Аварии паровых котлов, связанные с нарушением водного режима, коррозией и эрозией металла

  Главная      Учебники - Котлы     Сборник правил и руководящих материалов по котлонадзору (Сигалов Л.В.) - 1977 год

 поиск по сайту

 

 

 

 

 

 

 

 

 

 

содержание   ..   190  191  192  193  194  195  196  197  198  199  ..

 

 

Аварии паровых котлов, связанные с нарушением водного режима, коррозией и эрозией металла



Нормальный водный режим — одно из важнейших условий надежности и экономичности эксплуатации котельной установки. Применение воды с повышенной жесткостью для питания котлов влечет за собой образование накипи, перерасход топлива и увеличение расходов на ремонт и чистку котлов. Известно, что накипеобразование может привести к аварии парового котла вследствие пережога поверхностей нагрева. Поэтому правильный водный режим в котельной следует рассматривать не только с точки зрения повышения экономичности котельной установки, но и как важнейшее профилактическое мероприятие по борьбе с аварийностью.

В настоящее время котельные установки промышленных предприятий оснащены водоподготовительными устройствами, поэтому улучшились условия их эксплуатации и значительно снизилось число аварий, вызванных накипеобразованием и коррозией.

Однако на некоторых предприятиях администрация формально выполнив требование Правил котлонадзора об оснащении котлов водоподготовительными установками, не обеспечивает нормальных условий эксплуатации этих установок, не контролирует качество питательной воды и состояние поверхностей нагрева котлов, допуская загрязнения котлов накипью и шламом. Приведем несколько примеров аварий котлов по этим причинам.

1. В котельной завода сборных железобетонных конструкций из-за нарушений водного режима в котле ДКВР-6, 5-13 произошел разрыв трех экранных труб, часть экранных труб деформирована, на многих трубах образовались отдулины.

В котельной имеется двухступенчатая натрий-катионитовая водоочистка и деаэратор, но нормальной работе водоподготовительного оборудования не уделяли должного внимания. Регенерацию ка-тионитовых фильтров не проводили в установленные инструкцией сроки, качество питательной и котловой воды проверяли редко, сроки периодической продувки котла не соблюдали. Воду в деаэраторе не подогревали до требумой температуры и поэтому обескислороживания воды фактически не происходило.

Установлено также, что в котел часто подавали сырую воду, при этом не соблюдали требования «Правил устройства и безопасной эксплуатации паровых и водогрейных котлов», согласно которым запорные органы на линии сырой воды должны быть опломбированы в закрытом положении, а каждый случай питания сырой водой должен быть записан в журнал водоподготовки. Из отдельных записей в журнале водоподготовки видно, что жесткость питательной воды достигала 2 мг-экв/кг и более, при допустимой по нормам котлонадзора 0,02 мг-экв/кг. Чаще всего в журнал вносили такие записи: «вода грязная, жесткая», без указания результатов химического анализа воды.

При осмотре котла после остановки на внутренних поверхностях экранных труб обнаружены отложения толщиной до 5 мм, отдельные трубы почти полностью забиты накипью и шламом. На внутренней поверхности барабана в нижней части толщина отложений достигла 3 мм, передняя часть барабана на одну треть по высоте завалена шламом.

За 11 мес. до этой аварии аналогичные повреждения («трещины, отдулины, деформация) были выявлены в 13-ти экранных трубах котла. Дефектные трубы были заменены, но администрация пред приятия в нарушение «Инструкции по расследованию аварий, но повлекших за собой несчастных случаев на подконтрольных Госгор технадзору СССР предприятиях и объектах» не провела расследование этого случая и не приняла мер по улучшению условий эксплуатации котлов.

2. На энергопоезде сырую воду для питания однообарабанного водотрубного экранированного парового котла производительностью 10 т/ч с рабочим давлением 41 кгс/см2 обрабатывали методом катионного обмена. Вследствие неудовлетворительной работы катион и тового фильтра остаточная жесткость умягченной воды доходила до

0,7 мг-экв/кг вместо предусмотренной проектом 0,01 мг-экв/кг. Про дувка котла производилась нерегулярно. При остановках на ремонт барабан котла и коллекторы экранов не вскрывали и не осматривали. Из-за отложений накипи произошел разрыв трубы, при этом паром и горящим топливом, выброшенным из топки, был обожжен кочегар.

