Технология изготовления полупроводниковых микросхем

  Главная       Учебники - Радиотехника      Регулировщик радиоаппаратуры (Городилин В. М.)

 поиск по сайту           правообладателям

    

 

 

 

 

 

 

 

 

 

 

содержание   ..  10  11  12  13  14  15  16  17  18  19  20  ..

 

 

 

Технология изготовления полупроводниковых микросхем

 

 В зависимости от разновидности полупроводниковой технологии (локализация и литография, вакуумное напыление и гальваническое осаждение, эпитаксия, диффузия, легирование и травление) получают области с различной проводимостью, которые эквивалентны емкости, либо активным сопротивлениям, либо различным полупроводниковым приборам. Изменяя концентрацию примесей, можно получить в кристалле многослойную структуру, воспроизводящую заданную электрическую схему.

В настоящее время применяют групповые способы изготовления полупроводниковых интегральных микросхем, позволяющие за один технологический цикл получить несколько сотен заготовок микросхем. Наибольшее распространение получил групповой планарный способ, заключающийся в том, что элементы микросхем (конденсаторы, резисторы, диоды и транзисторы) располагаются в одной плоскости или на одной стороне подложки.

Рассмотрим основные технологические процессы, применяемые при изготовлении полупроводниковых микросхем (термическое оксидирование, литография, эпитаксия, диффузия и ионное легирование) .

 

 

 

 

Рис. 22. Перенос изображений с помощью негативного (а) и позитивного (б) фоторезистов:
1 —основа фотошаблона, 2 — непрозрачные участки рисунка фотошаблона, 3 — фоторезистивный слой, 4 — подложка

 

 

 

 

Термическое оксидирование мало чем отличается от типовых технологических процессов, известных при производстве полупроводниковых приборов. В технологии кремниевых полупроводниковых микросхем оксидные слои служат для изоляции отдельных участков полупроводникового кристалла (элементов, микросхемы) при последующих технологических процессах.

Литография является самым универсальным способом получения изображения элементов микросхемы на кристалле полупроводника и делится на три вида: оптическая, рентгеновская и электронная.

В производстве полупроводниковых интегральных микросхем самый универсальный технологический процесс — это оптическая литография или фотолитография. Сущность процесса фотолитографии основана на использовании фотохимических явлений, происходящих в светочувствительных покрытиях (фоторезистах) при экспонировании их через маску. На рис. 22, а показан процесс негативного, а на рис. 22, б — позитивного переноса изображений с помощью фоторезистов, а на рис. 23 приведена схема технологического процесса фотолитографии.

Весь процесс фотолитографии с помощью фоторезистивной маски состоит из трех основных этапов: формирования на поверхности подложки фото-резистивного слоя 1, фоторезистивной контактной маски II и передачи изображения с фотошаблона на фоторе-зистивный слой III.

Фотолитография может производиться бесконтактным и контактным способами. Бесконтактная фотолитография по сравнению с контактной дает более высокую степень интеграции более высокие требования к фотообо-рудованию.

Процесс получения рисунка микросхемы фотолитографическим способом сопровождается рядом контрольных операций, предусмотренных соответствующими картами технологического контроля.

Рентгеновская литография позволяет получить более высокую разрешающую способность (большую степень интеграции), так как длина волны рентгеновских лучей короче, чем световых. иднако рентгенолитография требует более сложного технологического оборудования.

Электронная литография (электронно-лучевое экспонирование) выполняется в специальных вакуумных установках и позволяют получить высокое качество рисунка микросхемы. Этот вид литографии легко автоматизируется и имеет ряд преимуществ при получении больших интегральных микросхем с большим (более 105) числом элементов.

В настоящее время полупроводниковые элементы и компоненты микросхем получают тремя методами: эпитаксии, термической диффузии и ионного легирования.

Эпитаксия—процесс выращивания слоев с упорядоченной кристаллической структурой путем реализации ориентирующего действия кристалла подложки. Ориентированно выраженные слои нового вещества, закономерно продолжающие кристаллическую решетку подложки, называют эпитаксиальными слоями. Эпитаксиальные слои на кристалле выращивают в вакууме. Процессы эпитаксиального выращивания полупроводниковых слоев аналогичны получению тонких пленок. Эпитаксию можно разделить на следующие этапы: доставка атомов или молекул вещества слоя на поверхность кристалла подложки и миграция их по поверхности; начало группирования частиц вещества около поверхностных центров кристаллизации и образование зародышей слоя; рост отдельных зародышей до их слияния и образования сплошного слоя.

