12. Гидропривод вентилятора холодильной камеры тепловоза 2ТЭ10М, 3ТЭ10М

  Главная      Учебники - Тепловозы     Тепловозы 2ТЭ10М и 3ТЭ10М: Устройство и работа (С. П Филонов) - 1986 год

 поиск по сайту

 

 

 

 

 

 

 

 

 

содержание   ..  60  61  62  63  64  65  66  67  68  69  70  ..

 

 

 

12. Гидропривод вентилятора холодильной камеры тепловоза 2ТЭ10М, 3ТЭ10М



Устройство и принцип работы

 

 Гидропривод вентилятора передает мощность от дизель-генератора к вентилятору холодильной камеры. Он состоит из регулируемой гидромуфты переменного наполнения и углового редуктора с передаточным отношением 2,087. Регулируемая гидродинамическая муфта переменного наполнения обеспечивает соответствующие режимы работы холодильной камеры изменением частоты вращения турбинного вала независимо от частоты вращения коленчатого вала дизель-генератора. Изменение режимов работы холодильной камеры достигается взаимодействием с автоматическим приводом, управляющим работой гидромуфты переменного наполнения, что позволяет автоматически поддерживать оптимальную температуру воды и масла в системах дизеля, рационально расходовать мощность для привода вентилятора.

Для того чтобы понять принцип работы гидродинамической муфты (рис. 76, 77), необходимо вначале ознакомиться с основными ее сборочными единицами, которые обеспечивают бесступенчатое изменение частоты вращения и вращающего момента турбинного вала 27 и соответственно вертикального вала 23 привода осевого вентилятора холодильной камеры через коническую пару шестерен. Основным конструктивным элементом, передающим вращающий момент без механической связи валу вентилятора от коленчатого вала дизель-генератора, является гидроаппарат, включающий
насосное колесо 33, жестко связанное с ведущим валом 3, турбинное колесо 19, жестко связанное с турбинным валом 27, две чаши 15, 20, жестко связанные с насосным колесом.

 

 

 

 

Рис. 76. Гидропривод вентилятора холодильной камеры:
1—крышка насоса, 2—шпонка, 3—вал ведущий; 4, 11, 12, 22—фланцы; 5—ротор лопастного насоса, 6—пружина; 7, 48, 58—гайки; 8, 25, 29, 32—гнезда подшипников; 9—фланец насоса; 10—кольцо пружинное; 13, 14, 35, 38—40—кольца, 15, 20—чаши; 16, 21, 28, 46—крышки; 17—болт призонный, 18—сапун, 19—колесо турбинное; 23—вал; 24—кольцо маслоотбойное; 26—прокладка, 27—вал турбинный; 30, 31—шестерни z = 23, z = 48, 33—колесо насосное; 34—корпус; 36—ступица; 37-г
вал-шестерня, 41—статор; 42—штифт; 43—лопасть; 44—пальцы; 45—трубка черпаковая; 47, 61, 62— штуцера; 49 — шпилька; 50—стакан; 51 — болт; 52, 56—манжеты; 53, 55, 66—втулки; 54—рейка;
57—шплинт; 59, 63—трубопроводы; 60—шестерня; 64—трубка; 65—фильтр

 

 

 

 

 

Рис. 77. Гидропривод вентилятора, разрез по механизму привода черпаковых трубок (обозначения смотри на рис. 76)

 

 

 

 



Чаши вращаются совместно с насосным колесом и образуют так называемый колокол, который удерживает рабочую жидкость (масло) в гидроаппарате при передаче вращающего момента во всем диапазоне его изменения. Насосное и турбинное колеса, расположенные на одной оси и обращенные радиальными лопатками друг к другу, образуют совместно кольцевую полость, разделенную лопатками —40 шт. на насосном колесе и 42 шт. на турбинном колесе. Механическое движение от насосного колеса к турбинному передается маслом за счет его вращающего движения в межлопаточ-ном пространстве, т. е. в плоскости поперечной кольцевой полости (в плоскости рисунка). Турбинное колесо получает вращение под напором масла, создаваемым насосным колесом в ту сторону, что и насосное колесо, но имеет отставание, называемое скольжением, величина которого зависит от степени заполнения круга циркуляции маслом. Через кольцевой зазор Ч между турбинным и насосным колесами, отверстия Р, просверленные в периферийной фланцевой части насосного колеса, масло попадает в кольцевую полость, образованную чашей 15 и тыльной поверхностью насосного колеса, где располагаются две черпаковые трубки 45 механизма регулирования степени заполнения круга циркуляции. От положения черпаковых трубок, их торцовых сопловых сечений зависит круг циркуляции. Положение сопловых сечений определяет механизм привода, состоящий из вала-шестерни 37, имеющей на одном наружном конце нарезанные зубья, а на другом — насаженную по напряженной посадке со шпонкой шестерню 60 с наружными зубьями, которые в собранном гидроприводе находятся в зацеплении с зубьями рейки 54, перемещающейся от штока сервопривода.

Вал-шестерня 37, получая угловые перемещения от рейки 54, соответственно передает движение шестерням, которые, поворачиваясь на пустотелых пальцах 44, разворачивают приваренные к ним черпаковые трубки 45.

Рабочей жидкостью гидромуфты, как было уже отмечено, является масло системы дизель-генератора. В круг циркуляции гидромуфты масло поступает под давлением от системы через штуцер 62, ввинченный в коническое резьбовое отверстие фланца 12 и далее через отверстие в ступице в кольцевую выточку П вала-шестерни 37. Из кольцевой выточки по радиальным и продольному отверстиям в валу 3 масло попадает в круг циркуляции гидромуфты. В процессе регулирования и на номинальном режиме работы гидромуфты масло из круга циркуляции откачивается черпаковыми трубками 45 через отверстия в пальцах 44, два канала Ф и кольцевую наружную проточку К ступицы 36, а затем через канал во фланце 12, трубку 64, ввинченную в резьбовое отверстие фланца, в масляную систему дизель-генератора.

В случае отказа элементов системы автоматического управления режимом работы гидромуфты в конструкции гидропривода вентилятора предусмотрен механизм, позволяющий вручную управлять положением черпаковых трубок и задать с его помощью любой режим работы вентилятора холодильника. Достигается это свинчиванием гайки 48 со стакана 50. Гайка 48 связана с рейкой 54. При свинчивании гайки рейка, перемещаясь, передает движение валу-шестерне 37, которая выводит черпаковые трубки на больший диаметр расположения сопел, что уменьшает степень заполнения круга циркуляции и соответственно снижает частоту вращения турбинного вала.

С помощью этого механизма черпаковые трубки можно развести на наибольший диаметр их расположения, что будет соответствовать нулевой степени заполнения круга циркуляции и соответственно минимальным остаточным

 

оборотам колеса вентилятора в пределах 70—100 об/мин при номинальной частоте вращения коленчатого вала дизель-генератора 850 об/мин.

Перемещение рейки 54 (см. разрез В—В) как от автоматического привода, так и от механизма ручного привода составляет 42 мм. Размеру «42» соответствует наименьший диаметр Д расположения сопел черпаковых трубок, равный 206 мм (сечение Б — Б). Наибольший диаметр расположения черпаковых трубок соответствует перемещению рейки L=42±l мм. В этом случае зазор Ж (сечение Б — Б) должен быть в пределах 3—4 мм, что достигается регулировкой при сборке механизма привода черпаковых трубок.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

содержание   ..  60  61  62  63  64  65  66  67  68  69  70  ..