается только в том случае, если газовый поток, проходящий через щели свистка, превосходит величину, вызывающую звукообразование.  

    Манометр выносной служит для измерения давления кислорода в баллоне.

    По манометру фиксируется давление кислорода при подготовке противогаза к работе, а также контролируется давление кислорода в баллоне в процессе работы и при хранении.

    При работе в противогазе манометр с помощью карабина крепится на правом плечевом ремне.

    Клапанная коробка служит для обеспечения нормальной циркуляции газовой смеси при работе человека в противогазе.

    Клапанная коробка состоит из клапана вдоха и выдоха, служащих для распределения потока выдыхаемой и вдыхаемой газовой смеси. Клапаны вдоха и выдоха представляют собой тарельчатые клапаны из резины.

    При вдохе в полости клапанной коробки возникает разрежение, вследствие чего клапан выдоха с еще большим усилием прижимается к седлу, а клапан вдоха отходит от седла и дает проход газовой смеси из дыхательного мешка в дыхательные органы человека.

    При выдохе в полости клапанной коробки возникает повышенное давление. Клапан вдоха прижимается к седлу, а клапан выдоха отходит от седла и дает проход выдыхаемой газовой смеси по патрубку и гофрированную трубку в регенеративный патрон и далее в дыхательный мешок.

    Регенеративный патрон РП – 8 снаряжается химическим поглотителем ХПИ, который очищает выдыхаемую газовую смесь, поглощая углекислый газ.

   Продолжительность действия регенеративного патрона РП – 8 не менее 2-х часов при испытании на защитную мощность при легочной вентиляции 30 л/ мин. до момента возникновения «проскока» углекислого газа дыхательной смеси на вдохе, равном по содержанию 2 %.

    Снаряжается регенеративный патрон ХПИ через зарядный штуцер. При снаряжении подвижная сетка оттягивается ключом для РП, сжимая пружину. После снаряжения пружина прижимает сетку, уплотняя ХПИ.

 

 

Дыхательный аппарат со сжатым воздухом, ДАСВ – это изолирующий резервуарный аппарат, в котором запас воздуха хранится в баллонах в сжатом состоянии. Дыхательный аппарат работает по открытой схеме дыхания, при которой вдох осуществляется из баллонов, а выдох в атмосферу.

В пункте 2 Технического регламента о требованиях пожарной безопасности сформулированы требования к СИЗОД, следовательно и ДАСВ: «СИЗОД должны характеризоваться показателями стойкости к механическим и неблагоприятным климатическим воздействиям, эргономическими и защитными показателями, значения которых устанавливаются в соответствии с тактикой проведения аварийно-спасательных работ, спасания людей и необходимостью обеспечения безопасных условий труда пожарных».

Конструктивное исполнение СИЗОД пожарных должно предусматривать быструю замену (без применения специальных инструментов) баллонов со сжатым воздухом.

Работа ДАСВ основана на принципе пульсирующей подачи воздуха для дыхания (только на вдох) по открытой схеме, т. е. с выходом и окружающую среду. Эти аппараты имеют простое устройство, удобны и дешевы в эксплуатации, более безопасны в работе на предприятиях химии, нефтехимии, нефтепереработки и т. п. Эти преимущества обусловливают все более широкое применение этих аппаратов в пожарной охране. Недостатком аппаратов является их относительно большая масса (примерно 16 кг) при сравнительно небольшом сроке защитного действия (около 50 мин).

Главная задача лекции заключается в том, чтобы дать слушателям сведения о назначении, устройстве и принципиальных схемах работы основных частей и узлов дыхательного аппарата со сжатым воздухом. В соответствии с этим в лекции предполагается рассмотреть один вопрос, идентичный названию темы лекции.

Устройство дыхательного аппарата со сжатым воздухом на примере аппарата дыхательного АП «Омега».

