ТИПЫ ПЕРЕДАЧ ТЕПЛОВОЗА

  Главная      Учебники - Тепловозы     Как устроен и работает тепловоз. 3-е издание (В.А. Дробинский, П.М. Егунов ) - 1980 год

 поиск по сайту

 

 

 

 

 

 

 

 

 

содержание   ..  1  2  3  4  5  6  7  8  9  10    ..

 

 

КАК СВЯЗАТЬ ДИЗЕЛЬ С КОЛЕСАМИ ТЕПЛОВОЗА?

 

 

ТИПЫ ПЕРЕДАЧ ТЕПЛОВОЗА

Для перемещения и подъема тяжестей человек пользуется рычагами (устройствами для уравновешивания большой силы малой).

Рычаги получили широкое и чрезвычайно разнообразное применение в различных областях техники. Можно без преувеличения сказать, что на их основе действуют почти все машины и механизмы. Такое же широкое применение нашли и зубчатые колеса, используемые как средство передачи вращательного движения, когда выгоднее уменьшить скорость, но получить большую силу или наоборот. Следовательно, рычаги, а также зубчатые колеса позволяют преобразовывать сравнительно небольшие вращающие моменты в гораздо большие.
В практике часто требуется иметь не одну, а несколько ступеней изменения вращающего момента. В этом случае применяется несколько пар зубчатых колес. Механизм с набором таких колес, разных по диаметру и числу зубьев, называется коробкой передач. Соединяя зубчатые колеса в различных сочетаниях (изменяя передаточное отношение) при одних и тех же оборотах (частоте вращения) ведущего вала, например вала двигателя внутреннего сгорания, получают различную частоту вращения ведомого вала, например колесных пар.

Многие знают, что в автомобилях есть коробки передач, посредством которых двигатель соединяется с колесами. Благодаря коробке передач у автомобиля изменяется вращающий момент на колесах при сохранении постоянного вращающего момента и частоты вращения вала двигателя. Это именно нужно и на «большом автомобиле» — тепловозе для того, чтобы двигатель внутреннего сгорания мог работать в качестве тягового двигателя. Во время движения на подъем сопротивление поезда возрастает (см. рис. 2). Для увеличения силы тяги тепловоза при сохранении неизменным вращающего момента и частоты вращения вала дизеля выбирают (включают) одно из сочетаний зубчатых колес передачи. При больших скоростях движения (площадка, уклон) пользуются другим сочетанием зубчатых колес. В результате при движении тепловоза на подъем сила тяги из-за увеличения сопротивления поезда должна возрасти, а скорость (чтобы дизель не перегрузился) уменьшиться; при движении по равнинному профи-лю благодаря уменьшению сопротивления поезда сила тяги упадет, а скорость должна увеличиться. Описанная передача называется механической. Благодаря своей простоте и невысокой стоимости такие передачи нашли широкое применение на автомобилях, тракторах, мотоциклах, а также на мотовозах и автодрезинах, имеющих двигатели внутреннего сгорания небольшой мощности — до 220—370 кВт (300—500 л. с.).

Дизели современных магистральных тепловозов развивают в несколько раз большие мощности (до 2940 кВт. или 4000 л. с. и более). Такую мощность передать с помощью набора зубчатых колес хотя принципиально и возможно, но практически трудно. Несмотря на это, попытки применить механическую передачу на тепловозах все же были. С такой передачей в 1924—1926 гг. был построен тепловоз Эмх3 с дизелем мощностью 775 кВт (1050 л. с.). При трогании такого локомотива с места и для преодоления наиболее трудных участков пути машинист включал первую ступень передачи (первую пару зубчатых колес) с самым большим передаточным числом, увеличивая вращающий момент на колесах локомотива в наибольшее количество раз.

По мере увеличения скорости движения тепловоза включалась вторая ступень передачи, а затем и третья. В соответствии с этим уменьшался вращающий момент на колесах, но возрастала скорость движения. Коленчатый же вал дизеля независимо от включенной ступени передачи имел примерно постоянную частоту вращения, а вращающий момент двигателя
практически не изменялся. Однако коробки передач на тепловозах большой мощности не применяются, так как изменение вращающего момента при переходе с одной ступени скорости на другую приводит к сильным рывкам в поезде; бывали даже случаи разрыва состава вагонов на две части (поезд вел тепловоз Эмх3). Кроме того, сам процесс переключения передач больших мощностей очень сложен и нуждается в специальной автоматике.

Механические передачи строятся с небольшим количеством передаточных отношений (передаточных чисел)— обычно не более 5. При большем передаточном числе коробка передач получается громоздкой и тяжелой. Идеальной была бы передача с бесконечным числом передаточных отношений. При таком условии сила тяги менялась бы непрерывно в зависимости от скорости движения, т. е. в любой момент мощность двигателя использовалась бы полностью. Как добиться этого?

