|
|
СТО Газпром 2-3.5-113-2007
ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ГАЗПРОМ"
Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ"
Общество с ограниченной ответственностью "Информационно-рекламный центр газовой промышленности"
СТАНДАРТ ОРГАНИЗАЦИИ
ДОКУМЕНТЫ НОРМАТИВНЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ, СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ ОАО "ГАЗПРОМ"
МЕТОДИКА ОЦЕНКИ ЭНЕРГОЭФФЕКТИВНОСТИ ГАЗОТРАНСПОРТНЫХ ОБЪЕКТОВ И СИСТЕМ
СТО Газпром 2-3.5-113-2007
ОКС 75.180.01
Дата введения - 2007-11-15
Предисловие
1 РАЗРАБОТАН Обществом с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ"
2 ВНЕСЕН Отделом энергосбережения и экологии Департамента по транспортировке, подземному хранению и использованию газа ОАО "Газпром"
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Распоряжением ОАО "Газпром" от 12 марта 2007 г. № 39 с 15 ноября 2007 г.
4 ВВЕДЕН ВПЕРВЫЕ
1 Область применения
Настоящий стандарт устанавливает: - состав показателей энергоэффективности технологических объектов газотранспортных систем (газоперекачивающих агрегатов, компрессорных цехов, компрессорных станций); - порядок расчета показателей энергоэффективности технологических объектов магистрального транспорта газа; - порядок анализа эффективности расходования газа, электроэнергии на собственные технологические нужды технологических объектов газотранспортных систем. Положения настоящего стандарта обязательны для применения: - структурными подразделениями ОАО "Газпром", ответственными за транспорт природного газа; - газотранспортными дочерними обществами (организациями) ОАО "Газпром"; - дочерними обществами (организациями) ОАО "Газпром", ответственными за корпоративный контроль эффективности расходования газа и электроэнергии на собственные технологические нужды газотранспортных систем; - специализированными энергоаудиторами, выполняющими работы на объектах дочерних обществ и организаций ОАО "Газпром".
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты: ГОСТ 8.563.1-97 Измерение расхода и количества жидкостей и газов методом переменного перепада давления. Диафрагмы, сопла ИСА 1932 и трубы Вентури, установленные в заполненных трубах круглого сечения. Технические условия ГОСТ 8.563.2-97 Измерение расхода и количества жидкостей и газов методом переменного перепада давления. Методика выполнения измерений с помощью сужающихся устройств ГОСТ 8.563.3-97 Измерение расхода и количества жидкостей и газов методом переменного перепада давления. Процедура и модуль расчетов. Программное обеспечение ГОСТ 20440-75 Установки газотурбинные. Методы испытаний ГОСТ Р 51387-99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения ГОСТ Р 51541-99 Энергосбережение. Энергетическая эффективность. Состав показателей. Общие положения СТО Газпром 3.3-2-001-2006 Методика нормирования электроэнергии на собственные технологические нужды транспорта газа СТО Газпром 2-3.5-051-2006 Нормы технологического проектирования магистральных газопроводов
Примечание - При пользовании настоящим стандартом следует проверить действие ссылочных стандартов по соответствующим указателям, составленным на 1 января текущего года, и информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины и определения
В настоящем стандарте использованы следующие термины с соответствующими определениями: 3.1 коэффициент полезного действия: Величина, характеризующая совершенство процессов превращения, преобразования или передачи энергии, являющаяся отношением полезной энергии к подведенной. [ГОСТ Р 51387, приложение А]
3.2 показатель энергетической эффективности: Абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов для продукции любого назначения или технологического процесса. [ГОСТ Р 51387, приложение А] 3.3 показатели локальной энергоэффективности: Показатели, характеризующие собственную энергоэффективность объектов газотранспортной системы, отражающие технический уровень и техническое состояние без учета их энергетического вклада в работу газотранспортной системы. 3.4 показатели системной энергоэффективности: Показатели, характеризующие энергоэффективность газотранспортной системы с учетом энергетической взаимозависимости входящих в него объектов, учитывающие режим их совместной работы (энергетический вклад каждого объекта в работу системы). 3.5 средство измерения: Техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики. 3.6 товаротранспортная работа: Показатель, характеризующий объем производства газопровода (газопроводов) и представляющий собой условную работу по перемещению единицы объема транспортируемого газа на единицу длины участка газопровода (газопроводов). 3.7 удельный расход топливного газа (электроэнергии): Показатель энергоэффективности, характеризующий величину расхода природного газа (электроэнергии) газоперекачивающим агрегатом, компрессорным цехом, компрессорной станцией, газотранспортной системой на единицу выполняемой полезной работы.