 

 

 

 

 

 

 

 

 

      

Рис. 1 Аппарат дыхательный АП «Омега»

 

Аппарат (рисунок 1) включает в себя следующие основные составные части:

- подвесную систему 10;

- баллон с вентилем 9 (для исполнений АП "Омега"-1 и АП "Омега"-Север1)

или два баллона с вентилями и тройник 21 (для исполнений АП "Омега"-2 и

АП "Омега"-Север-2);

- редуктор 11;

- маску 1;

- легочный автомат 2;

- сигнальное устройство со свистком 19 и манометром 17;

- шланг высокого давления 8;

- шланг высокого давления 14 со штекерным ниппелем 16 для дозарядки аппарата методом перепуска, соединенный с редуктором через переходник 13;

- спасательное устройство 15;

- шланг редуцированного давления 7 с тройником 6 и быстроразъемными

замками 4 и 5 для подключения основной маски 1 и спасательного устройства 15, а также переходника со шлангом подачи воздуха при работе в шланговом варианте или шланга поддува при использовании костюма химзащиты.

 

Подвесная система

Дыхательный аппарат в рабочем положении крепится на спине человека с помощью подвесной системы. Подвесная система является составной частью дыхательного аппарата. Долгое время для работы на пожарах использовались аппараты, у которых несущей конструкцией являются баллоны. К ним крепился редуктор и подвесная система, состоящая из плечевых и поясного ремней.

Подвесная система дыхательного аппарата — составная часть аппарата, состоящая из спинки, системы ремней (плечевыми и поясными) с пряжками для регулировки и фиксации дыхательного аппарата на теле человека.

Она предотвращает воздействие на пожарного нагретой или охлажденной поверхности баллона.

Подвесная система позволяет пожарному быстро, просто и без посторонней помощи надеть дыхательный аппарат и отрегулировать его крепление. Система ремней дыхательного аппарата снабжается устройствами для регулировки их длины и степени натяжения. Все приспособления для регулировки положения дыхательного аппарата (пряжки, карабины, застежки и др.) выполнены таким образом, чтобы ремни после регулировки прочно фиксировались. Регулировка ремней подвесной системы не должна нарушаться в течение аппаратосмены.

 

 

Рис. 2. Подвесная система дыхательного аппарата АП «Омега»

Подвесная система (рисунок 2), служащая для монтажа на ней всех частей аппарата и его крепления на теле человека, включает в себя:

- основание 1; систему ремней – плечевых 2 с пряжками 3, концевых 4, поясного 5 с пряжками 6, баллонного 7 с пряжкой 8; ложементы 9;  амортизатор 10;  узел крепления редуктора 11.

Ремни фиксируются в пазах основания пряжками 12. Концевой ремень соединен с плечевым через пряжку 3. Система ремней с пряжками обеспечивает

необходимые регулировки и фиксацию аппарата на теле человека.

Ложементы 9 являются опорой для баллона (баллонов).

По заказу потребителя аппарат может комплектоваться мягкой поясной накладкой 13, обеспечивающей более комфортное и удобное ношение аппарата.

Форма и габаритные размеры дыхательного аппарата выполняются с учетом телосложения человека, должны сочетаться с защитной одеждой, каской и снаряжением пожарного, обеспечивать удобство при выполнении всех видов работ на пожаре (в том числе — при передвижении через узкие люки и лазы диаметром (800±50) мм, передвижении ползком, на четвереньках и т.д.).

Дыхательный аппарат должен быть выполнен таким образом, чтобы имелась возможность его надевание после включения, а также снятие и перемещение дыхательного аппарата без выключения из него при пере-движении по тесным помещениям.

Масса снаряженного дыхательного аппарата без вспомогательных устройств, применяющихся эпизодически, таких как спасательное устройство, устройство искусственной вентиляции легких и др., должна быть не более 16,0 кг.

Масса снаряженного дыхательного аппарата с условным ВЗД более 100 мин должна быть не более 18 кг.

Приведенный центр массы дыхательного аппарата должен находиться не далее, чем в 30 мм от сагиттальной плоскости человека. Сагиттальная плоскость — условная линия, делящая симметрично тело человека продольно на правую и левую половину.

 

Баллон с вентилем

Баллон – сосуд, имеющий одну или две горловины для установки вентилей, фланцев или штуцеров, предназначенный для транспортировки, хранения и использования сжатых, сжиженных или растворенных под давлением газов.

Баллоны, входящие в состав дыхательного аппарата, выполняются в соответствии с ГОСТ Р 53258-2009 Техника пожарная. Баллоны малолитражные для аппаратов дыхательных и самоспасателей со сжатым воздухом. Общие технические требования. Методы испытаний. (НПБ 190 – 2000)

В зависимости от модели аппарата могут применяться  а) металлические, б) металлокомпозитные баллоны.

