Модели развития тектоносферы и земной коры

  Главная      Учебники - Геология     Общая геология. Эндогенные и экзогенные процессы (Кныш С.К.) - 2005 год

 поиск по сайту           правообладателям

 

 

 

 

 

 

 

 

 

 

 

содержание   ..  19  20  21  22  23  24 

 

 


4.1.

Модели развития тектоносферы и земной коры


Слова и словосочетания

аккреционная призма

мобилизм, фиксизм

геосинклинальные прогибы

моласса

геосинклинальный этап

орогенный этап

глубинный диапиризм

передовые (краевые) прогибы

дивергентные границы

платформенный этап

зона Беньофа

рифт

инверсия геосинклинали

спрединг, субдукция, обдукция

интрагеоантиклинали

стадия горообразования

интрагеосинклинали

тектонический цикл

коллизия

трансформные разломы

конвергентные границы



Процесс развития тектоносферы и земной коры характеризуется исключительной сложностью и может протекать в различных формах. К настоящему времени в геотектонике господствуют два направления, основанные на различных оценках роли вертикальных и горизонтальных тектонических движений.

Первое направление исходит из предположения о доминирующей роли вертикальных тектонических движений. Геологи, придерживающиеся этого направления, считают горизонтальные движения следствием вертикальных и не допускают возможности крупномасштабных горизонтальных перемещений блоков земной коры. Это направление получило название фиксизма.

Второе направление в геотектонике связывает эволюцию литосферы с крупномасштабным горизонтальным перемещением блоков, часто включающих целые континенты. Движения вертикального направления, хотя и играют значительную роль, являются при этом второстепенными, обусловленными режимом астеносферы или взаимным положением литосферных плит. Это направление получило название мобилизма.

Несмотря на принципиальные различия в толковании движущих сил и механизма геотектонических процессов, сторонники обоих направлений выделяют в процессе развития земной коры три этапа: геосинклинальный (прогибание, накопление осадков, магматизм), орогенный (складкообразование, горообразование) и платформенный (стабильные малоамплитудные колебания); этапы, в свою очередь, состоят из отдельных стадий. Эти три главных этапа развития земной коры составляют тектонический цикл.


4.1.1. тектонический цикл с позиции фиксизма


В современной форме фиксистская модель в значительной мере разработана советским тектонистом В.В. Белоусовым как гипотеза «Глубинной дифференциации вещества». В соответствии с этой моделью, развитие тектоносферы обусловлено дифференциацией вещества на границе ядра и мантии. Тяжелые компоненты присоединяются к ядру, и наращивают его, а более легкие поднимаются и скапливаются в верхах мантии на уровне астеносферы. Поступление разогретого вещества способствует выплавлению в верхних слоях мантии базальтовой магмы. Магма внедряется по глубинным разломам и частично изливается на поверхность. Это приводит к «базификации» и утяжелению литосферы, под ее тяжестью образуются геосинклинальные прогибы. Погружение холодной литосферы приводит к остыванию астеносферного вещества. Это влечет раскристаллизацию базальтовой магмы и отделение горячих растворов, с которыми связаны метаморфизм и гранитизация. В итоге утрачивается повышенная проницаемость литосферы, и мантийные диапиры не могут более в нее проникать, а лишь вызывают ее местное поднятие (инверсия геосинклинали). Одновременно в самой коре под влиянием метаморфизма и гранитизации развивается «глубинный диапиризм» и складчатость. В условиях пониженной проницаемости литосферы и при высокой степени разогрева астеносферы наступает стадия горообразования, и таким образом возникают горно-складчатые сооружения.

Комплекс эндогенных процессов, обладающих спецификой проявления на разных стадиях развития коры, определяет тектонический режим ее развития. В соответствии с этапами развития коры могут быть выделены геосинклинальный, орогенный и платформенный режимы.

В соответствии с этой моделью в составе геосинклинального этапа выделяются две стадии.