Примечание - В качестве полезной работы, совершаемой газоперекачивающим агрегатом, компрессорным цехом, компрессорной станцией, используется политропная работа сжатия.
Если совершаемая полезная работа не может быть подсчитана непосредственно в физических единицах, то в качестве удельного показателя выбирают отношение расхода топлива или энергии к величине, косвенно (по однозначности) характеризующей совершаемую работу, или отношение к единице продукции. [ГОСТ Р 51541] В соответствии с ГОСТ Р 51541 в качестве величины, косвенно характеризующей работу, совершаемую газотранспортной системой, принята эквивалентная товаротранспортная работа. 3.8 эквивалентная товаротранспортная работа: Показатель, характеризующий объем производства газопровода (газопроводов) и представляющий собой условную работу по перемещению единицы объема транспортируемого газа на единицу длины эквивалентного участка газопровода (газопроводов). 3.9 эквивалентный участок газопровода: Участок газопровода с эталонными параметрами, длина которого подобрана таким образом, чтобы удовлетворить требованию равенства разности квадратов давлений на его концах разности квадратов давлений на концах реального участка газопровода.
4 Сокращения и обозначения
4.1 Сокращения В настоящем стандарте применены следующие сокращения: АВО - аппарат воздушного охлаждения; ГПА - газоперекачивающий агрегат; ГТС - газотранспортная система; ГТУ - газотурбинная установка; КИП - контрольно-измерительный прибор; КПД - коэффициент полезного действия; КЦ - компрессорный цех; КС - компрессорная станция; ЛПУ - линейное производственное управление; ОК - осевой компрессор; ПДС - производственно-диспетчерская служба; ПТН - прочие технологические нужды; СИ - средство измерений; СКЗ - система катодной защиты; СТН - собственные технологические нужды; ТГ - топливный газ; ТП - технологические потери; ТЭР - топливо энергетические ресурсы; ЦБН - центробежный нагнетатель; ЭГПА - электроприводной газоперекачивающий агрегат; ЭП - электропривод; ЭСН - электростанция собственных нужд; ЭТТР - эквивалентная товаротранспортная работа.
4.2 Обозначения 4.2.1 В настоящем стандарте применены следующие обозначения: q - объемный расход газа в единицу времени при нормальных условиях (при температуре t = 20 °С, атмосферном давлении Рa = 1 атм), млн м3/ч; G - массовый расход газа в единицу времени при нормальных условиях, кг/с; Q - объем газа, расходуемый за расчетный период времени, м3; N - мощность, кВт; h - коэффициент полезного действия, безразмерный или %; W - расход электроэнергии за определенный период времени, кВт×ч; L - политропная работа сжатия природного газа, выполняемая ГПА, КЦ, КС за определенный период времени, кВт×ч; Е - обозначение показателей локальной энергоэффективности объектов ГТС; Э - обозначение показателей системной энергоэффективности объектов ГТС; e - степень повышения давления газа, безразмерная величина; t - температура, °С; T - температура, К; Р - абсолютное давление газа, МПа; z - коэффициент сжимаемости газа, безразмерная величина; А - обозначение товаротранспортной работы. 4.2.2 Индексы обозначений параметров В настоящем стандарте применены следующие индексы: 1, 2 - значения параметра на входе и выходе; в - воздух; ГГПА - газотурбинный газоперекачивающий агрегат; гтс - газотранспортная система; гту - газотурбинная установка; е - эффективное значение; кс - компрессорная станция; кц - компрессорный цех; лч - линейная часть; м - механический; н - нагнетатель; пол - политропный; рец - рециркуляция; стн - собственные технологические нужды; тг - топливный газ; ттр - товаротранспортная работа; тэр - топливно-энергетические ресурсы; ЭГПА - электроприводной газоперекачивающий агрегат; эк - электроэнергия, расходуемая на компримирование; эп - электропривод; эттр - эквивалентная товаротранспортная работа.
5 Показатели энергоэффективности газоперекачивающего агрегата
5.1 Состав показателей энергоэффективности газоперекачивающего агрегата Для оценки эффективности расходования ТЭР ГПА используют показатели энергоэффективности, представленные в таблице 5.1.