Металлопластиковые баллоны – многослойные сосуды, в которых внутренний слой (оболочка) выполнен из металла; остальные слои выполнены из армированных пластмасс. Внутренний слой несет часть нагрузки.

Корпус – основная сборочная единица, состоящая из обечаек и днищ.

Обечайка – цилиндрическая оболочка замкнутого профиля, открытая с торцов.

Днище – неотъемлемая часть корпуса сосуда, ограничивающая внутреннюю полость с торца.

Люк, горловина – устройство, обеспечивающее доступ во внутреннюю полость сосуда.

Лейнер – внутренний герметизирующий слой сосуда из армированных пластмасс, который может нести часть нагрузки.

Заглушка – объемная деталь, позволяющая герметично закрывать отверстия штуцера или бобышки.

Срок службы баллона – продолжительность эксплуатации сосуда в календарных годах до перехода в предельное состояние.

Для управления работой и обеспечения безопасных условий эксплуатаций сосуды в зависимости от назначения должны быть оснащены:

­    запорной или запорно-регулирующей арматурой;

­    приборами для измерения давления;

­    предохранительными устройствами;

­    показателями уровня жидкости.

На маховике запорной арматуры должно быть указано направление его вращения при открывании или закрывании арматуры.

Баллоны имеют цилиндрическую форму с полусферическим или полуэлептическим днищем.

В горловине нарезана коническая или метрическая резьба, по которой в баллон ввинчивается запорный вентиль. На цилиндрической части баллона наносится надпись "ВОЗДУХ 29,4 МПа".

В штуцере вентиля для присоединения к редуктору применяется внутренняя трубная резьба -5/8.

 

 

Рис. 3. Вентиль  баллона  дыхательного аппарата АП «Омега»

 

Вентиль (рисунок 3) состоит из следующих узлов и деталей: корпуса 1, клапана 2, крышки 5, шпинделя 6 и маховичка 7. Клапан 2 является запорным элементом вентиля. Он кинематически соединен с маховичком 7. Герметичность внутренних полостей вентиля обеспечивается кольцом 4, размещенным на шпинделе 6, и прокладкой 3. В аппарате исполнений АП "Омега"-1 и АП "Омега"- Север-1 по заказу потребителя может применяться вентиль с боковым расположением маховичка.

Дополнительно вентиль может быть оборудован:

- предохранительной мембраной 8, служащей для защиты от чрезмерного повышения давления в баллоне при его нагреве;

- отсечным клапаном 10, служащим для предотвращения сильного выброса сжатого воздуха при обламывании вентиля или его резком открытии.

Вентиль баллона выполняется таким образом, чтобы нельзя было полностью вывернуть его шпиндель, исключалась возможность его случайного закрытия во время эксплуатации. Он должен сохранять герметичность как в положении "Открыто" так и "Закрыто". Соединение "вентиль - баллон" выполняется герметичным.

 

Герметичность вентиля в месте соединения с баллоном при конической резьбе обеспечивается фторопластовым уплотнительным материалом (ФУМ-2), при метрической — резиновым уплотнительным кольцом круглого сечения 14.

Вентиль баллона выдерживает не менее 3000 циклов открываний и закрываний.

Срок переосвидетельствования баллонов, входящих в комплект дыхательного аппарата, должен составлять:

- для стальных баллонов - не более одного раза в 5 лет,

- для композитных баллонов - не более одного раза в 3 года

 

Технические характеристики баллонов

 

Обозначение баллона

Вместимость баллона, л, не менее

Масса баллона с вентилем, кг, не более

Габаритные размеры бал­лона с венти­лем, мм

Конструкция баллона

Изготовитель баллона

БК-4-300

4,0

3,72

0 107x683

Металлокомпозитный, лейнер - нержавеющая сталь

НПО

«Звезда»