Несчастного случая могло не быть, если бы топочная дверка котла была закрыта на щеколду, как этого требуют правила безо* пасной эксплуатации котлов.

3. На цементном заводе был введен в эксплуатацию вновь смонтированный одно барабанный водотрубный котел производительностью 35 т/ч с рабочим давлением 43 кгс/см2 без химводоочистки, монтаж которой к этому времени не был закончен. В течение месяца питание котла производилось неочищенной водой. Деаэрация воды более двух месяцев не производилась, так как к дэаэратору не был подключен паропровод.

Нарушения водного режима допускались и после того, как во. доподготовительное оборудование было включено в работу. Котел часто подпитывали сырой водой; режим продувок не соблюдали; химическая лаборатория не контролировала качество питательной воды, так как не была снабжена необходимыми реактивами.

Из-за неудовлетворительного водного режима отложения на внутренних поверхностях экранных труб достигали толщины 8 мм; в результате чего на 36 экранных трубах образовались отдулины» значительная часть труб была деформирована, стенки барабана с внутренней стороны подверглись коррозии.

4. На заводе железобетонных изделий питание котла системы Шухова—Берлина производилось водой, обработанной электромагнитным способом. Известно, что при этом способе обработки воды должно быть обеспечено своевременное эффектное удаление шлама из котла.

Однако при эксплуатации котла это условие не выполнялось. Продувка котла производилась нерегулярно, график остановки котла на промывку и чистку не соблюдался.

В резульате этого внутри котла скопилось большое количество шлама. Задняя часть труб была забита шламом на 70—80% сечения, грязевик — на 70% объема, толщина накипи на поверхностях нагрева достигла 4 мм. Это привело к перегреву и деформа-ции кипятильных труб, трубных рсшсчок и головок трубчатых секций.

При выборе электромагнитного способа обработки йоды в данном случае не учли качество питательной воды и конструктивные особенности котла, при этом не были приняты меры по организации нормального режима продувок, что привело к скоплению шлама и значительным отложениям накипи в котле.

5. Исключительное значение приобрели вопросы организации рационального водного режима для обеспечения надежной и экономичной эксплуатации котлов тепловых электростанций.

Образование отложений на поверхностях нагрева котельных агрегатов происходит в результате сложных физико-химических процессов, в которых участвуют не только накипеобразопатели, но и окислы металлов и легкорастворимые соединения. Диализ отложений показывает, что наряду с солями накипеобразователей в них содержится значительное количество окислов железа, являющихся продуктами коррозионных процессов.

За прошедшие годы в нашей стране достигнуты значительные успехи в организации рационального водного режима котлов тепловых электростанций и химического контроля за водой и паром, а также во внедрении коррозионностойких металлов и защитных покрытий.

Применение современных средств водоподготовки позволило резко повысить надежность и экономичность эксплуатации энергетического оборудования.

Однако на отдельных тепловых электростанциях все ещё допускаются нарушения водного режима.

В июне 1976 г. по этой причине на ТЭЦ целлюлозно-бумажного комбината произошла авария на паровом котле типа БКЗ-220-100 ф паропроизводительностью 220 т/ч с параметрами пара 100 кгс/см2 и 540° С, изготовленном на Барнаульском котлостроительном заводе в 1964 г. Котел однобарабанный с естественной циркуляцией, выполнен по П-образной схеме. Топочная камера призматическая полностью экранирована трубами с наружным диаметром 60 мм, шаг которых 64 мм. Нижняя часть экранной поверхности образует так называемую холодную воронку, по откосам которой частички шлака в твердом виде скатываются вниз, в шлаковый комод. Схема испарения двухступенчатая, промывкой пара питательной водой. Первая ступень испарения включена непосредственно в барабан котла, второй ступенью служат выносные паросепарационные циклоны, включенные в схему циркуляции средних боковых блоков экрана.

Питание котла осуществляется смесью химически очищенной воды (60%) и конденсата, поступающего из турбин и производственных цехов (40%). Вода для питания котла обрабатывается по схеме: известковые — коагуляция — магнезиальное обескремнивание в

осветлителях — двухступенчатое катионирование.

Котел работает на угле Интинского месторождения с относительно низкой температурой плавления золы. В качестве растопочного топлива используется мазут. До аварии котел отработал 73 300 ч.