Таблица 5.1
Показатели энергоэффективности ГПА
5.2 Коэффициент полезного действия газоперекачивающего агрегата 5.2.1 КПД ГПА с газотурбинным приводом, hГГПА, вычисляется по формуле hГГПА = hе×hпол, (1) где hе - эффективный КПД ГТУ; hпол - политропный КПД ЦБН. Эффективный КПД ГТУ вычисляется согласно ПР 51-31323949-43-99 [1]:
где Nе - эффективная мощность на муфте привода, кВт; Gтг - массовый расход ТГ, кг/с, измеряется согласно ГОСТ 20440;
Эффективная мощность на муфте привода вычисляется по формуле
где hм - механический КПД ЦБН - принимается равным 0,985 или оценивается при проведении специальных испытаний; Ni - внутренняя мощность ЦБН, кВт. Внутренняя мощность ЦБН вычисляется согласно ПР 51-31323949-43-99 [1]:
где zср - среднее значение коэффициента сжимаемости природного газа; Т1н, Т2н - температура газа на входе и выходе группы (нагнетателя), К; Gн - массовая производительность ЦБН, кг/с, определяемая по результатам измерений; qн - коммерческая производительность ЦБН, млн м3/сут; R - газовая постоянная, кДж/кг×К. Температура газа на входе и выходе группы (нагнетателя) вычисляется по формуле Т1н = t1н + 273,15; (5) Т2н = t2н + 273,15, где t1н, t2н - температура на входе и выходе ЦБН, °С, измеряется согласно ГОСТ 20440. Показатель псевдоизоэнтропы вычисляется по формуле
где tср - среднее значение температуры, °С; Dв - относительная плотность газа по воздуху; mТ - температурный показатель политропы, вычисляется по формуле
P1н, P2н - абсолютное давление газа на входе и выходе группы ЦБН, МПа - измеряют согласно ГОСТ 20440. Среднее значение температуры вычисляют по формуле
Относительную плотность газа по воздуху вычисляют по формуле
где r0 - плотность природного газа при 20 °С и 0,1013 МПа, кг/м3; используются данные химлаборатории. Среднее значение коэффициента сжимаемости природного газа вычисляется по формуле
где z1н, z2н - коэффициенты сжимаемости природного газа на входе и выходе ЦБН. Коэффициенты сжимаемости природного газа вычисляются согласно РД 153-39.0-112-2001 [2] по формулам z1н = 1 - [(10,2×Plн - 6)(0,345×10-2×Dв - 0,446×10-3) + 0,015]×[1,3 - 0,0144×(Т1н - 283,2)]; (11) z2н = 1 - [(10,2×P2н - 6)(0,345×10-2×Dв - 0,446×10-3) + 0,015]×[1,3 - 0,0144×(Т2н - 283,2)]; (12) Политропный КПД ЦБН вычисляется согласно ПР 51-31323949-43-99 [1]:
5.2.2 КПД ЭГПА, hЭГПА, вычисляется по формуле hЭГПА = hэдв×hр×hпол. (14) где hэдв - КПД электродвигателя; используются паспортные данные из таблицы А.1 (приложение А); hр - КПД редуктора (мультипликатора), таблица А.1 (приложение А). 5.2.3 Для анализа причин возможного снижения показателей энергоэффективности ГПА согласно СТО Газпром 2-3.5-051 используются показатели технического состояния ГТУ и ЦБН: kNe - коэффициент технического состояния ГТУ по мощности; kтг - коэффициент технического состояния ГТУ по топливному газу; kн – коэффициент технического состояния ЦБН; kр – режимный коэффициент работы нагнетателя. 5.2.3.1 Коэффициент технического состояния ГТУ по мощности вычисляется по формуле
где
Ра - барометрическое давление, МПа, измеряется; Т3 - температура на входе компрессора, К, измеряется. 5.2.3.2 Коэффициент технического состояния ГТУ по топливному газу вычисляется по формуле
где
5.2.3.3 Коэффициент технического состояния ЦБН вычисляется по формуле
где
Приведенный объемный фактический расход
газа
где пн - фактическая частота вращения ротора нагнетателя (силовой турбины), об/мин, измеряется (пример в таблице Б.1 приложения Б); 5.2.3.4 Режимный коэффициент работы нагнетателя вычисляется по формуле
где
Допускается принимать постоянство kн во
всем рабочем диапазоне приведенного объемного расхода газа
Исходная расходно-напорная характеристика, т.е. функция "политропный напор (степень повышения давления) - объемный расход на входе" справедлива при скорректированной номинальной частоте вращения, которая вычисляется по формуле
nн = Значения политропного КПД ЦБН корректируются с учетом полученного значения kн.