Россия

L045

4,7

3,9

0 135x607

Металлокомпозитный с алюминиевым

лейнером

Фирма «Luxfer» США

L058

6,0

4,1

0 156x567

Металлокомпозитный с алюминиевым

лейнером

Фирма «Luxfer» США

L066

6,8

4,4

0 156x615

Металлокомпозитный с алюминиевым

лейнером

Фирма «Luxfer» США

БК-7-300С

6,8

6,32

0 146x676

Металлокомпозитный со стальным лей­нером

НПП

«Маштест» Рос­сия

БГ-7,3-30

6,8

9,92

0 145x669

Стальной

НПП

«Сплав» Россия

L087

9,0

5,3

0 178x651

Металлокомпозитный с алюминиевым

лейнером

Фирма «Luxfer» США

БК-5-300С

5,0

5,1

0 144x425

Металлокомпозитный со стальным лей­нером

НПП

«Маштест» Рос­сия

БК-4-300С

4,0

4,3

0 112x540

Металлокомпозитный со стальным лей­нером

НПП

«Маштест» Рос­сия

 

Редуктор

Редуктор в дыхательных аппаратах выполняет две функции: снижает высокое давление газа до промежуточной заданной величины и обеспечивает постоянную подачу воздуха и давления за редуктором в заданных пределах при значительном изменении давления в баллоне аппарата - до постоянного редуцированного давления в диапазоне 0,7...0,85 МПа.

 В последние годы в дыхательных аппаратах стали применяться поршневые редукторы, т. е. редукторы со сбалансированным поршнем. Преимущество такого редуктора состоит в том, что он обладает высокой надежностью, так как имеет только одну движущуюся деталь. Работа поршневого редуктора осуществляется таким образом, что отношение величины давления на выходе из редуктора обычно составляет 10:1, т.е. если величина давления в баллоне измеряется в пределах от 20,0 МПа до 2,0 МПа, то редуктор подает воздух при постоянном промежуточном давлении 2,0 МПа. Когда давление в баллоне падает ниже величины этого промежуточного давления, клапан остается открытым постоянно, и дыхательный аппарат действует как одноступенчатый до тех пор, пока не истощится воздух в баллоне.

На корпусе 1 редуктора (рисунок 4) имеется резьбовой штуцер 3 с маховичком 2 для соединения с вентилем баллона (исполнения АП "Омега"-1 и АП "Омега"-Север-1) или тройником (исполнения АП "Омега"-2 и АП "Омега"-Север-2).

Встроенный предохранительный клапан 6 защищает полость низкого давления аппарата от чрезмерного роста давления на выходе редуктора.

Редуктор крепится к основанию подвесной системы с помощью двух штифтов и винта.

Конструкция редуктора обеспечивает его эксплуатацию без регулировки в течение всего срока службы.          

 

 

 

Рис. 4. Редуктор  дыхательного аппарата АП «Омега»

 

      Лицевая часть

Маска (рисунок 5) предназначена для изоляции органов дыхания и зрения человека от окружающей среды, подачи воздуха от легочного автомата 2 на дыхание через клапаны вдоха 1.3, расположенные в подмасочнике 1.2, и удаления выдыхаемого воздуха через клапан выдоха 1.5 в окружающую среду.

 

 

 

Рис. 5. Лицевая часть  дыхательного аппарата АП «Омега»

 

В корпусе маски 1.1 имеется встроенное переговорное устройство 1.4, обеспечивающее возможность передачи речевых сообщений. На внутренней поверхности корпуса маски имеется обтюратор, обеспечивающий плотное прилегание маски к лицу. В конструкции маски предусмотрена возможность регулировки длины ремней оголовья 1.9.

При вдохе воздух из подмембранной полости легочного автомата поступает в подмасочную полость и через клапаны вдоха в подмасочник. При этом происходит обдув панорамного стекла маски, что исключает его запотевание.

При выдохе клапаны вдоха закрываются, препятствуя попаданию выдыхаемого воздуха на стекло маски. Выдыхаемый воздух из подмасочного пространства выходит в атмосферу через клапан выдоха.

Пружина поджимает клапан выдоха к седлу с усилием, позволяющим поддерживать в подмасочном пространстве маски заданное избыточное давление.

 

Сигнальное устройство и манометр

Сигнальное устройство это приспособление, предназначенное для подачи звукового сигнала работающему о том, что основной запас воздуха в дыхательном аппарате израсходован и остался только резервный запас.

Для контроля за расходом сжатого воздуха при работе в дыхательных аппаратах применяются манометры, как стационарно расположенные на баллонах (АСВ-2), так и выносные укрепленные на плечевом ремне. Для сигнализации о снижении давления воздуха в баллонах аппарата до заданной величины служат указатели минимального давления.

