Специальные способы солодоращения

  Главная      Учебники - Виноделие     Технология спирта и ликёроводочных изделий

 поиск по сайту

 

 

 

 

 

 

 

 

 

 

 

содержание   ..  20  21  22  23  24  25  26  27  28  29  30  ..

 

 

Специальные способы солодоращения

Цель применения специальных способов солодоращения – снижение потерь при солодоращении и сокращение продолжительности проращивания. Специальные способы солодоращения подразделяют на физические, основанные на использовании физических факторов (прежде всего факторов проращивания), и химические, основанные на применении химических соединений для ускорения или торможения процесса проращивания.

К физическим относятся углекислотный способ и способ повторного замачивания. При применении интенсивных способов солодоращения в качестве добавок используют гибберелловую кислоту и другие активаторы, вносимые по отдельности или в соединении с ингибиторами.

Применение ферментных препаратов. С целью интенсификации солодоращения применяют ферментные препараты.

Расчетное количество ферментного препарата предварительно растворяют воде, полученный рабочий раствор ферментного препарата добавляют в последнюю замочную воду, зерно хорошо перемешивают и оставляют на 6-8 ч., продувая через каждые 2 ч. воздух. Ферменты препаратов проникают в наклюнувшееся и ускоряют процесс разрыхления эндосперма.

Метод перезамачивания ячменя при производстве солода. Одним из способов интенсификации процесса солодоращения является использование метода перезамачивания. Суть его заключается в том, что на стадии проращивания ячмень погружают на определенное время в воду, при этом наблюдается замедление или прекращение роста корешков, повышается влажность зерна, что ускоряет растворение эндосперма. Общая продолжительность замачивания и проращивания при этом способе сокращается от 10 до 5-6 суток за счет активной аэрации, повышенных температуры и степени замачивания. При этом уменьшаются потери экстрактивных веществ, а выход солода увеличивается на 2%.

Применение активаторов для ускорения солодоращения

Добавление активаторов и ингибиторов нарушает равновесие функцией собственных биологически активных веществ, что приводит к ускорению процесса, снижению потерь на дыхание за счет подавления роста зародыша и развития корешков. Обработка проращиваемого ячменя некоторыми химическими реагентами способствует более быстрому накоплению комплекса ферментов и растворению эндосперма зерна, в результате чего повышается качество солода, увеличиваются его выход и экстрактивность.


Осахаривание разваренной массы


Стадии осахаревания, влияния технологических параметров на скорость и глубину осахаревания. Аппаратурно-технологические схемы периодического и непрерывного осахаревания, сравнительная характеристика. Особенности осахаревания крахмалистого сырья солодом и ферментными препаратами. Нормы расхода осахаревающих материалов. Преимущества осахаревания при использовании схем с вакуум-охлаждение. Технологические потери при осахаревании и пути их снижения. Физико-химические показатели зерно-картофельного сусла.


Ферментативный гидролз крахмала

Цель ферментативного гидролиза крахмала – получение сусла. Разваренную массу зерна или картофеля осахаривают (гидролизуют) ферментами солода или культур плесневых грибов. Получаемый в результате этого продукт (сусло) в литературе прошлых лет называли «сладкий затор», «осахаренная масса». Термин «затор» сохранился с того давнего времени, когда на спирт перерабатывали муку, которую «затирали» – смешивали с водой и солодом при определенной температуре.

В основе механизма действия всех ферментов лежит образование неустойчивых промежуточных соединений – комплексов из реагирующих молекул субстрата и активных центров ферментов. При этом в реагирующих молекулах происходит деформация, обеспечивающая вступление их в реакцию. После реакции фермент и химически измененный субстрат отталкиваются один от другого и фермент может реагировать с новой молекулой субстрата.

Выше было рассмотрено действие α- и β-амилаз, декстриназы и глюкоамилазы на те или иные глюкозидные связи в одной цепи макромолекул амилозы и амилопектина, но осталось неясным, как происходит оно в присутствии большого количества цепей. Известно три вероятных способа взаимодействия фермента с субстратом.

По многоцепочечному способу молекула фермента в случайном порядке атакует одну из полисахаридных цепей, отщепляет от нее звено (мономер или димер) и затем также в случайном порядке атакует следующие цепи, в том числе, возможно, и атакованную ранее. Таким образом, за время существования фермент-субстратного комплекса происходит только один каталитический акт.

По одноцепочечному способу молекула фермента, атаковав в случайном порядке одну из полисахаридных цепей, последовательно отщепляет от нее звенья до тех пор, пока цепь полностью распадется. Лишь после этого фермент атакует следующие цепи. За время существования одного фермент-субстратного комплекса гидролизуются все доступные для фермента связи.

Комбинированный способ, или способ множественной атаки, заключается в том, что за время существования одного фермент-субстратного комплекса гидролизуется несколько связей. При этом после отщепления одного звена от цепи фермент не отталкивается, а задерживается. Атака происходит с чередованием одно- и многоцепочечного способов.

Исследования Д. Бейли и Д. Френча показали, что (β-амилаза осуществляет множественную атаку олиго- и полисахаридов, расщепляя за время существования одного фермент-субстратного комплекса четыре глюкозидные связи в амилозе, и образует четыре молекулы мальтозы.

По данным Д. Френча, α-амилаза Asp. oryzae и других плесневых грибов осуществляет гидролиз также по способу множественной атаки и, следовательно, обладает некоторой упорядоченностью действия, что подтверждается существенным выходом олигомеров уже на первых стадиях амилолиза. Исследования К.М. Бендецкого и В.Л. Яровенко показали, что α-амилаза Вас. subtilis атакует амилозу по многоцепочечному способу, растворенный крахмал – по способу множественной атаки. По их данным, глюкоамилаза в зависимости от длины цепи расщепляет глюкозидные связи различными способами. Например, глюкоамилаза Asp. awamori подвергает амилозу множественной атаке, деполимеризованную амилозу – по способу, близкому к многоцепочечному с беспорядочной атакой цепей, декстрины – по многоцепочечному с преимущественной атакой длинных цепей.

В активный центр α- и β-амилаз и глюкоамнлазы входят амидазольная и карбоксильная группы. Такие функциональные группы, как фенольная, сульфгидрильная и дисульфидная, не принимают участия в катализе, но необходимы для поддержания третичной структуры отдельных амилаз.

Субстрат связывается с амилазами посредством содержащихся в нем гидроксильных групп. Имеются доказательства того, что в связывании с α-амилазой участвует гидроксил при С3 глюкозного остатка, с β-амилазой — гидроксил при С нередуцирующего конца полисахаридной цепи. Гидроксил при С4 нередуцирующе-го конца не является необходимым для образования фермент-субстратного комплекса, но его роль существенна в создании фермент-субстратного соответствия.

Атом кислорода обладает большим отрицательным индукционным эффектом, чем атом углерода, следовательно, ОН в α-1,4-глюкозидной связи будет иметь и большую плотность электронного облака по сравнению с атомом С. Снижение плотности электронного облака у последнего вызывается также индукционным воздействием атома кислорода глюкопиранозного кольца. Пунктирные и штриховые линии показывают соединение фермента с субстратом, ведущее к перераспределению электронной плотности в фермент-субстратном комплексе и исчезновению перекрытия электронных орбит между C и О.

 

 

 

 

 

 

содержание   ..  20  21  22  23  24  25  26  27  28  29  30  ..