Эпитаксиальные процессы могут быть очень разнообразными. В зависимости от используемого материала (полупроводниковой пластины и легирующих элементов) с помощью процесса эпитаксии можно получить однородные (мало отличающиеся) по химическому составу электронно-дырочные переходы, а также однослойные и многослойные структуры наращивания слоев различных типов проводимости. Этим методом можно получить сложные сочетания: полупроводник — полупроводник; полупроводник —

диэлектрик; полупроводник — металл.

В настоящее время наиболее широко применяют избирательный локальный эпитаксиальный рост с использованием Si02 — контактных масок с эпитаксиально-планарной технологией.

Для получения заданных параметров эпитаксиальных слоев осуществляют контроль и регулировку толщины, удельного сопротивления, распределения концентрации примеси по толщине слоя и плотности дефектов. Эти параметры слоев определяют пробивные напряжения и обратные токи р-гс-переходов, сопротивления насыщения транзисторов, внутреннее сопротивление и вольт-фа-радные характеристики структур.

Термическая диффузия — это явление направленного перемещения частиц вещества в сторону убывания их концентрации, которое определяется градиентом концентрации.

Термическую диффузию широко используют для введения легирующих примесей в полупроводниковые пластины или в выращенные на них эпитаксиальные слои с целью получения элементов микросхемы противоположного по сравнению с исходным материалом типа проводимости, либо элементов с более низким электрическим сопротивлением. В первом случае получают, например, эмиттеры, во втором— коллекторы.

Диффузию, как правило, проводят в специальных кварцевых ампулах при 1000—1350° С. Способ проведения диффузии и диф-фузант (примесь) выбирают в зависимости от свойств полупроводника и требований, предъявляемых к параметрам диффузионных структур. Процесс диффузии предъявляет высокие требования к оборудованию и частоте легирующих примесей и обеспечивает получение слоев с высокой точностью воспроизведения параметров и толщин. Свойства диффузионных слоев тщательно контролируют, обращая внимание на глубину залегания р-гс-перехода, поверхностное сопротивление или поверхностную концентрацию примеси, распределение концентрации примеси по глубине диффузионного слоя и плотность дефектов диффузионного слоя.

Дефекты диффузионных слоев (эрозию) проверяют с помощью микроскопа с большим увеличением (до 200х) или электрорадиографии.

Ионное легирование также получило широкое применение при изготовлении полупроводниковых приборов с большой плоскостью переходов, солнечных батарей и др.

Процесс ионного легирования определяется начальной кинетической энергией ионов в полупроводнике и выполняется в два этапа. Сначала в полупроводниковую пластину на вакуумной установке с дуговым разрядом внедряют ионы, а затем проводят отжиг при высокой температуре, в результате чего восстанавливается нарушенная структура полупроводника и ионы примеси занимают узлы кристаллической решетки. Метод получения полупроводниковых элементов наиболее перспективен при изготовлении различных СВЧ-структур.

Основные технологические этапы получения полупроводниковых микросхем показаны на рис. 24. Самым распространенным методом получения элементов в микросхеме (разделения участков микросхемы) является изоляция оксидной пленкой, получаемой в результате термообработки поверхности кристалла (подложки).

Чтобы получить изолирующие р-гс-переходы на подложке кремниевой пластины 1, ее обрабатывают в течение нескольких часов в окислительной среде при 1000—1200° С. Под действием окислителя эпитаксиальный полупроводниковый поверхностный слой кремния 2 окисляется. Толщина оксидной пленки 3 — несколько десятых долей микрона. Эта пленка препятствует проникновению в глубь кристалла атомов другого вещества. Но если снять пленку с поверхности кристалла в определенных местах, то с помощью диффузии или других рассмотренных выше методов можно ввести в эпитаксиальный слой кремния примеси, создав тем самым участки различной проводимости. После того как на подложке получена оксидная пленка, на подложку наносят светочувствительный слой — фоторезист 4. Далее этот слой используют для получения в нем рисунка фотошаблона 5 в соответствии с топологией микросхемы.

Перенос изображения с фотошаблона на окисленную поверхность кремниевой пластины, покрытую слоем фоторезиста, чаще всего производят фотографией, а экспонирование — ультрафиолетовым светом или рентгеном. Затем подложку с экспонированным рисунком проявляют. Те участки, которые освещались, растворяются в кислоте, обнажая поверхность оксида кремния 6. Те же участки, которые не экспонировались, кристаллизуются и становятся нерастворимыми участками 7. Полученную подложку с нанесенной на ней рельефной схемой расположения изолирующих переходов промывают и сушат. После травления незащищенных участков оксида кремния защитный слой фоторезиста удаляют химическим способом. Таким образом, на подложке получают «окна». Такой способ получения рисунка схемы называют позитивным.