В день аварии котел был включен в 00 ч 45 мин и работал без отклонения от нормального режима до 14 ч. Давление в барабане за этот период работы поддерживалось в пределах 84—102 кгс/см2, расход пара составлял 145—180 т/ч, температура перегретого пара-520—535° С.

В 14 ч 10 мин произошел разрыв 11-ти труб фронтового экрана в зоне холодной воронки на отметке 3,7 м с частичным разрушением

обмуровки. Предполагается, что сначала произошел разрыв водной или двух труб, а затем последовал разрыв остальных труб. Уровень воды резко снизился, и котел был остановлен автоматикой защиты.

Осмотр показал, что разрушению подверглись наклонные участки труб холодной воронки вне гибов, при этом от первого фронтового нижнего коллектора оторваны две трубы, от второго—девять. Разрыв носит хрупкий характер, кромки в местах разрыва тупые и не имеют утонения. Длина разорвавшихся участков труб составляет от одного до трех метров. На внутренней поверхности поврежденных труб, а также образцов, вырезанных из неповрежденных труб, обнаружены рыхлые отложения толщиной до 2,5 мм, а также большое число язвин, глубиной до 2 мм, расположенных цепочкой шириной до 10 мм по двум образующим вдоль границы обогрева трубы. Именно в местах коррозионных повреждений произошло разрушение металла.

В ходе расследования аварии выяснилось, что ранее в процессе эксплуатации котла уже были разрывы экранных труб. Так, например, за два месяца до аварии произошел разрыв трубы фронтового экрана на отметке 6,0 м. Через 3 дня котел был вновь остановлен из-за разрыва двух труб фронтового экрана на отметке 7,0 м. И в этих случаях разрушение труб явилось результатом коррозионных повреждений металла.

В соответствии с утвержденным графиком котел должен был быть остановлен на капитальный ремонт в третьем квартале 1976 г. В период ремонта намечалось провести замену труб фронтового экрана в районе холодной воронки. Однако котел не остановили на ремонт, и трубы не были заменены.

Коррозионные повреждения металла явились следствием нарушений водного режима, допускавшихся в течение длительного времени при эксплуатации котлов ТЭЦ. Котлы питали водой с повышенным содержанием железа, меди и кислорода. Общее содержание солей в питательной воде значительно превышало допустимые нормы, в результате чего даже в контурах первой ступени испарения содержание солей доходило до 800 мг/кг. Используемые для питания котлов производственные конденсаты с содержанием железа 400— 600 мг/кг не очищали. По этой причине, а также из-за того, что не было достаточной противокоррозионной защиты водоподготовительного оборудования (защита осуществлена частично), на внутренних поверхностях труб были значительные отложения (до 1000 г/м2), в основном, состоящие из соединений железа. Аминирование и гидра-зинирование питательной воды было введено лишь незадолго до аварии. Предпусковые и эксплуатационные кислотные промывки котлов не производили.

Возникновению аварии способствовали и другие нарушения Правил технической эксплуатации котлов. На ТЭЦ весьма часто растапливают котлы, причем наибольшее число растопок приходилось на котел, с которым произошла авария. Котлы оснащены устройствами для Парового разогрева, однако при растопке их не использовали. При растопках не контролировали перемещения экранных коллекторов.

Для уточнения характера коррозионного процесса и выяснения причин образования язвин преимущественно в первых двух панелях фронтового экрана и расположения этих язвин в виде цепочек материалы расследования аварии были направлены в ЦКТИ. При рассмотрении этих материалов было обращено внимание на то, что

котлы работали с резко переменной нагрузкой, при этом допускалось значительное снижение паропроизводительности (до 90 т/ч), при котором возможно местное нарушение циркуляции. Котлы растапливали следующим способом: в начале растопки включали две форсунки, расположенные встречно (по диагонали). Такой способ приводил к замедлению процесса естественной циркуляции в панелях первого и второго фронтовых экранов. Именно в этих экранах и найден основной очаг язвенных повреждений. В питательной воде эпизодически появлялись нитриты, за концентрацией которых контроль не осуществлялся.

Анализ материалов аварии с учетом перечисленных недостатков дал основание считать, что образование цепочек язвин на боковых образующих внутренних поверхностей труб фронтового экрана на скате холодной воронки является результатом длительного процесса подшламовой электрохимической коррозии. Деполяризаторами этого процесса явились нитриты и растворенный в воде кислород.