Первая стадия геосинклинального этапа (рис. 79) – раннегеосинклинальная. На этой стадии происходит геосинклинальный прогиб и интенсивное опускание. При этом происходит накопление мощных толщ терригенных осадков. Прогибание может достигать глубины 20–30 км. В этих условиях начинается дробление коры, многочисленные внедрения магмы и подводные излияния лав базитового состава. Высокое давление, температура, магматизм приводят к метаморфизму накопленных терригенных осадков. В течение этапа преобладают вертикальные нисходящие тектонические движения.

Вторая стадия – позднегеосинклинальная – характеризуется проявлением местной (частной) инверсии (сменой знака вертикальных тектонических движений) в центральной части геосинклинали. Контрастные вертикальные движения разного знака приводят к образованию центрального поднятия – интрагеоантиклинали, которая окружена двумя вытянутыми впадинами – интрагеосинклиналями. Происходит расширение бассейна, активный подводный вулканизм, накопление карбонатных и флишевых толщ.

Более сложный характер имеет орогенный этап (рис. 80), в составе которого также выделяются две стадии. Во время раннеорогенной стадии происходит превращение геосинклиналей в складчатое сооружение. Развитие горообразования приводит к частичной или полной изоляции части морского бассейна и образованию лагун на месте закладываемых передовых (краевых) прогибов. В обстановке общего тангенциального сжатия проявляется интенсивная складчатость, появляются интрузии магмы кислого состава, зарождается наземный вулканизм. В окружающих бассейнах формируются морские и лагунные осадки.

Позднеорогенная, заключительная, стадия орогенного этапа развития земной коры является кульминацией восходящих движений. В результате их образуется горная складчатая система. Рельеф высокогорный, на периферии, в зоне передовых прогибов, появляются озера, морские заливы и лагуны. Широко имеет место разломная тектоника, приводящая к образованию складчато-глыбовой структуры. Продолжается магматизм в виде кислых интрузий и наземного вулканизма. На этой стадии господствуют горизонтальные тектонические движения, начинается интенсивное разрушение гор, в краевых прогибах и межгорных впадинах накапливается мощная толща главным образом грубообломочных пород, называемая молассой.

Платформенный режим тектоносферы связывается со спокойным слабо разогретым состоянием астеносферы.

В составе платформенного этапа (рис. 81) также выделяются две стадии.

Раннеплатформенная стадия характеризуется полным прекращением вулканизма. Происходит интенсивная денудация, выравнивание рельефа, разрушение горной системы. Слабое проявление нисходящих вертикальных движений приводит к временной трансгрессии моря и накоплению практически горизонтально залегающих осадков на выровненном орогенном основании.

Завершающая, позднеплатформенная стадия эволюционного развития земной коры характеризуется медленно восходящими тектоническими движениями, регрессией моря. Режим поверхности континентальный, с хорошо развитой речной сетью, системой озер и т. д.

На этой стадии, однако, может проявиться базитовый магматизм в виде излияния платобазальтов, как, например, на Сибирской платформе, Индостане и в Бразилии, и начаться возрождение тектонических движений, при которых поднятие отдельных блоков приведет к образованию новых систем складок, заложению новых разломов и возрождению древних. Стадия завершится образованием новой горной страны складчато-глыбовой структуры, интенсивным ее разрушением и накоплением грубообломочных пород.

Таким образом, каждый участок земной коры отличается рядом особенностей эндогенных процессов, время их проявления и интенсивность целиком обусловливаются тектоническими движениями.


 

 

 

 

 

 

 

4.1.2. Тектонический цикл с позиции мобилизма


Современные представления мобилизма созданы в 60-х годах работами крупных зарубежных ученых Г. Хесса, Р. Дица и др. как гипотеза «Глобальной тектоники плит».

основные положения этой гипотезы:

  1. Земная кора и самая верхняя часть мантии составляют упругую и относительно хрупкую верхнюю твердую оболочку Земли – литосферу. Внизу, под ней имеется менее вязкая и более пластичная оболочка – астеносфера.