hпол = kн×
5.3 Удельный расход топливного газа газотурбинного газоперекачивающего агрегата
Удельный расход ТГ ГПА с газотурбинным
приводом
Если низшая теплота сгорания природного газа выражается в кДж/м, то формула (24) примет вид
5.4 Удельный расход электроэнергии на компримирование электроприводного газоперекачивающего агрегата
Удельный расход электроэнергии на
компримирование ЭГПА
Пример расчета и оценки показателей энергоэффективности ГПА представлен в приложении Б.
6 Показатели энергоэффективности компрессорного цеха
6.1 Состав показателей энергоэффективности компрессорного цеха Для оценки эффективности расходования ТЭР КЦ используют локальные и системные показатели энергоэффективности, представленные в таблице 6.1.
Таблица 6.1
Показатели энергоэффективности КЦ
6.2 Коэффициент полезного действия компрессорного цеха Коэффициент полезного действия КЦ hкц вычисляется по формуле hкц = kс×kрец×hн, (27) где kс - коэффициент гидравлических сопротивлений обвязки КЦ; kрец - коэффициент рециркуляции газа в технологической обвязке КЦ; hн - эксплуатационный КПД ЦБН. Коэффициент kс вычисляется по формуле
где kад.сж. - коэффициент адиабатического сжатия, для расчетов принимается равным kад.сж. = 0,22¸^0,25;
eкц - степень повышения давления КЦ. Степень повышения давления газа в КЦ вычисляется по формуле
где Р1кц, Р2кц - средние абсолютные давления на входе нагнетателей первой ступени и на выходе нагнетателей последней ступени сжатия, МПа, вычисляемые по формулам
где п - количество работающих ГПА в КЦ. Коэффициент kс рассчитывается с помощью таблицы 6.2, в которой представлены коэффициенты влияния гидравлических сопротивлений коммуникаций цеха в зависимости от степени сжатия.
Таблица 6.2
Коэффициенты влияния гидравлических сопротивлений коммуникаций цеха в зависимости от степени повышения давления газа КЦ
Коэффициент рециркуляции вычисляется по формуле
где qкц - расход транспортируемого газа через КЦ, тыс. м3/ч, измеряют (или используют расчетные данные ПДС); x - количество рециркуляционных контуров. Эксплуатационный КПД ЦБН вычисляется по формуле
hн = kн×kр×hм×
где kн - коэффициент технического состояния ЦБН, вычисляется по формуле 19; kр - режимный коэффициент работы нагнетателя, вычисляется по формуле 21; hм - механический КПД нагнетателя.
6.3 Удельный расход топливного газа компрессорного цеха
Удельный расход ТГ КЦ
где Lкц - политропная работа сжатия КЦ за расчетный период времени, кВт×ч. Политропная работа сжатия КЦ вычисляется по формуле
Lкц =320,25×z1кц×Т1кц×Qкц( где z1кц - коэффициент сжимаемости газа на входе в КЦ; Т1кц - температура газа на входе в КЦ, К, измеряется; Qкц - объем газа, транспортируемого КЦ за расчетный период времени, млн м3; измеряется (или используются расчетные данные ПДС). Коэффициент сжимаемости газа по параметрам на входе в КЦ вычисляется по формуле z1кц = 1 - [(10,2Р1кц - 6)(0,345×10-2×Dв - 0,446×10-3) + 0,015]×[1,3 - 0,0144(Т1кц - 283,2)], (36) где Dв - вычисляется по формуле (9).
6.4 Удельный расход газа на прочие технологические нужды компрессорного цеха
Удельный расход газа на прочие
технологические нужды КЦ
где t - календарное время работы КЦ, ч;
ni - количество ГПА i-го типа в КЦ; r - общее количество ГПА, установленных в КЦ.
Показатель - продувка пылеуловителей и фильтров-сепараторов; - стравливание и продувка контуров нагнетателей при остановке и запуске ГПА; - стравливание газа из коммуникаций КЦ при планово-профилактических работах и ремонте; - использование природного газа на пневмопривод запорно-регулирующей арматуры и др.