Расположение язвин в виде цепочек является, по-видимому, результатом работы котла при растопках с неустановившимся процессом естественной циркуляции. В период начала циркуляции на верхней образующей наклонных труб холодной воронки периодически образуются поровые пузыри, вызывающие эффект местных термопульсаций в металле £ протеканием электрохимических процессов в рбласти временного раздела фаз. Именно эти места явились очагами образования цепочек язвин. Преимущественное образование язвин в первых двук панелях фронтового экрана явилось следствием неправильного режима растопки.

6. На ТЙЦ вб время работы котла ПК-ЮШ-2 паропроизводп-тельностью 230 т/ч с параметрами пара— 100 кгс/см2 и 540° С было замечено парение на отводе от сборного коллектора свежего пара к главному предохранительному клапану. Отвод соединен с помощью сварки с литым тройником, вваренным в сборный коллектор.

Котел был аварийно остановлен. При осмотре обнаружена кольцевая трещина в нижней части трубы (168X13 мм) горизонтального участка отвода в непосредственной близости от места присоединения отвода к литому тройнику. Длина трещины на наружной поверхности— 70 мм и на внутренней поверхности—110 мм. На внутренней поверхности трубы в месте ее повреждения выявлено большое число коррозионных язвин и отдельные трещины, расположенные параллельно основной.

Металлографическим анализом установлено, что трещины начинаются от язвин в обезуглероженном слое металла и далее развиваются транскристаллитно в направлении, перпендикулярном к поверхности трубы. Микроструктура металла трубы — ферритные зерна и тонкие перлитные цепочки по границам зерен. По шкале, приведенной в виде приложения к МРТУ 14-4-21—67, микроструктура может быть оценена баЛлом 8.

Химический состав металла поврежденной трубы соответствует стали 12Х1МФ. Механические свойства удовлетворяют требованиям технических условий поставки. Диаметр трубы на поврежденном участке не выходит за пределы плюсового допуска.

Горизонтальный отвод к предохранительному клапану при неотрегулированной системе крепления можно рассматривать как консольную балку, приваренную к жестко закрепленному в коллекторе тройнику, с максимальными изгибными напряжениями в месте заделки, т. е. в зоне, где труба подверглась повреждениям. При отсутствии

 

дренажа в отводе и наличии контр уклона, из-за упругого изгиба на участке от предохранительного клапана до сборного коллектора свежего пара, в нижней части трубы перед тройником возможно постоянное скопление небольшого количества конденсата, обогащавшегося во время остановов, консервации и пусков котла в работу, кислородом из воздуха. При этих условиях происходило коррозионное разъедание металла, а совместное воздействие на металл конденсата и растягивающих напряжений вызывало его коррозионное растрескивание. В процессе эксплуатации в местах коррозионных язвин и неглубоких трещин в результате агрессивного воздействия среды и переменных напряжений в металле могут развиваться усталостно-коррозионные трещины, что, по-видимому, и происходило в данном случае.

Для того чтобы конденсат не скапливался, в отводе была сделана обратная циркуляция пара. Для этого труба отвода непосредственно перед главным предохранительным клапаном была соединена линией обогрева (труб диаметром 10 мм) с промежуточной камерой пароперегревателя, по которой подается пар с температурой 430° С. При небольшом перепаде избыточного давления (до 4 кгс/см2) обеспечивается непрерывный расход пара и температура среды в отводе поддерживается не ниже 400° С. Реконструкция отвода осуществлена на всех котлах ПК-ЮШ-2 ТЭЦ.

Для того, чтобы предотвратить повреждения отводов к главным предохранительным клапанам на котлах ПК-ЮШ-2 и подобных им рекомендуется:

—проверить ультразвуком нижние полупериметры труб отводов в местах приварки к тройникам;

— проверить, соблюдены ли требуемые уклоны и при необходимости отрегулировать системы крепления паропроводов к главным предохранительным клапанам с учетом фактического состояния паропроводов (веса изоляции, фактического веса труб, ранее проведенных реконструкций);

— сделать в отводах к главным предохранительным клапанам обратную циркуляцию пара; конструкцию и внутренний диаметр паропровода обогрева в каждом отдельном случае необходимо согласовать с изготовителем оборудования;

— все тупиковые отводы на предохранительные клапаны тщательно заизолировать.

(Из экспресс — информации СЦНТИ ОРГРЭС— 1975 г.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

содержание   ..   190  191  192  193  194  195  196  197  198  199  ..