 

 

Рис. 24. Основные технологические этапы получения полупроводниковых микросхем



Через обнаженные участки 6 подложки методом диффузии вводят примеси атомов бора или фосфора, которые создают изолирующий барьер 8. На полученных изолированных друг от друга участках подложки методом вторичной диффузии, травления, наращивания или другим методом получают активные и пассивные элементы схемы и токопроводящие пленки 9.

Технология получения полупроводниковых интегральных схем состоит из 15—20, а иногда и более операций. После того как
получены все компоненты схем и пленка оксида вытравлена с тех мест, где будут находиться выводы компонентов, полупроводниковую схему покрывают методом напыления или гальванического осаждения пленкой алюминия. С помощью фотолитографии с последующим травлением получают внутрисхемные соединения.

Поскольку в едином технологическом цикле на подложке изготовляют большое количество однотипных интегральных схем, пластины разрезают на отдельные кристаллы, каждый из которых содержит готовую микросхему. Кристаллы приклеивают к держателю корпуса, а электрические контакты микросхемы методом пайки, сварки и термокомпрессии соединяют с выводами проволочными перемычками. Готовые микросхемы при необходимости герметизируют одним из описанных ниже способов.

Промышленность выпускает большую номенклатуру полупроводниковых интегральных микросхем. Например, кремниевые микросхемы с диодно-транзисторными связями предназначены для работы в логических узлах ЭВМ и узлах автоматики; германиевые полупроводниковые микросхемы с непосредственными связями являются универсальными логическими переключающими элементами НЕ — ИЛИ.

Дальнейшим развитием технологии производства интегральных микросхем явилось создание схем с большой интеграцией микроэлементов.

В совмещенной интегральной микросхеме элементы выполнены в объеме и на поверхности полупроводниковой подложки комбинированием технологии изготовления полупроводниковых и пленочных микросхем. В монокристалле кремния — подложке методами диффузии, травления и другими получают все активные элементы (диоды, транзисторы и др.), а затем на эту подложку, покрытую плотной пленкой оксида кремния, напыляют пассивные элементы (резисторы, конденсаторы) и токопроводящие проводники. Совмещенную технологию применяют для изготовления микро-мощных и быстродействующих интегральных микросхем.

Для получения контактных площадок и выводов микросхемы на подложку осаждают слой алюминия. Подложка со схемой крепится на внутреннем основании корпуса, контактные площадки на монокристалле соединяются проводниками с выводами корпуса микросхемы.

Совмещенные интегральные микросхемы конструктивно могут быть выполнены в виде моноблока довольно малых размеров. Например, двухкаскадный высокочастотный усилитель, состоящий из двух транзисторов и шести пассивных элементов, размещается на монокристалле кремния размером 2,54X1,27 мм.

Быстрый рост интеграции полупроводниковых микросхем при разработке РЭА привел к созданию микросхем высокой степени сложности: БИС, СБИС и БГИС (микросборок).

Большая интегральная схема представляет собой сложную полупроводниковую микросхему с высокой степенью интеграций. В последние годы созданы полупроводниковые БИС, имеющие
на кристалле кремния размером 1,45x1,6 мм до 1000 и более элементов (транзисторов, диодов, резисторов и др.) и выполняющие функции 300 и более отдельных интегральных микросхем. Разработан микропроцессор (микро-ЭВМ), имеющий степень интеграции свыше 107 элементов на кристалле.

Используя несколько навесных структур БИС на диэлектрической подложке с пассивной пленочной частью микросхем, можно получить микросборки (БГИС), которые просты в проектировании и изготовлении.

Повышение интеграции микросхем достигается автоматизацией и введением в технологический процесс математического моделирования с машинным проектированием топологии и применением новых методов формирования элементов микросхем (ионное легирование и др.).

Основной цикл проектирования БИС состоит из двух этапов: архитектурно - схемотехнического и конструкторско - технологического.

Архитектурно-схемотехнический этап включает разработку архитектуры и структуры микросхемы, функциональных и принципиальных электрических схем, математическое моделирование и другие работы.

Конструкторско-технологический этап включает разработку топологии и конструкции микросхемы, технологии ее изготовления, а также их испытания.

Большие и сверхбольшие интегральные микросхемы на современном уровне представляют последний этап развития классических интегральных микросхем, в которых можно выделить области, эквивалентные пассивным и активным элементам. Дальнейшее развитие элементной базы электроники возможно при использовании различных эффектов и физических явлений в молекулах твердого тела (молекулярная электроника).


 

 

 

 

 

 

 

 

 

 

 

 

содержание   ..  10  11  12  13  14  15  16  17  18  19  20  ..