6.5 Удельные технологические потери газа компрессорного цеха
Удельные технологические потери газа КЦ
где
6.6 Удельный расход электроэнергии на компримирование газа компрессорным цехом
Удельный расход электроэнергии на
компримирование газа КЦ
где
6.7 Цельный расход топливно-энергетических ресурсов на собственные технологические нужды компрессорного цеха
Удельный расход ТЭР на СТН КЦ
где
kг - коэффициент перевода природного газа в условное топливо, вычисляемый по формуле
kэ - коэффициент перевода электроэнергии в условное топливо, принимается kэ = 0,325. Объем газа, расходуемого на СТН КЦ, вычисляется по формуле
Расход электроэнергии на СТН КЦ вычисляется по формуле
где
DWкц - потери электроэнергии в КЦ, рассчитываются согласно [3].
Примечание - Расход электроэнергии на прочие технологические нужды КЦ включает расход электроэнергии на следующие электропотребители: электродвигатели АВО газа, вспомогательные механизмы ГПА (АВО масла, двигатели вентиляции ГТУ, задвижек и др.) и системы автоматики, электродвигатели вентиляции, циркуляционные насосы, воздушные компрессоры, питание узлов связи, освещение цехов, промплощадок, электрообогрев помещений и др.
Пример расчета и оценки показателей энергоэффективности КЦ представлен в приложении В.
6.8 Удельный показатель эффективности расхода газа на собственные технологические нужды компрессорного цеха
Удельный показатель эффективности расхода
газа на СТН КЦ,
где
с1 - константа для согласования размерностей, при измерении давлений Р1кц, Р2кц в кгс/см2 принимается равной 10,138; vкц - коэффициент, учитывающий потери давления в обвязке КЦ, определяемый по формуле
DР1кц, DР2кц - потери давления в технологических коммуникациях на входе и выходе КЦ, МПа, измеряется.
6.9 Удельный показатель эффективности расхода электроэнергии на собственные технологические нужды компрессорного цеха
Удельный показатель эффективности расхода
электроэнергии на СТН КЦ
6.10 Удельный показатель эффективности расхода топливно-энергетических ресурсов на собственные технологические нужды компрессорного цеха
Удельный показатель эффективности расхода
ТЭР на СТН КЦ
7 Показатели энергоэффективности компрессорной станции
7.1 Состав показателей энергоэффективности компрессорной станции Для оценки эффективности потребления ТЭР на СТН КС используются показатели локальной и системной энергоэффективности, представленные в таблице 7.1.
Таблица 7.1
Показатели энергоэффективности КС
7.2 Удельный расход топливно-энергетических ресурсов на собственные технологические нужды компрессорной станции Удельный расход ТЭР на СТН КС вычисляется по формуле
где Lкс - политропная работа сжатия КС за расчетный период времени, тыс. кВт×ч. Суммарный расход ТЭР КС вычисляется по формуле
где
Объем природного газа, расходуемый на СТН КС, вычисляется по формуле
где
Объем топливного газа, расходуемого КС, вычисляется по формуле
где S1 - количество КЦ с газотурбинным приводом. Объем газа, расходуемого на прочие технологические нужды КС, вычисляется по формуле
где
S - количество КЦ. Технологические потери газа КС вычисляются по формуле
где Расход электроэнергии на СТН КС вычисляется по формуле
где
DWкц -потери электроэнергии КС за расчетный период, тыс. кВт×ч. Расход электроэнергии КС на компримирование вычисляется суммированием по всем КЦ:
где S2 - количество КЦ с электроприводом. Расход электроэнергии на ПТН КС вычисляют по формуле
где
Потери электроэнергии КС вычисляются по формуле
где DWп/п - потери электроэнергии на промплощадке ЛПУ, тыс. кВт×ч, рассчитываются согласно [3].
Примечание - К общестационарным электропотребителям относятся электропотребители системы отопления (котельные, насосы); системы водоснабжения и канализации (скважины, водозаборы, насосы, очистные сооружения, канализационно-насосные станции); наружного освещения территории КС и узла подключения; собственных нужд электрических подстанций и распредустройств (освещение, отопление, охлаждение трансформаторов); административных зданий и помещений; складских помещений и т.д.
Политропная работа сжатия КС, Lкс, тыс. кВт×ч, вычисляется по формуле
7.3 Удельный показатель эффективности расхода топливно-энергетических ресурсов на собственные технологические нужды компрессорной станции
Удельный показатель эффективности расхода
ТЭР на СТН КС
где
Пример расчета и оценки системных показателей энергоэффективности КС представлен в приложении Г.