  2. Литосфера разделена на 6–8 крупных плит, жестких и внутренне монолитных, вдоль границ этих плит концентрируется практически вся тектоническая активность. Границы плит намечаются по распределению очагов землетрясений.

  3. Литосферные плиты испытывают друг относительно друга смещения трех типов: раздвиг в рифтовых зонах (такие границы именуются дивергентными, или границы разрастания); сжатие в зонах Беньофа (конвергентные или поглощающие); сдвиг вдоль трансформных разломов (трансформные или скользящие).

В зонах раздвига (спрединга) срединно-океанических хребтов рождается новая океаническая кора, а в зонах Беньофа она погружается и поглощается мантией (процесс субдукции). Предполагается, что субдукция полностью компенсирует спрединг. Таким образом, объем Земли остается неизменным.

4. Причиной относительного перемещения литосферных плит считается тепловая (или гравитационная) конвекция вещества в мантии Земли. Рифты срединно-океанических хребтов располагаются над восходящими ветвями конвективных ячеек, а зоны Беньофа совпадают с нисходящими ветвями. Таким образом, океаническая литосфера двигается от рифтов к зонам Беньофа.

В соответствии с мобилистскими представлениями, в составе геосинклинального этапа (рис. 82) выделяются три стадии. На предгеосинклинальной стадии происходит растяжение континентальной коры с заложением прогиба, появлением глубинных разрывов, образующих региональную грабенообразную структуру, называемую рифтом. Растяжения доминируют и на следующей, раннегеосинклинальной стадии, на которой под действием поднимающегося из мантии разогретого астеносферного вещества происходит прерывистое раздвигание блоков литосферы с образованием молодой океанической литосферы. Этот процесс получил название спрединга. Одновременно происходит – погружение новообразованной океанической литосферы под одну из континентальных окраин. Погружаемая в астеносферу океаническая литосфера плавится, в результате этого легкие алюмосиликатные расплавы поднимаются вверх и образуют интрузии и действующие вулканы. Такой компенсационный процесс называется субдукцией.

Позднегеосинклинальная стадия характеризуется общим сжатием и интенсивной субдукцией, способствующей наращиванию континентальной коры.

Орогенный этап (рис. 83), как и геосинклинальный, также содержит три стадии. На раннеорогенной стадии продолжается региональное сжатие. В результате субдукции континентальные плиты сближаются, при этом с поверхности океанического дна соскабливается часть осадков и образует аккреционную призму.

Позднеорогенная стадия завершается полной регрессией моря, горообразованием в результате столкновения (коллизии) континентов и образованием чешуи наползания одних блоков на другие.

В заключительную стадию орогенного этапа деформации сжатия сменяются региональными растяжениями блоков литосферы, при этом отдельные участки континентальных плит становятся тоньше, здесь закладывается прогиб – возможный предвестник будущего рифта. Вулканизм прекращается, на поверхности коры господствуют континентальные условия с интенсивными процессами денудации и выравнивания рельефа.

Эти же процессы господствуют и на следующем, платформенном этапе развития коры, близком к описанному в фиксистской модели. Необходимо, однако, учитывать допускаемую мобилистами возможность горизонтальных перемещений континентальных блоков (в составе литосферных плит) и их дробления в эпохи тектонической активизации.

В составе платформенного этапа выделяются три стадии. На стадии кратонизации завершаются процессы консолидации новообразованной континентальной коры и денудации поверхности платформы. Вторая стадия, авлакогенная, характеризуется заложением протяженных систем глубинных разломов, по которым осуществляются сбросовые перемещения блоков с образованием крупных грабенообразных структур – авлакогенов. На следующей, плитной стадии, происходит дальнейшая эволюция платформ с обособлением структур различного порядка и накоплением пологозалегающих толщ осадочных пород – продуктов разрушения складчатых сооружений и седиментации континентальных бассейнов.

 

 

 

 

содержание   ..  19  20  21  22  23  24