На заре развития тепловозостроения конструкторам, занимающимся исследованиями в области передач между двигателем внутреннего сгорания и колесами, было известно, что еще в 1838 г. русский академик Б. С. Якоби впервые применил созданный им электродвигатель для перемещения лодки по реке Неве. Идея использования электричества, позволяющего осуществить более совершенную передачу мощности от дизеля к колесам, овладела умами многих инженеров. Один из самых первых проектов тепловоза с электрической передачей был разработан в начале

900-х годов русскими изобретателями

Н. Г. Кузнецовым и А. И. Одинцовым.

На тепловозе предполагалось установить два дизеля, которые должны были приводить в движение два генератора; постоянный ток, вырабатываемый генераторами, передавался четырем тяговым электродвигателям, которые вращали четыре колесные пары тепловоза. Каждый дизель имел мощность 13,2 кВт (18 л. с.); в другом проекте тех же авторов мощность дизеля должна была составлять 368 кВт (500 л. с.). К сожалению, эти проекты, как и многие другие, в условиях царской России не были осуществлены.

Практическое значение электрическая передача приобрела после постройки в 1924 г. первого магистрального тепловоза конструкции профессора Я. М. Гаккеля. С тех пор создание совершенной электрической передачи тепловозов является важной задачей.

Схема электрической передачи представлена на рис. 6. Вал дизеля вращает непосредственно связанный с ним якорь тягового генератора, в котором механическая энергия преобразуется в электрическую. Постоянный ток, вырабатываемый генератором, по кабелям передается к тяговым электродвигателям. Вращательное движение якоря каждого тягового электродвигателя передается колесной паре с помошью зубчатых колес, сидящих на валу якоря и оси колесной пары. Это устройство называют осевым редуктором.

Электрическая передача, при которой нет непосредственной связи вала дизеля с колесными парами, в отличие от жесткой механической пере-
дачи позволяет получить лучшую зависимость силы тяги тепловоза от скорости его движения при постоянном вращающем моменте на валу дизеля. При этом регулирование вращающего момента в зависимости от изменения сопротивления движению осуществляется автоматически: с увеличением сопротивления движению (переход на подъем) сила тяги увеличивается, а при уменьшении сопротивления увеличивается скорость движения, т. е. происходит то, что и требуется от тепловоза (см. рис. 3). Все это упрощает и облегчает управление тепловозом. Несколькими тепловозами с электрической передачей, сцепленными друг с другом для получения большой мощности, можно управлять из одной кабины машиниста (по «системе многих единиц»). Поясним это.

Допустим, чтобы повести тяжеловесный состав, необходим тепловоз мощностью 8820 кВт (12000 л. с.), а такого мощного локомотива нет. Как же быть? Надо поставить в ряд друг за другом в голове состава четыре тепловоза с электропередачей каждый мощностью 2200 кВт (3000 л. с.). Электропередача позволит одному машинисту управлять всеми тепловозами (секциями, см. ниже) с одного поста управления. В этом состоит еще одно преимущество электропередачи.

Но при всех достоинствах электрическая передача имеет и недостатки. Как указывалось, она очень тяжела. Кроме того, для автоматизации работы электрических машин такой передачи требуется большое количество реле н других аппаратов.
 

Электропередача не может полностью удовлетворить, конструкторов и потому, что на изготовление генератора, тяговых электродвигателей и других машин и аппаратов требуется много цветных металлов, преимущественно меди и ее сплавов. Это сильно удорожает стоимость тепловоза. Подробно электрическая передача описана в гл. 11—20.

Существует передача, которая по сравнению с электрической имеет меньший вес, приходящийся на единицу мощности (правда, для мощностей не более 880 кВт (1200 л. с.), и почти не требует применения цветных металлов. Это гидропередача. Она
может быть либо чисто гидравлической, либо гидромеханической.

Гидравлическая передача, как показывает само название, передает вращающий момент от вала дизеля колесным парам тепловоза с помощью энергии потока жидкости, создаваемой в гидравлических аппаратах. Следовательно, здесь вал дизеля не имеет жесткой связи с осями тепловоза. При гидромеханической передаче только в определенном диапазоне скоростей тяговой характеристики тепловоза вращающий момент передается колесным парам через гидравлические машины (гидромуфты и гидротрансформаторы), а на остальных размах — через коробку передач. Не вдаваясь в подробности, опишем лишь принцип ее работы. В общем корпусе (рис. 7) размещены центробежный насос и турбина. Они представляют собой два колеса с лопатками, насаженные на разные валы. Насосное колесо связано с валом дизеля, а турбинное (через ряд промежуточных деталей, в том числе валов и зубчатых колес)—с осями колесных пар. Насосное и турбинное колеса приближены друг к другу (зазор до 2 мм).

 

 

 

 

Рис. 6. Схема электрической передачи тепловоза

 

 

 

 

 

 

Рис. 7. Схема гидравлической передачи тепловоза

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

содержание   ..  1  2  3  4  5  6  7  8  9  10    ..