8 Показатели энергоэффективности газотранспортной системы
8.1 Состав показателей энергоэффективности газотранспортной системы Для оценки эффективности расхода ТЭР ГТС используют показатели энергоэффективности, представленные в таблице 8.1. Таблица 8.1
8.2 Удельный показатель эффективности расхода топливно-энергетических ресурсов на собственные технологические нужды газотранспортной системы
8.2.1 Суммарный расход ТЭР на СТН ГТС,
где
Объем газа, расходуемого на СТН ГТС, вычисляется по формуле
где
Топливный газ, расходуемый ГТС, вычисляется по формуле
где R - количество КС. Объем газа, расходуемого на ПТН ГТС, вычисляется по формуле
где F - количество участков ЛЧ. Технологические потери газа ГТС вычисляются балансовым методом согласно [5]. Количество электроэнергии, расходуемой на СТН ГТС, вычисляется по формуле
где
Расход электроэнергии на компримирование газа в ГТС вычисляют по формуле
где Расход электроэнергии на прочие технологические нужды ЛЧ вычисляют по формуле
где
8.2.2 ЭТТР ГТС
где Авх - ЭТТР, соответствующая энергетическому потенциалу, полученному в начале газопровода (от газодобывающего или газотранспортного дочернего общества), млн м3×км;
Апост - ЭТТР, соответствующая энергетическому потенциалу, получаемому с путевыми поступлениями газа, млн м3×км; Aотб - ЭТТР, соответствующая энергетическому потенциалу, отдаваемому с путевыми отборами газа (потребители, межсистемные перетоки), млн м3×км; Авых - ЭТТР, соответствующая энергетическому потенциалу, отдаваемому следующему газопроводу (газотранспортному предприятию), млн м3×км. Составляющую Авх вычисляют по формуле
Aвх = c где Рвх, Qвх - давление и объем газа, поступившего в начале газопровода, кгс/см2 и млн м3, измеряется; с - коэффициент согласования размерностей, при измерении давления в кгс/см2 принимается равным 3,912×10-2. Составляющую Авых вычисляют по формуле
Aвых = c где Рвых, Qвых - давление и объем отбора газа в конце газопровода, кгс/см2 и млн м3, измеряются. Составляющую Апост вычисляют по формуле
Апост = где I - количество притоков газа;
Составляющую Аотб вычисляют по формуле
Аотб = где J - количество отборов газа;
ЭТТР КС
Составляющую
где c1 = 10,138 - коэффициент для согласования размерностей при измерении Р1кц в кгс/см2.
8.2.3 Удельный показатель эффективности
использования ТЭР на СТН ГТС
8.3 Удельный показатель эффективности расхода топливного газа газотранспортной системой
Удельный показатель эффективности расхода
топливного газа ГТС
где S1 - количество КЦ с газотурбинными ГПА.
8.4 Удельный показатель эффективности расхода электроэнергии на компримирование газа газотранспортной системой
Удельный показатель эффективности
использования электроэнергии на компримирование газа в ГТС
где S2 - количество КЦ с ЭГПА.
8.5 Удельный показатель эффективности расхода газа на собственные технологические нужды газотранспортной системы
Удельный показатель эффективности
использования природного газа на СТН ГТС
8.6 Удельный показатель эффективности расхода электроэнергии на собственные технологические нужды газотранспортной системы
Удельный показатель эффективности расхода
электроэнергии на СТН ГТС
8.7 Удельный показатель энергоэффективности линейного участка Удельный показатель энергоэффективности линейного участка Элу, млн м3×км/км, вычисляется по формуле
где lлу - длина линейного участка, км;
Рн, Рк - давление в начале и конце линейного участка, кгс/см2; Qлу - объем газа, транспортируемого по линейному участку за расчетный период времени, млн м3.
8.8 Удельный расход газа на собственные технологические нужды газотранспортной системы
Удельный расход газа на СТН ГТС
где
Qi - объем газа, транспортируемого по i-му участку ГТС, млрд м3; при расчете используются данные ПДС; F - количество линейных участков. Пример расчета и оценки системных показателей энергоэффективности ГТС представлен в приложении Д.