Принцип действия указателей основан на взаимодействии двух сил — силы давления воздуха в баллонах и противодействующей силы пружины. Указатель срабатывает, когда сила давления газа становится меньше силы пружины. В дыхательных аппаратах применяются указатели трех конструкций: штоковый, физиологический и звуковой.

 

 

Рис. 6. Сигнальное устройство и манометр

 

Звуковой указатель наиболее распространен в дыхательных аппаратах со сжатым воздухом. Он монтируется в корпусе редуктора или совмещен с манометром на линии высокого давления. Принцип конструкции работы аналогичен штоковому указателю. При падении давления воздуха в баллонах перемещается шток и открывается подача воздуха в свисток, который издает характерный звук. Наиболее удачная конструкция применена в аппаратах фирмы "Дрегер", где управление клапаном осуществляется высоким давлением, а звуковой сигнал работает от низкого давления. Применение данной конструкции позволило снизить расход воздуха при работе звукового сигнала до 2 л/мин.

Срабатывание звукового сигнала по стандартам, как европейским, так и отечественным должно быть на уровне 5 МПа или 20-25% от запаса воздуха в снаряженном баллоне. Громкость звука должна быть по крайней мере, на 10Дб больше чем на пожаре. Он должен быть легко отличим от других звуковых без ущерба для других чувствительных или важных рабочих функций. Исходя из этих требований, и разрабатываются современные сигнальные устройства. Продолжительность работы сигнала должна быть не менее 60 с.

Сигнальное устройство (рисунок 6) предназначено для контроля давления воздуха в баллоне по манометру и подачи звукового сигнала об исчерпании рабочего запаса воздуха.

Сигнальное устройство состоит из корпуса 1, манометра 2 с облицовкой 3 и прокладкой 4, втулки 5, втулки 6 с кольцом уплотнительным 7, свистка 8 с контргайкой 9, кожуха 10, кольца уплотнительного 11, шточка 12, втулки 33 с кольцом уплотнительным 14, гайки 15 с контргайкой 16, пружины 17, заглушки 13 с кольцом уплотнительным 19, кольца уплотнительного 20 и гайки 21.

Работает сигнальное устройство следующим образом. При открытом вентиле баллона воздух под высоким давлением поступает через капилляр в полость А и к манометру. Манометр показывает величину давления воздуха в баллоне. Из полости А воздух под высоким давлением через радиальное отверстие во втулке 13 поступает в полость Б. Шточок под действием высокого давления воздуха пере мешается до упора во втулке 5, сжимая пружину. Оба выхода косого отверстия штока находятся при этом за уплотнительным кольцом 7. По мере уменьшения давления в баллоне и, соответственно, давления на хвостовик шточка пружина перемещает шточок к гайке 15. Когда ближний к уплотните-льному кольцу 7 выход косого отверстия в штоке переместится за уплотнительное кольцо, воздух под редуцированным давлением через канал в корпусе 1, косое отверстие в шточке и отверстия во втулке 5 поступает в свисток, вызывая устойчивый звуковой сигнал. При дальнейшем падении давления воздуха оба выхода косого отверстия в шточке переместятся за уплотнительное кольцо, и подача воздуха в свисток прекратится.

Регулировка давления срабатывания сигнального устройства производится за счет перемещения свистка по резьбе в корпусе. При этом перемещается втулка 5 со втулкой 6 и уплотнительным кольцом 7.

 


 
 
2. Закрепление нового материала 5 мин.
Контрольный опрос по учебным вопросам для закрепления изученного материала в               целом.



 

3. После данного занятия каждый слушатель должен знать:
 Основные нормативные правовые акты, регламентирующие деятельность ГПС МЧС России в вопросах пожарной тактики и тактики тушения пожара.
4. Задание на самостоятельную подготовку 2 мин.
1. Приказ МСЧ РФ № 3 от 09.01.2013 г. «Об утверждении Правил проведения личным составом ФПС ГПС аварийно – спасательных работ при тушении пожаров с использованием СИЗОД в непригодной для дыхания среде»;
2. Приказ МЧС РФ № 204 от 21.04.2016 г. «О техническом обслуживании, ремонте и хранении СИЗОД».
3. Методические рекомендации по подготовке личного состава ГДЗС ФПС МЧС России от 30.06.2008 г.;
4. Методические указания по проведению расчётов параметров работы в СИЗОД от 19.08.2013
 
 
 

 

 

 

 

////////////////////////////