МОДЕЛИРОВАНИЕ ВЗРЫВОВ ПАРОВОГО ОБЛАКА

  Главная      Учебники - Промышленность     Основные опасности химических производств (Маршал В.К.) - 1989 год

 поиск по сайту

 

 

 

 

 

 

 

 

 

 

 

 

содержание   ..  60  61  62  63  64  65  66  67  68  69  70  ..

 

 

 

12.4.4.

МОДЕЛИРОВАНИЕ ВЗРЫВОВ ПАРОВОГО ОБЛАКА

12.4.4.1. МОДЕЛЬ ВЗРЫВА ТНТ

Попытки моделирования взрывов парового облака стали осуществляться лишь после того, как существование этого явления было реально осознано. Наиболее известна модель, предложенная в отчете [Strehlow,1972], в которой взрыв парового облака сравнивается со взрывом эквивалентного количества ТНТ. Несмотря на достаточную обоснованность предложенной модели можно заметить, что она неспособна представить явления, происходящие вблизи центра взрыва ТНТ. Это обусловлено тем, что взрыву парового облака не свойственно бризантное действие, характерное для конденсированного ВВ.

 

_____________________________________________________________

*Приведенное сравнение, однако, не доказывает верное утверждение о том, что фаза сжатия воздушной ударной волны в случае газового взрыва должна быть продолжительнее. - Прим. ред.

В непосредственной близости от места взрыва конденсированного ВВ давление может превышать 1 ГПа [Cook, 1966], в то время как максимальная величина избыточного давления взрыва парового облака даже при наличии соответствующих условий не достигает и нескольких единиц МПа. Данное положение может быть проиллюстрировано сравнением двух случаев аварий: 21 сентября 1921 г. в Оппау (Германия) и 29 июня 1943 г. в Людвигсхафене (Германия). В первой из них из-за детонации примерно 4 тыс. т смеси нитрата аммония на месте взрыва образовалась воронка глубиной 10 м (см. разд. 11.1). Во втором случае произошел взрыв парового облака, содержащего примерно 18 т диметилового эфира (см. разд. 13.12). Образования воронки не было, так же как и в любой другой аварии, причиной которой являлся взрыв парового облака. Если иногда при взрыве парового облака воронка и образуется, то это обусловлено истечением сжиженного газа, вызывающим размыв почвы в непосредственной близости от места утечки. Не исключено, что взрыв парового облака может вызвать незначительное приминание легкого грунта, что регистрируется приборами, однако такое образование не имеет кромки, характерной для кратера, образованного в результате взрыва обычного ВВ.

Таким образом, график зависимости избыточного давления от расстояния для случая взрыва парового облака будет иметь разрыв при значениях избыточного давления, превышающих десятые доли МПа. Аналогичные графические зависимости представлены в работе [АСМН,1979].

Сохраняется вопрос: насколько хорошо согласуются графики избыточного давления для взрыва парового облака при значениях, меньших десятых долей МПа, с аналогичными графиками для взрыва ТНТ (см. рис. 10.2). Представляется очевидным, что если эквивалентность в каком-либо смысле имеет место, то тогда, поскольку в ближней области избыточное давление при взрыве парового облака меньше избыточного давления при взрыве соответствующего количества ТНТ, должна существовать область, где картина противоположна, т. е. где избыточное давление взрыва парового облака больше избыточного давления взрыва соответствующего количества ТНТ.

В работе [Phillips,1981], автор которой ссылается на работу [Luckritz.1977], утверждается, что в дальней области избыточное давление взрыва парового облака меньше тех значений, которые даются зависимостью для эквивалентного количества ТНТ. Поэтому в соответствии с работой [Luckritz.1977] зависимость избыточного давления от приведенного расстояния должна иметь вид, представленный на рис. 12.6 (здесь отражены только качественные особенности данной зависимости).

Рис. 12.6. Зависимость избыточного давления от приведенного расстояния по гипотезе Лукрипа.

Собственно гипотеза состоит в предположении, что если некая интегральная характеристика разрушения во всей области поражающего действия взрыва парового облака равна значению этой же интегральной характеристики разрушений, производимых некоторым количеством ТНТ, то в этом случае указанное количество ТНТ следует называть ТНТ-эквивалентом парового облака.*

В статье [Sadee.1977] предложен вариант построения ТНТ-модели, которая по существу является нечетко центрированной моделью взрыва. Данный вариант применим к моделированию взрыва парового облака с помощью воздушных ТНТ-взрывов. Изменяя расстояние между центрами взрывов ТНТ и парового облака, можно исключить проблемы, связанные с бризантным действием ТНТ взрыва. Однако модель не привлекла особого интереса. Во-первых, она не давала однозначного решения: примерно одинаковый характер разрушения получается при взрыве 14 т ТНТ на расстоянии 69 м, 16 т - на расстоянии 45 м, 18 т - при 21 м над землей. Во-вторых, в реальных воздушных взрывах имеет место отражение взрывной волны, не свойственное взрыву парового облака.