9 Требования к точности расчета показателей энергоэффективности
9.1 Порядок расчета погрешностей показателей энергоэффективности 9.1.1 В общем виде формулы расчета показателей энергоэффективности представляют в виде функциональной зависимости У = Р(х1, х2 ... хn), (86), где У - показатель энергоэффективности; х1, х2 ... хn - входящие в формулу параметры (расход газа, механическая мощность, давление, температура, количество электрической энергии, электрическая мощность и др.). Параметры измеряются или рассчитываются по определенным зависимостям. Погрешности результатов измерений или расчетов параметров вызваны инструментальными или методическими погрешностями. 9.1.2 Порядок оценки погрешностей результатов расчетов показателей энергоэффективности согласно РМГ 43-2001 [6] состоит в следующем: - проводится анализ уравнений измерения (расчетных формул); - выявляются все источники погрешностей (неопределенностей) измерений (расчета) и производится их количественное оценивание; - вводятся поправки на систематические погрешности (эффекты), которые можно исключить. 9.1.3 В качестве характеристики оценки погрешности расчёта показателя энергоэффективности используется суммарное среднеквадратическое отклонение (СКО), Sy, характеризующее случайные погрешности результатов измерений (расчета) параметров, входящих в формулу расчета показателя. Считая, что случайные погрешности параметров распределены по нормальному закону и не коррелированны между собой; СКО оценки погрешности показателя энергоэффективности определяют согласно РМГ 43-2001 [6] по формуле
где s[xi] - i-е СКО оценки параметров, входящих в формулу (86). 9.1.4 СИ должны быть из числа внесенных в Государственный реестр средств измерений, допущенных к применению в Российской Федерации, и иметь действующие свидетельства о проверке.
9.2 Пример оценки среднеквадратичной погрешности расчета показателей энергоэффективности 9.2.1 Расчет СКО оценки погрешности расчета коэффициента полезного действия ГПА. Формула расчета показателя энергоэффективности ГПА имеет следующий вид: hГГПА = hс×hпол.
СКО оценки относительной погрешности расчета
КПД ГГПА
где s[dhе] - СКО относительной погрешности расчета КПД ГТУ; s[dhпол] - СКО относительной погрешности расчета КПД ЦБН. К точности результатов измерений и расчета параметров, входящих в формулу (88) предъявляют следующие требования: - СКО относительной погрешности оценки КПД нагнетателя - не более ±3%; - СКО относительной погрешности измерения расхода газа через нагнетатель - не более ±4%; - СКО относительной погрешности оценки мощности на муфте ГПА - не более ±5%; - СКО относительной погрешности измерения расхода топливного газа ГТУ - не более ±3,5%. С учетом этих требований СКО оценки относительной погрешности расчета КПД ГГПА будет равно или меньше
9.2.2 Расчет оценки СКО погрешности удельного расхода топливного газа КЦ. Формула расчета показателя энергоэффективности КЦ имеет следующий вид:
СКО оценки относительной погрешности расчета
удельного расхода топливного газа КЦ
где s
s
Расход топливного газа измеряется с помощью
СИ в соответствии с ГОСТ 8.563.1, ГОСТ 8.563.2, ГОСТ 8.563.3. Считают,
что входящая в выражение (90) погрешность измерения расхода топливного
газа КЦ
Требования к точности измерений расхода
топливного газа КЦ формируются на основе класса точности современных
технических СИ расхода газа - величина СКО относительной погрешности
измерения расхода топливного газа КЦ не должна превышать s Относительная погрешность расчета политропной работы КЦ dLкц с учетом формулы (35) вычисляется по формуле dLкц = dQкц + dz1кц + dT1кц + 0,3(dP2 - dP1), (91) где dQкц - относительная погрешность измерения расхода газа, транспортируемого КЦ; dz1кц - относительная погрешность расчета коэффициента сжимаемости газа на входе в КЦ; dT1кц - относительная погрешность измерения температуры газа на входе в КЦ; dP1, dP2 - относительные погрешности измерения давления газа на входе и выходе КЦ. Слагаемые, входящие в выражение (91), обусловлены случайными погрешностями измерений и расчета соответствующих величин. СКО оценки относительной погрешности расчета политропной работы КЦ определяется по формуле
s
где Требования к точности измерений и расчета входящих в выражение (92) параметров:
- СКО относительной погрешности результата
измерения расхода газа, транспортируемого КЦ
- СКО относительной погрешности расчета
коэффициента сжимаемости газа
- СКО относительной погрешности результата
измерения температуры газа на входе в КЦ
- СКО относительной погрешности результата
измерения давления газа на входе и выходе из КЦ
Расход газа, транспортируемого КЦ,
рассчитывается на основе измерений перепада давления на входных
устройствах (конфузоров) нагнетателей с помощью нестандартных сужающих
устройств согласно ГОСТ 8.563.2. С учетом их поверки в соответствии с
[6] величина
Примечание - При отсутствии измерений расхода газа через ЦБН по конфузору можно определять расход транспортируемого газа КЦ косвенным методом, используя характеристику ЦБН "приведенная относительная внутренняя мощность - приведенная объемная производительность" в соответствии с "Инструкцией по определению производительности центробежных нагнетателей, компрессорных цехов и станций [7] и "Каталогом газодинамических характеристик ЦБК природного газа" [8].
Величина СКО оценки относительной
погрешности расчета удельного расхода топливного газа КЦ не должна
превышать Инструментальные измерения в КЦ являются базовыми, поскольку включают получение необходимых параметров для оценки энергоэффективности ГПА, КЦ, КС. Требования к точности расчетов должны обеспечиваться СИ, представленными в таблице Ж.1 (приложение Ж). 9.2.3 Аналогичным способом рассчитывают оценки погрешности показателей энергоэффективности КЦ, расчет которых представлен в формулах (27), (37), (39), (40), (41), (49), (50). Требования к точности расчета показателей энергоэффективности ГПА, КЦ представлены в таблице 9.1. 9.2.4 Оценка погрешностей показателей энергоэффективности КС, ГТС определяется на основе формулы (87) с учетом требований к погрешностям СИ технического учета расхода газа и электроэнергии на СТН входящих в них технологических объектов.
Таблица 9.1
Требования к точности расчета показателей энергоэффективности ГПА, КЦ
Приложение А (рекомендуемое)
Справочные данные по характеристикам газоперекачивающих агрегатов
Таблица А.1
Основные технические характеристики электроприводных ГПА
Таблица А.2
Номинальные параметры газотурбинных ГПА
Приложение Б (рекомендуемое)
Пример расчета и анализа показателей энергоэффективности газоперекачивающего агрегата
Пример расчета показателей оценки энергоэффективности ГПА представлен в таблицах Б.1, Б.2, Б.3. В таблице Б.1 приведены основные измеренные параметры, необходимые для определения показателей энергоэффективности ГПА. Расчетные формулы и результаты расчета теплотехнических и газодинамических параметров газотурбинных ГПА представлены в таблице Б.2. Расход компримируемого газа определен по перепаду давления на конфузорах нагнетателей и параметрам газа на входе нагнетателей. Расход топливного газа определен с помощью нормальных диафрагм, установленных на топливном коллекторе каждого ГПА. Расчет характеристик диафрагм и расхода топливного газа выполнен в соответствии с ГОСТ 8.563.1, ГОСТ 8.563.2, ГОСТ 8.563.3. Физические константы природного газа рассчитаны по его химическому составу. Эффективная мощность газотурбинного привода определена по параметрам компримируемого газа, а эффективный КПД - по расходу топливного газа согласно формуле (2). Номинальные значения мощности и эффективного КПД ГТУ определяются при номинальном значении параметра, задействованного в автоматической защите агрегата (в данном случае - частота вращения компрессора низкого давления). Показатели ГТУ определены для станционных условий (при фактических сопротивлениях всасывающего и выхлопного трактов) и стандартных условий атмосферного воздуха (Ра = 101,32 кПа, Та =288 К). Результаты расчета показателей энергоэффективности и технического состояния ГПА представлены в таблице Б.3. Анализ результатов измерений и расчетов показывает, что фактические показатели ГТУ по мощности и КПД ниже их паспортных (номинальных) значений. Ограничение загрузки ГТУ по мощности связано с ограничением по частоте вращения компрессора низкого давления. Эффективная мощность ГТУ агрегатов находится в пределах от 12,1 до 12,2 МВт. Коэффициенты технического состояния ГТУ по мощности находятся в пределах 0,71¸0,79.
Таблица Б.1
Измеряемые параметры ГПА в КЦ
Таблица Б.2
Результаты расчета показателей энергоэффективности ГПА
_____________ zтг - вычисляют по формуле (11) для исходных данных.
Таблица Б.3
Результаты расчета показателей энергоэффективности и технического состояния ГПА
|