______________________________________________________________

*Таким образом, суть проблемы переносится на определение интегральной характеристики разрушения, о которой автор, к сожалению, не говорит. - Прим. ред.

12.4.4.2. МОДЕЛЬ ВИКЕМА

Другая модель предложена в работах [Wiekema,1980; 1984]. Модель основана на ряде предположений, позволяющих установить связь между относительным уровнем избыточного давления (Р/Рд) и приведенным расстоянием для газовых смесей различной реакционной способности. Представлены методы расчета детонационных режимов превращений паровых взрывов, которые, как будет показано ниже, являются наименее вероятными. Приведенное расстояние выражается величиной (Е/Рд)!73 [Sachs,1944]. Модель позволяет также построить зависимость безразмерной длительности положительной фазы взрывной волны от расстояния. Достоинство модели по сравнению с ТНТ-моделью - независимость от критерия разрушения. Однако, как отмечалось в [Wiekema,1984], пригодность модели обусловлена ее способностью правильно предсказать масштаб разрушения. Можно утверждать, что рассматриваемая модель согласуется со следующими наблюдениями, касающимися взрыва парового облака:

1) Вне облака не отмечалось случаев со смертельным исходом, вызванных действием воздушной ударной волны.

2) Имели место случаи, когда некоторые люди были сбиты с ног, но серьезно не пострадали.

3) Не отмечалось случаев переворачивания автомашин.

4) Здания, находившиеся в непосредственной близости от места взрыва, претерпели разрушения.

5) С увеличением количества горючего вещества в облаке увеличиваются масштабы последствий взрыва.

12.4.4.3. СРАВНЕНИЕ МОДЕЛЕЙ

По нашему мнению, ТНТ-модель может служить одним из приближений для описания взрыва парового облака. Основное ее достоинство состоит в возможности представить степень воздействия взрыва на человека, чего не позволяют сделать более специфические модели, такие, как модель Викема.

Мы полагаем, однако, что главное для специалистов направление моделирования, которое будет объединять теорию с возрастающим объемом информации, полученной на основе лабораторных экспериментов и крупномасштабных испытаний, по-видимому, состоит в разработке моделей, близких к типу модели Викема.

12.4.5. ДРУГИЕ ОСОБЕННОСТИ ОЦЕНКИ

ВЗРЫВА ПАРОВОГО ОБЛАКА

12.4.5.1. ДЕФЛАГРАЦИЯ И ДЕТОНАЦИЯ

В предыдущем разделе рассматривались два типа быстрых превращений парового облака: дефлаграция и детонация. В статье [Wiekema,1980] следующим образом определены данные явления: дефлаграция - разновидность процесса сгорания облака, в ходе которого фронт реакции продвигается по горючей смеси благодаря теплопроводности и конвекции в направлении от сгоревшего газа кнесгоревшему (не всякая дефлаграция сопровождается возникновением значительного уровня избыточного давления). Детонация- разновидность процесса сгорания, в ходе которого сила распространяющейся ударной волны такова, что мгновенно начинается химическая реакция.

Дефлаграция достаточно хорошо изучена и подробно рассмотрена выше, поэтому повторное обсуждение вряд ли может принести новую информацию.* Явление детонации горючих паровоздушных смесей было продемонстрировано в ходе многочисленных испытаний, когда смеси поджигались при помощи расположенных в центре зарядов конденсированных ВВ. В материалах [APIJ,1974] представлены описания данных испытаний, показавших, что при детонации около 640 м3 7,4%-ной смеси этилена с воздухом с помощью заряда пентахлорэтана массой 20 г можно достичь уровня избыточного давления порядка 2 МПа.

Необходимо выяснить, может ли произойти детонация в промышленных условиях, если процесс будет инициироваться источником энергии низкого уровня, каковым Является открытое пламя, зажигалка или электроискровой разряд 200 - 400 В. Согласно общей точке зрения, в таких условиях детонация наименее вероятна. Сошлемся на работу [Pikaar.1984]: "Анализ случаев аварий показал, что имевшиеся разрушения не соответствуют разрушениям, вызванным детонацией. Кроме того, согласно теориям развития процесса быстрых превращений облака, связывающим изменение давления со скоростью пламени, ...давление порядка 0,03 МПа является достаточным, чтобы соответствовать разрушениям, наблюдавшимся в реальных случаях аварий, и может возникать при скорости пламени порядка 150 - 200 м/с. Итак, круг научных интересов постепенно переместился с вопросов, связанных с последствиями детонации, на исследование причин ускорения пламени и оценку длительности ударной волны..."

Короче говоря, взрыв парового облака является дефлаграцией, а не детонацией.

Большинство исследователей пришли к выводу о том, что в аварии 9 декабря 1970 г. в Порт-Хадсоне (шт. Миссури, США) быстрое превращение облака было детонацией. События в Порт-Хадсоне проанализированы ниже, и в ходе обсуждения доказывается необоснованность гипотезы детонации.

 

 

 

 

 

 

содержание   ..  60  61  62  63  64  65  66  67  68  69  70  ..